"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Plot confusion matrix for claim scenario\n",
"plot_confusion_matrix_from_df(summary_df_kbest, 'RISK_VS_CLAIM using KBest Features from all features')\n",
"plot_confusion_matrix_from_df(summary_df_rfe, 'RISK_VS_CLAIM using RFE Features from all features')\n",
"plot_confusion_matrix_from_df(summary_df_lasso, 'RISK_VS_CLAIM using Lasso Features from all features')"
]
},
{
"cell_type": "code",
"execution_count": 107,
"id": "30786f7c",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABeMAAAFICAYAAADTdeWXAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAZgRJREFUeJzt3X18zvX////7bHaCOd9sE3POEnISUZJoI4XyRUJTUvpMTiqhEp0akUI5S6O3t+iE8paU83ISGnM6S07ybiYp58uwPX9/+O14O9pmZ8drx15zu14uu7zfXq/n8Tqez917vp6v47HjeB0exhgjAAAAAAAAAABgmWLu7gAAAAAAAAAAAEUdxXgAAAAAAAAAACxGMR4AAAAAAAAAAItRjAcAAAAAAAAAwGIU4wEAAAAAAAAAsBjFeAAAAAAAAAAALEYxHgAAAAAAAAAAi1GMBwAAAAAAAADAYhTjAQAAAAAAAACwGMV4AAAAAAAAAAAsRjEeAAAAAAAAAACLUYwHAAAAAAAAAMBiFOMBAAAAAAAAALAYxXgAAAAAAAAAACxGMR4AAAAAAAAAAItRjAcAAAAAAAAAwGIU4wEAAAAAAAAAsBjFeAAAAAAAAAAALEYxHgAAAAAAAAAAi1GMBwAAAAAAAADAYhTjAQAAAAAAAACwGMV4AAAAAAAAAAAsRjEeAAAAAAAAAACLUYwHAAAAAAAAAMBiFOMBAAAAAAAAALAYxXgAAAAAAAAAACxGMR4AAAAAAAAAAItRjAcAAAAAAAAAwGIU4wEAAAAAAAAAsBjFeAAAAAAAAAAALEYxHgAAAAAAAAAAi1GMBwAAAAAAAADAYhTjAQAAAAAAAACwGMV4AAAAAAAAAAAsRjEeAAAAAAAAAACLUYwHAAAAAAAAAMBiFOMBAAAAAAAAALAYxXgAAAAAAAAAACxGMR4AAAAAAAAAAItRjAcAAAAAAAAAwGIU4wEAAAAAAAAAsBjFeAAAAAAAAAAALEYxHgAAAAAAAAAAi1GMBwAAAAAAAADAYhTjAQAAAAAAAACwGMV4AAAAAAAAAAAsRjEeAAAAAAAAAACLUYwHAAAAAAAAAMBiFOMBAAAAAAAAALAYxXgAAAAAAAAAACxGMR4AAAAAAAAAAItRjAcAAAAAAAAAwGIU4wEAAAAAAAAAsBjFeAAAAAAAAAAALEYxHgAAAAAAAAAAi1GMBwAAAAAAAADAYhTjAQAAAAAAAACwGMV4AAAAAAAAAAAsRjEeAAAAAAAAAACLUYwHAAAAAAAAAMBiFOMBAAAAAAAAALAYxXgAAAAAAAAAACxGMR4AAAAAAAAAAItRjAcAAAAAAAAAwGIU4wEAAAAAAAAAsBjFeAAAAAAAAAAALEYxHgAAAAAAAAAAi1GMBwAAAAAAAADAYhTjAQAAAAAAAACwGMV4AAAAAAAAAAAsRjEeAAAAAAAAAACLUYwHAAAAAAAAAMBiFOMBAAAAAAAAALAYxXgAAAAAAAAAACxGMR4AAAAAAAAAAItRjAcAAAAAAAAAwGIU4wEAAAAAAAAAsBjFeAAAAAAAAAAALEYxHgAAAAAAAAAAi1GMBwAAAAAAAADAYhTjAQAAAAAAAACwGMV4AAAAAAAAAAAsRjEeAAAAAAAAAACLUYwHAAAAAAAAAMBiFOMBAAAAAAAAALAYxXgAAAAAAAAAACxGMR4AAAAAAAAAAItRjAcAAAAAAAAAwGIU4wEAAAAAAAAAsBjFeAAAAAAAAAAALEYxHgAAAAAAAAAAi1GMBwAAAAAAAADAYhTjAQAAAAAAAACwGMV4AAAAAAAAAAAsRjEeAAAAAAAAAACLUYwHAAAAAAAAAMBiFOMBAAAAAAAAALAYxXgAAAAAAAAAACxGMR4AAAAAAAAAAItRjAcAAAAAAAAAwGIU4wEAAAAAAAAAsBjFeAAAAAAAAAAALEYxHgAAAAAAAAAAi1GMBwAAAAAAAADAYhTjAQAAAAAAAACwGMV4AAAAAAAAAAAsRjEeAAAAAAAAAACLUYwHAAAAAAAAAMBiFOMBAAAAAAAAALAYxXgAAAAAAAAAACxGMR4AAAAAAAAAAItRjAcAAAAAAAAAwGJeOW149OhRnTx50sq+wAVSUlLk4+Pj7m4gB8jKHsjJHsjJHsjJPsjKHsjJHsjJPsjKHsjJHsjJHsjJPsjKHipWrKiqVatet02OivFHjx5VWFiYkpOTXdIxWMfT01Opqanu7gZygKzsgZzsgZzsgZzsg6zsgZzsgZzsg6zsgZzsgZzsgZzsg6zsoUSJEoqPj79uQT5HxfiTJ08qOTlZ8+fPV1hYmMs6CNdavny5Ro8eTU42QFb2QE72QE72QE72QVb2QE72QE72QVb2QE72QE72QE72QVb2EB8frz59+ujkyZP5L8anCwsLU5MmTfLdOVgjPj5eEjnZAVnZAznZAznZAznZB1nZAznZAznZB1nZAznZAznZAznZB1kVLXyBKwAAAAAAAAAAFqMYDwAAAAAAAACAxSjG/8O6devk4eGh06dP5/gx1apV07vvvmtZnwAAAAAAKAgeHh768ssvJUlHjhyRh4eH4uLi3Nqnouza37cr2wIACifbFeP79esnDw8PDRw4MMO+qKgoeXh4qF+/fgXfMeSZh4fHdX/Gjh3ruAhM/6lQoYLCw8O1Y8cOd3f/hpCbjAIDA3Xu3Dmnx996660aO3asezp/g0o/V/7z55dffnHa5+3trVq1aum1117TlStX3N3tG0pOMoqOjnZ6zJdffikPDw839dherFpb5s6d62hfrFgxBQcHq2fPnjp69Giu+jd27Fjdeuut+RylvVm9tpCV613vvPXP/TldX6pVq+Z4TIkSJdSgQQN9+OGHue4bBaqrcppRXtYXsioY12ZYvHhxVa9eXS+88IIuXrzo7q7dENxxnZyUlKSOHTu6vC1yJj+vm9LfzJn+ExAQoPvuu0+7d+9286huDNfL7vvvv9cDDzygkJAQ1h03u15O48aN02233SZ/f38FBgaqa9euSkhIcHeXLWe7YrwkValSRQsXLtTff//t2Hbx4kUtWLDgut9Wi8IpKSnJ8fPuu++qdOnSTtuef/55R9tVq1YpKSlJ3377rc6fP6+OHTvm6lMMyJvcZHTu3DlNnDjRjb1Fug4dOjjllJSUpOrVqzvtO3DggJ577jmNHTtWb7/9tpt7fOO5Xka+vr4aP368Tp065eZe2pOVa0v6sRITE/XFF18oISFB3bt3L4BRFS0FsbaQletd77x17f7crC+vvfaakpKStGfPHvXp00cDBgzQN998Y/VQiqzsMsrP+kJWBSM9w0OHDmny5MmaOXOmxowZ4+5u3TByeh67dOmSS54vKChIPj4+Lm+LnMvv66aEhATHtWRKSoo6derksv8+cH1ZZXfhwgU1atRI77//vru7CGWd0/r16xUVFaUff/xRK1eu1OXLlxUeHq4LFy64u8uWsmUxvkmTJqpSpYoWL17s2LZ48WJVrVpVjRs3dmxLSUnR4MGDFRgYKF9fX915553atm2b07GWL1+uOnXqyM/PT23bttWRI0cyPN+GDRvUunVr+fn5qUqVKho8eHCR/w+jIAUFBTl+ypQpIw8PD6dtpUqVcrStUKGCgoKC1KxZM02cOFG///67tmzZ4sbe3xhyk9Ezzzyjd955RydOnHBjjyFJPj4+TjkFBQXJ09PTaV9oaKiefvpptW/fXkuXLnVzj28818uoffv2CgoK0rhx49zcS3uycm1JP1ZwcLBatWql/v37a+vWrTp79qyjzYgRI1SnTh2VKFFCNWrU0OjRo3X58mVJV9+x/eqrr2rnzp2Od4bMnTtXknT69Gk98cQTCggIUOnSpXXPPfdo586d1vyS3Kwg1haycr3rnbeu3Z+b9cXf319BQUGqUaOGRowYofLly2vlypWO/du2bdO9996rihUrqkyZMmrTpo22b9/u2F+tWjVJ0oMPPigPDw/HvyXpq6++UpMmTeTr66saNWro1VdfLfKfBMsuo/ysL2RVMNIzrFKlirp27ar27ds7fs9paWkaN26cqlevLj8/PzVq1Eiff/650+P37t2r+++/X6VLl5a/v79at26tgwcPSso+I2R9HuvXr5+6du2qN998UyEhIapbt64k6b///a969OihsmXLqnz58urSpUuGusJHH32k+vXry8fHR8HBwRo0aJBj37Xv2r106ZIGDRqk4OBg+fr6KjQ01Gmu/vMdvrt379Y999wjPz8/VahQQU8++aTOnz/v2J/e54kTJyo4OFgVKlRQVFSUY53DVfl93RQYGKigoCA1adJEQ4cO1X//+1/t37/fHUO54WSVXceOHfXGG2/owQcfdHcXoaxzWrFihfr166f69eurUaNGmjt3ro4eParY2Fh3d9lStizGS9Ljjz+umJgYx78/+ugjPfbYY05tXnjhBX3xxReaN2+etm/frlq1aikiIkJ//fWXpKuL5kMPPaQHHnhAcXFxeuKJJzRy5EinYxw8eFAdOnRQt27dtGvXLi1atEgbNmxwWjzhHn5+fpJc944EuEavXr0cH9+Dffj5+TGXChlPT0+99dZbmjp1qn777Td3d+eGkdu15cSJE1qyZIk8PT2dil3+/v6aO3eu9u3bp/fee0+zZ8/W5MmTJUk9e/bUc889p/r16zveGdKzZ09JUvfu3XXixAl98803io2NVZMmTdSuXTvHtcuNyhVrC1m5R27Wl7S0NH3xxRc6deqUvL29HdvPnTunyMhIbdiwQT/++KNq166t++67z3HrovQ328TExCgpKcnx7x9++EGPPvqohgwZon379mnmzJmaO3eu3nzzTReP0l5csb6QVcHZs2ePNm3a5Pg9jxs3Th9//LFmzJihvXv3atiwYerTp4/Wr18vSUpMTNRdd90lHx8frVmzRrGxsXr88ccdf9jILiNkdO15bPXq1UpISNDKlSu1bNkyXb58WREREfL399cPP/ygjRs3qlSpUurQoYPjMdOnT1dUVJSefPJJ7d69W0uXLlWtWrUyfa4pU6Zo6dKl+vTTT5WQkKB///vfTn+0utaFCxcUERGhcuXKadu2bfrss8+0atWqDLWKtWvX6uDBg1q7dq3mzZunuXPnOv6wjNy73rp25swZLVy4UJKczo0AcubMmTOSpPLly7u5J9bycncH8qpPnz4aNWqUfv31V0nSxo0btXDhQq1bt07S1YVp+vTpmjt3ruOearNnz9bKlSs1Z84cDR8+XNOnT1fNmjU1adIkSVLdunW1e/dujR8/3vE848aNU+/evTV06FBJUu3atTVlyhS1adNG06dPl6+vb8ENGg6nT5/W66+/rlKlSql58+bu7g6ukX4f0gceeEDDhg1TzZo13d2lG9ayZcuc3lnasWNHffbZZ05tjDFavXq1vv32Wz3zzDMF3cUbXnYZPfjgg7r11ls1ZswYzZkzxx1dvKHkdG05c+aMSpUqJWOMkpOTJUmDBw9WyZIlHW1efvllx/+vVq2ann/+eS1cuFAvvPCC/Pz8VKpUKXl5eSkoKMjRbsOGDdq6datOnDjh+Aj6xIkT9eWXX+rzzz/Xk08+6eoh20Ze1xaycr2crC1S7taXESNG6OWXX1ZKSoquXLmi8uXL64knnnDsv+eee5zaz5o1S2XLltX69et1//33KyAgQJJUtmxZp5xeffVVjRw5UpGRkZKkGjVq6PXXX9cLL7xQpG/5kZOM8rq+kFXBSM/wypUrSklJUbFixTRt2jSlpKTorbfe0qpVq9SyZUtJV39XGzZs0MyZM9WmTRu9//77KlOmjBYuXKjixYtLkurUqeM4dnYZ4X/+eR77448/VLJkSX344YeOQuv8+fOVlpamDz/80PG9CzExMSpbtqzWrVun8PBwvfHGG3ruuec0ZMgQx7Fvu+22TJ/z6NGjql27tu688055eHgoNDQ0y/4tWLBAFy9e1Mcff+xY16ZNm6YHHnhA48ePV6VKlSRJ5cqV07Rp0+Tp6al69eqpU6dOWr16tQYMGOCS31NRkN/XTTfddJMkOe6g0LlzZ9WrV8/iXkPK+XUJ3CsnOaWlpWno0KG64447dMsttxR0FwuUbYvxAQEB6tSpk+bOnStjjDp16qSKFSs69h88eFCXL1/WHXfc4dhWvHhxNW/eXPHx8ZKk+Ph4tWjRwum46Rc16Xbu3Kldu3bp3//+t2ObMUZpaWk6fPiwwsLCrBgestCqVSsVK1ZMFy5cUI0aNbRo0SLHRQYKj4iICN15550aPXq0FixY4O7u3LDatm2r6dOnO/59bfEpfTG8fPmy0tLS9Mgjj/Alu25wvYzSjR8/Xvfcc4/T/bPhWrldW/z9/bV9+3ZdvnxZ33zzjf79739nePfmokWLNGXKFB08eFDnz5/XlStXVLp06ev2Y+fOnTp//rwqVKjgtP3vv/923F7gRpaXtYWsXC+781Ze1pfhw4erX79+SkpK0vDhw/V///d/Tu8a/f333/Xyyy9r3bp1OnHihFJTU5WcnJztl/Hu3LlTGzdudMo8NTVVFy9eVHJyskqUKJGLkdtHTtYWKW/rC1kVjPQML1y4oMmTJ8vLy0vdunXT3r17lZycrHvvvdep/aVLlxy3a42Li1Pr1q0dhfh/ymtGN5KszmNRUVFq0KCB0zued+7cqV9++UX+/v5Ox7h48aIOHjyoEydO6NixY2rXrl2Onrtfv3669957VbduXXXo0EH333+/wsPDM20bHx+vRo0aOc3xO+64Q2lpaUpISHBcy9SvX9/pE2HBwcF8weg/5Pd10w8//KASJUroxx9/1FtvvaUZM2YUVNdveDld8+BeOckpKipKe/bs0YYNGwqya25h22K8dPVWNekfwbLqSxnOnz+vp556SoMHD86wjy+LLXiLFi3SzTffrAoVKqhs2bLu7g6uIzo6Wi1bttTw4cPd3ZUbVsmSJbP8CGz6Yujt7a2QkBB5edl6ObCt62WU7q677lJERIRGjRqlfv36FUzHbjC5XVuKFSvmyC0sLEwHDx7U008/rX/961+SpM2bN6t379569dVXFRER4XiHYvon8bJy/vx5BQcHOz7ldy3WvKtyu7aQletld97Ky/pSsWJF1apVS7Vq1dJnn32mBg0aqFmzZrr55pslSZGRkfrzzz/13nvvKTQ0VD4+PmrZsmW2t785f/68Xn31VT300EMZ9hXlT7fmZG2R8ra+kFXBuDbDjz76SI0aNdKcOXMc7xT8+uuvVblyZafHpH9KJ/12a1nJa0Y3kuudx/5ZQDp//ryaNm3q9Oa9dAEBASpWLHd3Bm7SpIkOHz6sb775RqtWrVKPHj3Uvn37DN8LkBv//MOMh4eH0tLS8ny8oii/r5uqV6+usmXLqm7dujpx4oR69uyp77//3upuQzlf8+Be2eU0aNAgLVu2TN9//73jkyZFma2rL+n3YfPw8FBERITTvpo1a8rb21sbN250fLTr8uXL2rZtm+OWM2FhYRm+eOPHH390+neTJk20b98+JnchUaVKFW57YhPNmzfXQw89lOF7GFA4cNFiL9HR0br11lsdXxQG18rv2jJy5EjVrFlTw4YNU5MmTbRp0yaFhobqpZdecrRJv61eOm9vb6Wmpjpta9KkiY4fPy4vL68s7w97o8vv2kJW1svv+lKlShX17NlTo0aN0ldffSXp6u0oP/jgA913332Srn7v08mTJ50eV7x48UxzSkhIYL27jvysL2RVMIoVK6YXX3xRzz77rH7++Wf5+Pjo6NGjatOmTabtGzZsqHnz5uny5cuZvjs+Jxnd6HJzHmvSpIkWLVqkwMDALD9VVa1aNa1evVpt27bN0TFLly6tnj17qmfPnvp//+//qUOHDvrrr78y3EM5LCxMc+fO1YULFxx/JNi4caOKFSvGNaML5XZdi4qK0rhx47RkyRK+PBTIhjFGzzzzjJYsWaJ169apevXq7u5SgbDtF7hKV798KD4+Xvv27XP62JV09YT59NNPa/jw4VqxYoX27dunAQMGKDk5Wf3795ckDRw4UAcOHNDw4cOVkJCgBQsWZPgikxEjRmjTpk0aNGiQ4uLidODAAX311Vd8gSuQA2+++abWrFmjhIQEd3cFsLUGDRqod+/emjJliru7gkxUqVJFDz74oF555RVJV79f5ujRo1q4cKEOHjyoKVOmaMmSJU6PqVatmg4fPqy4uDidPHlSKSkpat++vVq2bKmuXbvqu+++05EjR7Rp0ya99NJL+umnn9wxtEIpP2sLWdnDkCFD9J///Mfxu6xdu7b+9a9/KT4+Xlu2bFHv3r0zvPs3vdh1/PhxnTp1SpL0yiuv6OOPP9arr76qvXv3Kj4+XgsXLnT6noAbXX7XF7IqGN27d5enp6dmzpyp559/XsOGDdO8efN08OBBbd++XVOnTtW8efMkXX134dmzZ/Xwww/rp59+0oEDB/Svf/3Lcc7MSUbIud69e6tixYrq0qWLfvjhBx0+fFjr1q3T4MGDHV+QPHbsWE2aNElTpkzRgQMHHJll5p133tEnn3yi/fv36+eff9Znn32moKCgTD911bt3b/n6+ioyMlJ79uzR2rVr9cwzz6hv377cytWNSpQooQEDBmjMmDEyxri7Ozes8+fPKy4uTnFxcZLkuJbjllyFS1RUlObPn68FCxbI399fx48f1/Hjx/X333+7u2uWsnUxXrr6V+Os/gIdHR2tbt26qW/fvmrSpIl++eUXffvttypXrpykq7eZ+eKLL/Tll1+qUaNGmjFjht566y2nYzRs2FDr16/Xzz//rNatW6tx48Z65ZVXFBISYvnYALurU6eOHn/8cV28eNHdXQFs77XXXuMjxYXYsGHD9PXXX2vr1q3q3Lmzhg0bpkGDBunWW2/Vpk2bNHr0aKf23bp1U4cOHdS2bVsFBATok08+kYeHh5YvX6677rpLjz32mOrUqaOHH35Yv/76Ky+qr5HftYWsCr+bb75Z4eHhjj+azJkzR6dOnVKTJk3Ut29fDR48WIGBgU6PmTRpklauXKkqVao47p0dERGhZcuW6bvvvtNtt92m22+/XZMnT77uFyLeiPKzvpBVwfDy8tKgQYM0YcIEjRo1SqNHj9a4ceMUFhamDh066Ouvv3a8m7BChQpas2aNzp8/rzZt2qhp06aaPXu2413yOckIOVeiRAl9//33qlq1qh566CGFhYWpf//+unjxoqNOERkZqXfffVcffPCB6tevr/vvv18HDhzI9Hj+/v6aMGGCmjVrpttuu01HjhzR8uXLM73dTYkSJfTtt9/qr7/+0m233ab/9//+n9q1a6dp06ZZOmZkb9CgQYqPj+eLRN3op59+UuPGjR3rzLPPPuuo56HwmD59us6cOaO7775bwcHBjp9Fixa5u2vWMjkQGxtrJJnY2NicNIebzJ8/n5xsgqzsgZzsgZzsgZzsg6zsgZzsgZzsg6zsgZzsgZzsgZzsg6zsIaf1c9u/Mx4AAAAAAAAAgMKOYjwAAAAAAAAAABajGA8AAAAAAAAAgMUoxgMAAAAAAAAAYDGK8QAAAAAAAAAAWIxiPAAAAAAAAAAAFqMYDwAAAAAAAACAxbxy03j58uWKj4+3qi/Ip40bN0oiJzsgK3sgJ3sgJ3sgJ/sgK3sgJ3sgJ/sgK3sgJ3sgJ3sgJ/sgK3s4fPhwjtp5GGNMdo02b96s1q1bKzU1Nd8dg7WKFSumtLQ0d3cDOUBW9kBO9kBO9kBO9kFW9kBO9kBO9kFW9kBO9kBO9kBO9kFW9uDp6akffvhBLVu2zLJNjt4Z7+Pjo9TUVM2fP19hYWEu6yBca/ny5Ro9ejQ52QBZ2QM52QM52QM52QdZ2QM52QM52QdZ2QM52QM52QM52QdZ2UN8fLz69OkjHx+f67bL1W1qwsLC1KRJk3x1DNZJ/6gKORV+ZGUP5GQP5GQP5GQfZGUP5GQP5GQfZGUP5GQP5GQP5GQfZFW08AWuAAAAAAAAAABYjGI8AAAAAAAAAAAWoxgPAAAAAAAAAIDFimQx/u6779bQoUPd3Q0AAAAAAAAAACTZtBjfr18/de3a1Wnb559/Ll9fX02aNMny51+3bp08PDx0+vRpy5/rRpaYmKg+ffqoQoUK8vPzU4MGDfTTTz+5u1s3jOjoaHl4eDj9YWvWrFm6++67Vbp06SznwM8//6wuXbqoYsWKKl26tO68806tXbvWqc3q1avVqlUr+fv7KygoSCNGjNCVK1csHtGNY9y4cbrtttvk7++vwMBAde3aVQkJCU5tnnrqKdWsWVN+fn4KCAhQly5dtH//fjf1GFLmcy6dMUYdO3aUh4eHvvzyywLvW1H2/vvvq1q1avL19VWLFi20devW67b/7LPPVK9ePfn6+qpBgwZavny5035jjF555RUFBwfLz89P7du314EDB5zavPnmm2rVqpVKlCihsmXLunpIRVJucrp8+bJee+011axZU76+vmrUqJFWrFjh1CY1NVWjR49W9erV5efnp5o1a+r111+XMcbRZuzYsapXr55KliypcuXKqX379tqyZYtlYywK3DGfqlWrJg8PD6ef6Ohol4+tqHN1dosXL1Z4eLgqVKggDw8PxcXFWdj7G0ductq7d6+6devmmCPvvvtuhjY5uWZE9nKTy+zZs9W6dWuVK1fOsbb8s3125770ekRmP9u2bbNsnHbHGmUfrj7XjR07NkMO9erVc+z/66+/9Mwzz6hu3bry8/NT1apVNXjwYJ05c8aK4RUZrs5p+vTpatiwoUqXLq3SpUurZcuW+uabb5za5KQmZQe2LMb/04cffqjevXtr+vTpeu6559zdHbjAqVOndMcdd6h48eL65ptvtG/fPk2aNEnlypVzd9duCNu2bdPMmTPVsGFDp+3Jycnq0KGDXnzxxSwfe//99+vKlStas2aNYmNj1ahRI91///06fvy4JGnnzp2677771KFDB+3YsUOLFi3S0qVLNXLkSEvHdCNZv369oqKi9OOPP2rlypW6fPmywsPDdeHCBUebpk2bKiYmRvHx8fr2229ljFF4eLhSU1Pd2PMbV1ZzLt27774rDw+PAu5V0bdo0SI9++yzGjNmjLZv365GjRopIiJCJ06cyLT9pk2b1KtXL/Xv3187duxQ165d1bVrV+3Zs8fRZsKECZoyZYpmzJihLVu2qGTJkoqIiNDFixcdbS5duqTu3bvr6aeftnyMRUFuc3r55Zc1c+ZMTZ06Vfv27dPAgQP14IMPaseOHY4248eP1/Tp0zVt2jTFx8dr/PjxmjBhgqZOnepoU6dOHU2bNk27d+/Whg0bVK1aNYWHh+uPP/6wfMx25K75JEmvvfaakpKSHD/PPPOMpWMtaqzI7sKFC7rzzjs1fvz4ghpGkZfbnJKTk1WjRg1FR0crKCgo0zY5uWbE9eU2l3Xr1qlXr15au3atNm/erCpVqig8PFyJiYmONtmd+1q1auV0zktKStITTzyh6tWrq1mzZgUybrthjbIPK851klS/fn2nHDZs2ODYd+zYMR07dkwTJ07Unj17NHfuXK1YsUL9+/d3+fiKCityuummmxQdHa3Y2Fj99NNPuueee9SlSxft3bvX6TjZ1aRsweRAbGyskWRiY2Nz0txykZGRpkuXLsYYY8aPH298fX3N4sWLHfvbtGljoqKiTFRUlCldurSpUKGCefnll01aWpqjzcWLF81zzz1nQkJCTIkSJUzz5s3N2rVrHfuPHDli7r//flO2bFlTokQJc/PNN5uvv/7aHD582Ehy+omMjCygkV/f/PnzC1VO+TFixAhz5513ursblinMWZ07d87Url3brFy50rRp08YMGTIkQ5u1a9caSebUqVNO2//44w8jyXz//feObWfPnjWSzMqVK40xxowaNco0a9bM6XFLly41vr6+5uzZsy4fT34U5pxy48SJE0aSWb9+fZZtdu7caSSZX375pQB75hp2zym7Obdjxw5TuXJlk5SUZCSZJUuWuKWf+VUYc2revLmJiopy/Ds1NdWEhISYcePGZdq+R48eplOnTk7bWrRoYZ566iljjDFpaWkmKCjIvP322479p0+fNj4+PuaTTz7JcLyYmBhTpkwZF4zEtQpbVrnNKTg42EybNs1p20MPPWR69+7t+HenTp3M448/ft02/3TmzBkjyaxatSovw3A5u+fkqvkUGhpqJk+e7MKRuFZhyykzrs7uWumvnXbs2OHSPluhsGeV25yuldN5kpNrRncrbDnlJxdjjLly5Yrx9/c38+bNM8bk/lrCGGMuXbpkAgICzGuvvZaPkbiW3XNijXIfK851Y8aMMY0aNcpVPz799FPj7e1tLl++nKvHWaWwZVUQa5IxxpQrV858+OGHGbZnVZNyt5zWz239zvgRI0bo9ddf17Jly/Tggw867Zs3b568vLy0detWvffee3rnnXf04YcfOvYPGjRImzdv1sKFC7Vr1y51795dHTp0cHysKCoqSikpKfr++++1e/dujR8/XqVKlVKVKlX0xRdfSJISEhKUlJSk9957r+AGfYNYunSpmjVrpu7duyswMFCNGzfW7Nmz3d2tG0JUVJQ6deqk9u3b5/qxFSpUUN26dfXxxx/rwoULunLlimbOnKnAwEA1bdpUkpSSkiJfX1+nx/n5+enixYuKjY11yRjgLP3jdeXLl890/4ULFxQTE6Pq1aurSpUqBdk16PpzLjk5WY888ojef//9677TA7l36dIlxcbGOv3eixUrpvbt22vz5s2ZPmbz5s0ZcoqIiHC0P3z4sI4fP+7UpkyZMmrRokWWx8T15SWnrNaZa98B1apVK61evVo///yzpKuf2tqwYYM6duyYZT9mzZqlMmXKqFGjRvkdVpHj7vkUHR2tChUqqHHjxnr77be59V0uWJEdXC8vOeVFdteMcOaKXJKTk3X58mXH7zwv1xJLly7Vn3/+qcceeywfoym6WKPsw8pz3YEDBxQSEqIaNWqod+/eOnr06HXbnzlzRqVLl5aXl1e+nrcoKog1KTU1VQsXLtSFCxfUsmVLlxyzMLHtf1XffPONvvrqK61evVr33HNPhv1VqlTR5MmT5eHhobp162r37t2aPHmyBgwYoKNHjyomJkZHjx5VSEiIJOn555/XihUrFBMTo7feektHjx5Vt27d1KBBA0lSjRo1HMdOXygDAwO516tFDh06pOnTp+vZZ5/Viy++qG3btmnw4MHy9vZWZGSku7tXZC1cuFDbt2/P870GPTw8tGrVKnXt2lX+/v4qVqyYAgMDtWLFCscthiIiIvTuu+/qk08+UY8ePXT8+HG99tprkqSkpCSXjQVXpaWlaejQobrjjjt0yy23OO374IMP9MILL+jChQuqW7euVq5cKW9vbzf19MaU3ZwbNmyYWrVqpS5duhRwz4q+kydPKjU1VZUqVXLaXqlSpSy/P+H48eOZtk+/DVf6/16vDXInLzlFRETonXfe0V133aWaNWtq9erVWrx4sdNtuEaOHKmzZ8+qXr168vT0VGpqqt5880317t3b6VjLli3Tww8/rOTkZAUHB2vlypWqWLGi6wdqc+6cT4MHD1aTJk1Uvnx5bdq0SaNGjVJSUpLeeeedfI/rRmBFdnC9vOSUW9e7ZkTmXJHLiBEjFBIS4ihq5eVaYs6cOYqIiNBNN92U2yHcEFij7MOqc12LFi00d+5c1a1bV0lJSXr11VfVunVr7dmzR/7+/pn24/XXX9eTTz6Z5+csyqxck3bv3q2WLVvq4sWLKlWqlJYsWaKbb745X8csjGxbjG/YsKFOnjypMWPGqHnz5ipVqpTT/ttvv93p/rotW7bUpEmTlJqaqt27dys1NVV16tRxekxKSooqVKgg6epJ8+mnn9Z3332n9u3bq1u3blneyxeul5aWpmbNmumtt96SJDVu3Fh79uzRjBkzKMZb5L///a+GDBmilStXZnhHYU4ZYxQVFaXAwED98MMP8vPz04cffqgHHnhA27ZtU3BwsMLDw/X2229r4MCB6tu3r3x8fDR69Gj98MMPKlbM1h/WKZSioqK0Z88ep3eEpuvdu7fuvfdeJSUlaeLEierRo4c2btyY5/yRO9nNuaVLl2rNmjVO97kGkL333ntPAwYMUL169eTh4aGaNWvqscce00cffeRo8+mnn+rf//63FixYoPr16ysuLk5Dhw5VSEiI03VG27ZtFRcXp5MnT2r27Nnq0aOHtmzZosDAQHcMDZl49tlnHf+/YcOG8vb21lNPPaVx48bJx8fHjT0D7OV614ywRnR0tBYuXKh169bl+fr7t99+07fffqtPP/3Uxb2DK7BGFQ7XfvKxYcOGatGihUJDQ/Xpp59muC/82bNn1alTJ918880aO3ZsAfcUdevWVVxcnM6cOaPPP/9ckZGRWr9+fZEryNu28lW5cmWtW7dOiYmJ6tChg86dO5fjx54/f16enp6KjY1VXFyc4yc+Pt5xy5knnnhChw4dUt++fbV79241a9bM6Uu9YK3g4OAMky0sLCzbjxIh72JjY3XixAk1adJEXl5e8vLy0vr16zVlyhR5eXnl6Is916xZo2XLlmnhwoW644471KRJE33wwQfy8/PTvHnzHO2effZZnT59WkePHtXJkycd7/q99hMoyL9BgwZp2bJlWrt2babvlClTpoxq166tu+66S59//rn279+vJUuWuKGnN6bs5tzKlSt18OBBlS1b1rFfkrp166a7777bvZ0vAipWrChPT0/9/vvvTtt///33LG8JFBQUdN326f+bm2Pi+vKSU0BAgL788ktduHBBv/76q/bv369SpUo5rTHDhw/XyJEj9fDDD6tBgwbq27evhg0bpnHjxjkdq2TJkqpVq5Zuv/12zZkzR15eXpozZ47rB2pzhWk+tWjRQleuXNGRI0dyO4wbkhXZwfXyklNuZHfNiMzlJ5eJEycqOjpa3333ndOb/nJ77ouJiVGFChXUuXPnvA6jyGONsg+rz3XpypYtqzp16uiXX35x2n7u3Dl16NBB/v7+WrJkiYoXL+6y5yxKrMzJ29tbtWrVUtOmTTVu3Dg1atSoSN4a3LbFeEkKDQ3V+vXrdfz48QwF+S1btji1/fHHH1W7dm15enqqcePGSk1N1YkTJ1SrVi2nn2v/w6lSpYoGDhyoxYsX67nnnnPcszz9Ng45KU4ib+644w4lJCQ4bfv5558VGhrqph4Vfe3atdPu3bud/kDVrFkz9e7dW3FxcfL09Mz2GMnJyZKU4R3uxYoVU1pamtM2Dw8PhYSEyM/PT5988omqVKmiJk2auG5ANzBjjAYNGqQlS5ZozZo1ql69eo4eY4xRSkpKAfQQUvZz7qWXXtKuXbuc9kvS5MmTFRMT497OFwHe3t5q2rSpVq9e7diWlpam1atXZ3lfwpYtWzq1l6SVK1c62levXl1BQUFObc6ePastW7YUyXsdFoS85JTO19dXlStX1pUrV/TFF1843e4pOTk5w1rl6emZYa36p7S0NM6TmShM8ykuLs5xmzxkz4rs4Hr5ORdeT16uGfE/ec1lwoQJev3117VixQo1a9bMaV9uzn3GGMXExOjRRx+laHgdrFH2YdW57p/Onz+vgwcPKjg42LHt7NmzCg8Pl7e3t5YuXcqnxa+joHJKP25RvPa27W1q0lWpUkXr1q1T27ZtFRERoRUrVkiSjh49qmeffVZPPfWUtm/frqlTp2rSpEmSpDp16qh379569NFHNWnSJDVu3Fh//PGHVq9erYYNG6pTp04aOnSoOnbsqDp16ujUqVNau3atwsLCJF39I4CHh4eWLVum++67T35+fhluk4P8Sb9P8ltvvaUePXpo69atmjVrlmbNmuXurhVZ/v7+Ge4PWbJkSVWoUMGx/fjx4zp+/LjjL8i7d++Wv7+/qlatqvLly6tly5YqV66cIiMj9corr8jPz0+zZ8/W4cOH1alTJ8dx3377bXXo0EHFihXT4sWLFR0drU8//TRHBX9kLyoqSgsWLNBXX30lf39/x30Ly5QpIz8/Px06dEiLFi1SeHi4AgIC9Ntvvyk6Olp+fn6677773Nz7G0dO5lxm7yyoWrUqL5Zd5Nlnn1VkZKSaNWum5s2b691339WFCxccX4D26KOPqnLlyo53Sw8ZMkRt2rTRpEmT1KlTJy1cuFA//fSTY23y8PDQ0KFD9cYbb6h27dqqXr26Ro8erZCQEHXt2tXxvEePHtVff/2lo0ePKjU11fGHllq1anE9kYnc5rRlyxYlJibq1ltvVWJiosaOHau0tDS98MILjmM+8MADevPNN1W1alXVr19fO3bs0DvvvKPHH39c0tUvtn7zzTfVuXNnBQcH6+TJk3r//feVmJio7t27F/wvwQbcMZ82b96sLVu2qG3btvL399fmzZs1bNgw9enTx/FdNcieq7OT5DjHHTt2TJIcb7IJCgriHfR5lNucLl26pH379jn+f2JiouLi4lSqVCnVqlVLUvbXjMhebnMZP368XnnlFS1YsEDVqlVz/M5LlSqlUqVK5fhaQrr6qeTDhw/riSeeKNAx2xFrlH1Yca57/vnn9cADDyg0NFTHjh3TmDFj5OnpqV69ekn6XyE+OTlZ8+fP19mzZ3X27FlJVz9xSZ0iIytyGjVqlDp27KiqVavq3LlzWrBggdatW6dvv/3W8bzZ1aRsw+RAbGyskWRiY2Nz0txykZGRpkuXLk7bfvvtN1O7dm1z++23m8aNG5v/+7//MwMHDjSlS5c25cqVMy+++KJJS0tztL906ZJ55ZVXTLVq1Uzx4sVNcHCwefDBB82uXbuMMcYMGjTI1KxZ0/j4+JiAgADTt29fc/LkScfjX3vtNRMUFGQ8PDxMZGRkQQw7W/Pnzy9UOeXXf/7zH3PLLbcYHx8fU69ePTNr1ix3d8ll7JJVmzZtzJAhQxz/HjNmjJGU4ScmJsbRZtu2bSY8PNyUL1/e+Pv7m9tvv90sX77c6bht27Y1ZcqUMb6+vqZFixYZ9hcWdsnpnzLL6NqcEhMTTceOHU1gYKApXry4uemmm8wjjzxi9u/f796O55Fdc8rMP+fcP0kyS5YsKbD+uFJhzWnq1KmmatWqxtvb2zRv3tz8+OOPjn1t2rTJsMZ/+umnpk6dOsbb29vUr1/ffP31107709LSzOjRo02lSpWMj4+PadeunUlISHBqExkZmekcXbt2rVXDzJXCmFVuclq3bp0JCwszPj4+pkKFCqZv374mMTHR6Xhnz541Q4YMMVWrVjW+vr6mRo0a5qWXXjIpKSnGGGP+/vtv8+CDD5qQkBDj7e1tgoODTefOnc3WrVsLZLw5YfecjMn/fIqNjTUtWrRwXFOEhYWZt956y1y8eNHSceZGYcwpM67OLiYmJtPz3JgxYwpgNHljh6xyk9Phw4czzaBNmzaONtldMxZGhTGn3OQSGhqa7dzIybWEMcb06tXLtGrVysqh5ZndczKGNcqdXH2u69mzpwkODjbe3t6mcuXKpmfPnuaXX35x7F+7dm2W58PDhw8XwIizVxizcnVOjz/+uAkNDTXe3t4mICDAtGvXznz33XdOz5mTmpQ75bR+bstiPDJXGCcnMkdW9kBO9kBO9kBO9kFW9kBO9kBO9kFW9kBO9kBO9kBO9kFW9pDT+rmt7xkPAAAAAAAAAIAdUIwHAAAAAAAAAMBiFOMBAAAAAAAAALAYxXgAAAAAAAAAACxGMR4AAAAAAAAAAItRjAcAAAAAAAAAwGJeuWm8fPlyxcfHW9UX5NPGjRslkZMdkJU9kJM9kJM9kJN9kJU9kJM9kJN9kJU9kJM9kJM9kJN9kJU9HD58OEftPIwxJrtGmzdvVuvWrZWamprvjsFaxYoVU1pamru7gRwgK3sgJ3sgJ3sgJ/sgK3sgJ3sgJ/sgK3sgJ3sgJ3sgJ/sgK3vw9PTUDz/8oJYtW2bZJkfvjPfx8VFqaqrmz5+vsLAwl3UQrrV8+XKNHj2anGyArOyBnOyBnOyBnOyDrOyBnOyBnOyDrOyBnOyBnOyBnOyDrOwhPj5effr0kY+Pz3Xb5eo2NWFhYWrSpEm+OgbrpH9UhZwKP7KyB3KyB3KyB3KyD7KyB3KyB3KyD7KyB3KyB3KyB3KyD7IqWvgCVwAAAAAAAAAALEYxHgAAAAAAAAAAi1GMBwAAAAAAAADAYkWqGN+vXz95eHjIw8NDxYsXV/Xq1fXCCy/o4sWLjjbp+6/9ufPOO6+738PDQwsXLnTHkG4Y06dPV8OGDVW6dGmVLl1aLVu21DfffOPYP2vWLN19990qXbq0PDw8dPr0afd1tohyRQbbt2/Xvffeq7Jly6pChQp68skndf78ecf+nTt3qlevXqpSpYr8/PwUFham9957ryCGV6R8//33euCBBxQSEiIPDw99+eWXTvuNMXrllVcUHBwsPz8/tW/fXgcOHHDsP3LkiPr376/q1avLz89PNWvW1JgxY3Tp0iWn4+zatUutW7eWr6+vqlSpogkTJhTE8G4o2WX5+++/q1+/fgoJCVGJEiXUoUMHpyyRf++//76qVasmX19ftWjRQlu3br1u+88++0z16tWTr6+vGjRooOXLlzvtz27+rVu3LstrjW3btlkyxqIgNzndfffdmf5+O3XqlGn7gQMHysPDQ++++67T9uzWNGSUm5xmz56t1q1bq1y5cipXrpzat2+fof3YsWNVr149lSxZ0tFmy5YtTm3IKW8K+tx3rZSUFN16663y8PBQXFycq4Z0Q8htbqdPn1ZUVJSCg4Pl4+OjOnXqOGU3btw43XbbbfL391dgYKC6du2qhIQEq4dR5LhyPl2+fFkjRoxQgwYNVLJkSYWEhOjRRx/VsWPHnI7BuS/3XL1GXSuza4mcvuZCRq5eo66tFab/dOjQIcNxvv76a7Vo0UJ+fn4qV66cunbt6sphFTm5yWnv3r3q1q2bqlWrlul1t5S7NckYo44dO2b6GtoOilQxXpI6dOigpKQkHTp0SJMnT9bMmTM1ZswYpzYxMTFKSkpy/CxduvS6+5OSkpiEFrvpppsUHR2t2NhY/fTTT7rnnnvUpUsX7d27V5KUnJysDh066MUXX3RzT4uu/GZw7NgxtW/fXrVq1dKWLVu0YsUK7d27V/369XO0iY2NVWBgoObPn6+9e/fqpZde0qhRozRt2rSCGGKRceHCBTVq1Ejvv/9+pvsnTJigKVOmaMaMGdqyZYtKliypiIgIxx8m9+/fr7S0NM2cOVN79+7V5MmTNWPGDKdsz549q/DwcIWGhio2NlZvv/22xo4dq1mzZhXIGG8U18vSGKOuXbvq0KFD+uqrr7Rjxw6Fhoaqffv2unDhght6W/QsWrRIzz77rMaMGaPt27erUaNGioiI0IkTJzJtv2nTJvXq1Uv9+/fXjh071LVrV3Xt2lV79uxxtMlu/rVq1SrDNcYTTzyh6tWrq1mzZgUybrvJbU6LFy92+v3u2bNHnp6e6t69e4a2S5Ys0Y8//qiQkBCn7TlZ0+AstzmtW7dOvXr10tq1a7V582ZVqVJF4eHhSkxMdLSpU6eOpk2bpt27d2vDhg2qVq2awsPD9ccff0gip7xyx7nvWi+88EKGOYfs5Ta3S5cu6d5779WRI0f0+eefKyEhQbNnz1blypUdbdavX6+oqCj9+OOPWrlypS5fvqzw8HCuM3LB1fMpOTlZ27dv1+jRo7V9+3YtXrxYCQkJ6ty5s+MYnPtyz4o1Kl1W1xI5ec2FjKxYo6T/1QrTfz755BOn/V988YX69u2rxx57TDt37tTGjRv1yCOPWDZOu8ttTsnJyapRo4aio6MVFBSUaZvcrEnvvvuuPDw8XDqmAmVyIDY21kgysbGxOWnuNpGRkaZLly5O2x566CHTuHFjx78lmSVLlmR5jOz2F2bz58+3RU45Va5cOfPhhx86bVu7dq2RZE6dOuWeTrmIXbLKTQYzZ840gYGBJjU11bFt165dRpI5cOBAls/xf//3f6Zt27Yu7ber2CGnf56z0tLSTFBQkHn77bcd206fPm18fHzMJ598kuVxJkyYYKpXr+749wcffGDKlStnUlJSHNtGjBhh6tat69oBuIAdcsqJf2aZkJBgJJk9e/Y4tqWmppqAgAAze/ZsN/QwfwpjTs2bNzdRUVGOf6emppqQkBAzbty4TNv36NHDdOrUyWlbixYtzFNPPWWMydv8u3TpkgkICDCvvfZafofjMoUtq9zm9E+TJ082/v7+5vz5807bf/vtN1O5cmWzZ88eExoaaiZPnuzYl9c1rSAVtZyuXLli/P39zbx587Jsc+bMGSPJrFq1yhhDTnnlznPf8uXLTb169czevXuNJLNjxw4XjSr/CmNW18ptbtOnTzc1atQwly5dyvFznDhxwkgy69evz3d/rVLYcnL1fMrM1q1bjSTz66+/GmM49+WFVWvU9a4lMvPP11zuVthyMsaaOZVZrfBaly9fNpUrV85Q+yhMCltW+ZlTOZkrxmS9Ju3YscNUrlzZJCUlFboabk7r50XunfHX2rNnjzZt2iRvb293dwW5kJqaqoULF+rChQtq2bKlu7tzQ8pLBikpKfL29laxYv87rfj5+UmSNmzYkOXjzpw5o/Lly+evw3A4fPiwjh8/rvbt2zu2lSlTRi1atNDmzZuzfNw/c9i8ebPuuusup/NnRESEEhISdOrUKWs6DycpKSmSJF9fX8e2YsWKycfH57pzCjlz6dIlxcbGOs2VYsWKqX379lnOlc2bNzu1l67Oi/T2eZl/S5cu1Z9//qnHHnssv0MqkvKS0z/NmTNHDz/8sEqWLOnYlpaWpr59+2r48OGqX79+hsfkdU27Ubkip+TkZF2+fDnLa4JLly5p1qxZKlOmjBo1aiSJnPLCnee+33//XQMGDNC//vUvlShRwpXDKvLyktvSpUvVsmVLRUVFqVKlSrrlllv01ltvKTU1NcvnOXPmjCRxbZ5DVsynzJw5c0YeHh4qW7asJM59uWXVGpXdtURmeO17fVbOqXXr1ikwMFB169bV008/rT///NOxb/v27UpMTFSxYsXUuHFjBQcHq2PHjhneXY+rXDGnciKzNSk5OVmPPPKI3n///SzfYW8HRa4Yv2zZMpUqVcpxr6gTJ05o+PDhTm169eqlUqVKOX7+eX+hf+4vVaqUjh49WoCjuDHt3r1bpUqVko+PjwYOHKglS5bo5ptvdne3bij5yeCee+7R8ePH9fbbb+vSpUs6deqURo4cKUlKSkrK9DGbNm3SokWL9OSTT7psDDe648ePS5IqVarktL1SpUqOff/0yy+/aOrUqXrqqaecjpPZMa59DlirXr16qlq1qkaNGqVTp07p0qVLGj9+vH777bcs5xRy7uTJk0pNTc3VXMlqXqS3z8v8mzNnjiIiInTTTTflaRxFXV5yutbWrVu1Z88ePfHEE07bx48fLy8vLw0ePDjTx+VlTbuR5TcnSRoxYoRCQkIyvKC+9tp+8uTJWrlypSpWrCiJnPLCXec+Y4z69eungQMHckuuPMhLbocOHdLnn3+u1NRULV++XKNHj9akSZP0xhtvZNo+LS1NQ4cO1R133KFbbrnF5WMoiqyYT/908eJFjRgxQr169VLp0qUlce7LLavWqOyuJf4ps9dccGbVnOrQoYM+/vhjrV69WuPHj9f69evVsWNHxx8nDx06JOnqd9W8/PLLWrZsmcqVK6e7775bf/31lyuHWCS4Yk5lJ6s1adiwYWrVqpW6dOnikudxlyJXjG/btq3i4uK0ZcsWRUZG6rHHHlO3bt2c2kyePFlxcXGOn3vvvfe6++Pi4rivYQGoW7euI7unn35akZGR2rdvn7u7dUPJTwb169fXvHnzNGnSJJUoUUJBQUGqXr26KlWq5PSujXR79uxRly5dNGbMGIWHh7t6KMihxMREdejQQd27d9eAAQPc3R1co3jx4lq8eLF+/vlnlS9fXiVKlNDatWvVsWPHTOcU7Oe3337Tt99+q/79+7u7K0XWnDlz1KBBAzVv3tyxLTY2Vu+9957mzp2b5b0mc7umIX+io6O1cOFCLVmyxOnTQNL/ru03bdqkDh06qEePHo77kZKTfUydOlXnzp3TqFGj3N2VG0ZaWpoCAwM1a9YsNW3aVD179tRLL72kGTNmZNo+KipKe/bs0cKFCwu4p8jK5cuX1aNHDxljNH36dMd2zn0FK7M1KifXEtfiNZd7Pfzww+rcubMaNGigrl27atmyZdq2bZvWrVsn6er5UpJeeukldevWTU2bNlVMTIw8PDz02WefubHnN67M1qSlS5dqzZo1mX75q90UuTN1yZIlVatWLTVq1EgfffSRtmzZojlz5ji1CQoKUq1atRw/135sObP9tWrVkpeXV0EO44bk7e2tWrVqqWnTpho3bpwaNWqk9957z93duqHkN4NHHnlEx48fV2Jiov7880+NHTtWf/zxh2rUqOHUbt++fWrXrp2efPJJvfzyy64exg0t/aNav//+u9P233//PcPHuI4dO6a2bduqVatWGb6YNSgoKNNjXPscsF7Tpk0VFxen06dPKykpSStWrNCff/6ZYU4h9ypWrChPT88czZV0Wc2L9Pa5mX/S1S+Mr1ChgtOXssFZXnJKd+HCBS1cuDDDHzt++OEHnThxQlWrVpWXl5e8vLz066+/6rnnnlO1atUc7XK6piF/OU2cOFHR0dH67rvv1LBhwwz706/tb7/9ds2ZM0deXl5O1/bklDvuOvetWbNGmzdvlo+Pj7y8vFSrVi1JUrNmzRQZGZn/gRVxecktODhYderUkaenp2NbWFiYjh8/rkuXLjm1HTRokJYtW6a1a9fySa1csGI+pUsvxP/6669auXKl413x6Tj35ZwVa1ROryWk67/mgjMr59S1atSooYoVK+qXX36RdPV8KcnprgA+Pj6qUaMGd8nIRH7mVE5ktSatWbNGBw8eVNmyZR3zTpK6deumu+++O9/PW5CKXDH+WsWKFdOLL76ol19+WX///be7u4NcSktLc9wzGe6R1wwqVaqkUqVKadGiRfL19XX69MnevXvVtm1bRUZG6s0333RldyGpevXqCgoK0urVqx3bzp49qy1btjjd/z8xMVF3332346/+/3wXTcuWLfX999/r8uXLjm0rV65U3bp1Va5cOesHAidlypRRQECADhw4oJ9++sn2H8srDLy9vdW0aVOnuZKWlqbVq1dn+V0ZLVu2dGovXZ0X6e1zOv+kq7dsiImJ0aOPPqrixYu7alhFTl5ySvfZZ58pJSVFffr0cdret29f7dq1K8MnIIcPH65vv/02w3Gut6bhqrzmNGHCBL3++utasWJFjm9dktW1CTnljLvOfVOmTNHOnTsdc2758uWSpEWLFnE9mAN5ye2OO+7QL7/84njHpyT9/PPPCg4OdnwnkDFGgwYN0pIlS7RmzRpVr17d2oEUMVbMJ+l/hfgDBw5o1apVqlChQpZ94NyXPSvWqJxeS2T3mgvOrJpT//Tbb7/pzz//dBThmzZtKh8fHyUkJDjaXL58WUeOHFFoaGh+hlQk5ef6/HqyW5NGjhyZYd5JV+9uEhMTk+fndQtXfhusu2X2Dcnp34r89ttvG2NMtt+0K8nExMSYpKQkp5/z589b2HPXKGzfrpwbI0eONOvXrzeHDx82u3btMiNHjjQeHh7mu+++M8YYk5SUZHbs2GFmz55tJJnvv//e7Nixw/z5559u7nneFMasXJHB1KlTTWxsrElISDDTpk0zfn5+5r333nPs3717twkICDB9+vRxml8nTpwo8PHmRGHMyRhjzp07Z3bs2GF27NhhJJl33nnH7Nixw/z666/GGGOio6NN2bJlzVdffWV27dplunTpYqpXr27+/vtvY4wxv/32m6lVq5Zp166d+e2335yySHf69GlTqVIl07dvX7Nnzx6zcOFCU6JECTNz5ky3jPl6CmtOOZFdlp9++qlZu3atOXjwoPnyyy9NaGioeeihh9zc67wpjDktXLjQ+Pj4mLlz55p9+/aZJ5980pQtW9YcP37cGGNM3759zciRIx3tN27caLy8vMzEiRNNfHy8GTNmjClevLjZvXu3o0128y/dqlWrjCQTHx9fMIPNhcKWVW5zSnfnnXeanj175ug5QkNDzeTJk522ZbemuZvdc4qOjjbe3t7m888/d1qHzp07Z4wx5vz582bUqFFm8+bN5siRI+ann34yjz32mPHx8TF79uxxHIeccs+d5750hw8fNpLMjh07LB1rbhTGrK6V29yOHj1q/P39zaBBg0xCQoJZtmyZCQwMNG+88YajzdNPP23KlClj1q1b5zQPk5OTC3x8OVXYcnL1fLp06ZLp3Lmzuemmm0xcXJxTLikpKY7jcO7LHVevUZn557VETl5zuVthy8kY18+pc+fOmeeff95s3rzZHD582Kxatco0adLE1K5d21y8eNFxnCFDhpjKlSubb7/91uzfv9/079/fBAYGmr/++qtgfwFZKGxZ5TanlJQUx+ve4OBg8/zzz5sdO3aYAwcOONrkZU3KrsZb0HJaPy/yxXhjjBk3bpwJCAgw58+fz1ExPrOfcePGWddxFylskzM3Hn/8cRMaGmq8vb1NQECAadeunaMIbIwxY8aMyTSXmJgY93U6HwpjVq7IoG/fvqZ8+fLG29vbNGzY0Hz88cdOz5HVMUJDQwtolLlTGHMyxpi1a9dm+nuMjIw0xhiTlpZmRo8ebSpVqmR8fHxMu3btTEJCguPxMTExWZ7rrrVz505z5513Gh8fH1O5cmUTHR1dkMPMscKaU05kl+V7771nbrrpJlO8eHFTtWpV8/LLLzu9ELOTwprT1KlTTdWqVY23t7dp3ry5+fHHHx372rRp48gi3aeffmrq1KljvL29Tf369c3XX3/ttD+7+ZeuV69eplWrVpaMKb8KY1a5zWn//v1GktM6dj2ZFeOzW9Pcze45hYaGZnr+GzNmjDHGmL///ts8+OCDJiQkxHh7e5vg4GDTuXNns3XrVqfnJKe8cde5Lx3F+LzJbW6bNm0yLVq0MD4+PqZGjRrmzTffNFeuXHHsz+p6sDC/xiqMOblyPqXPjcx+1q5d62jHuS/3XLlGZeaf1xI5fc3lToUxJ2NcO6eSk5NNeHi4CQgIMMWLFzehoaFmwIABjqJxukuXLpnnnnvOBAYGGn9/f9O+fXunP/67W2HMKjc5ZXVua9OmjaNNXtYkivFwu8I4OZE5srIHcrIHcrIHcrIPsrIHcrIHcrIPsrIHcrIHcrIHcrIPsrKHnNbPuWEVAAAAAAAAAAAWoxgPAAAAAAAAAIDFKMYDAAAAAAAAAGAxivEAAAAAAAAAAFiMYjwAAAAAAAAAABajGA8AAAAAAAAAgMUoxgMAAAAAAAAAYDGv3DRevny54uPjreoL8mnjxo2SyMkOyMoeyMkeyMkeyMk+yMoeyMkeyMk+yMoeyMkeyMkeyMk+yMoeDh8+nKN2HsYYk12jzZs3q3Xr1kpNTc13x2CtYsWKKS0tzd3dQA6QlT2Qkz2Qkz2Qk32QlT2Qkz2Qk32QlT2Qkz2Qkz2Qk32QlT14enrqhx9+UMuWLbNsk6N3xvv4+Cg1NVXz589XWFiYyzoI11q+fLlGjx5NTjZAVvZATvZATvZATvZBVvZATvZATvZBVvZATvZATvZATvZBVvYQHx+vPn36yMfH57rtcnWbmrCwMDVp0iRfHYN10j+qQk6FH1nZAznZAznZAznZB1nZAznZAznZB1nZAznZAznZAznZB1kVLXyBKwAAAAAAAAAAFqMYDwAAAAAAAACAxSjGAwAAAAAAAABgMYrxAAAAAAAAAABYzJbF+H79+qlr167u7gYsVK1aNXl4eGT4iYqKcnfXbhjR0dHy8PDQ0KFDJUl//fWXnnnmGdWtW1d+fn6qWrWqBg8erDNnzjg97ujRo+rUqZNKlCihwMBADR8+XFeuXMn0OTZu3CgvLy/deuutFo8GqampGj16tKpXry4/Pz/VrFlTr7/+uowx7u4a/n//nHOS9NRTT6lmzZry8/NTQECAunTpov3797uvk0XQ+++/r2rVqsnX11ctWrTQ1q1br9v+s88+U7169eTr66sGDRpo+fLlTvuNMXrllVcUHBwsPz8/tW/fXgcOHHDsP3LkiPr37+80F8eMGaNLly5ZMr6iIjc5Xb58Wa+99ppq1qwpX19fNWrUSCtWrHBqk9NzYnx8vDp37qwyZcqoZMmSuu2223T06FFLxlgUMJ/sy9XZLV68WOHh4apQoYI8PDwUFxdnYe9vHLnJae/everWrZvjddW777573WNndh2CnMnt/Em3cOFCeXh4ZFrbuN76c+TIkUxfK3t4eOizzz5z5dCKFNYo+8hNVrNnz1br1q1Vrlw5lStXTu3bt8/QPidr0t13351hPg0cONDVQytSrFiTEhMT1adPH1WoUEF+fn5q0KCBfvrpJ8f+sWPHql69eipZsqQj7y1btrh6aJazZTEeRd+2bduUlJTk+Fm5cqUkqXv37m7u2Y1h27Ztmjlzpho2bOjYduzYMR07dkwTJ07Unj17NHfuXK1YsUL9+/d3tElNTVWnTp106dIlbdq0SfPmzdPcuXP1yiuvZHiO06dP69FHH1W7du0KZEw3uvHjx2v69OmaNm2a4uPjNX78eE2YMEFTp051d9egzOecJDVt2lQxMTGKj4/Xt99+K2OMwsPDlZqa6qaeFi2LFi3Ss88+qzFjxmj79u1q1KiRIiIidOLEiUzbb9q0Sb169VL//v21Y8cOde3aVV27dtWePXscbSZMmKApU6ZoxowZ2rJli0qWLKmIiAhdvHhRkrR//36lpaVp5syZ2rt3ryZPnqwZM2boxRdfLJAx21Fuc3r55Zc1c+ZMTZ06Vfv27dPAgQP14IMPaseOHY42OTknHjx4UHfeeafq1aundevWadeuXRo9erR8fX0tH7MdMZ/sy4rsLly4oDvvvFPjx48vqGEUebnNKTk5WTVq1FB0dLSCgoKue+ysrkOQvdzmku7IkSN6/vnn1bp16wz7slt/qlSp4vRaOSkpSa+++qpKlSqljh07WjJOu2ONso/cZrVu3Tr16tVLa9eu1ebNm1WlShWFh4crMTHR0Sana9KAAQOc5tWECRNcOraixIo16dSpU7rjjjtUvHhxffPNN9q3b58mTZqkcuXKOdrUqVNH06ZN0+7du7VhwwZVq1ZN4eHh+uOPPywZp2VMDsTGxhpJJjY2NifNLRcZGWm6dOmS6b5JkyaZW265xZQoUcLcdNNN5umnnzbnzp1z7D9y5Ii5//77TdmyZU2JEiXMzTffbL7++mtjjDF//fWXeeSRR0zFihWNr6+vqVWrlvnoo48cj921a5dp27at8fX1NeXLlzcDBgxwOra7zZ8/v1Dl5EpDhgwxNWvWNGlpae7uiksU5qzOnTtnateubVauXGnatGljhgwZkmXbTz/91Hh7e5vLly8bY4xZvny5KVasmDl+/LijzfTp003p0qVNSkqK02N79uxpXn75ZTNmzBjTqFEjK4aSb4U5p9zq1KmTefzxx522PfTQQ6Z3795u6pHr2D2n3My5nTt3Gknml19+KbgOukhhzKl58+YmKirK8e/U1FQTEhJixo0bl2n7Hj16mE6dOjlta9GihXnqqaeMMcakpaWZoKAg8/bbbzv2nz592vj4+JhPPvkky35MmDDBVK9ePT9DcanCllVucwoODjbTpk1z2vbP811Ozok9e/Y0ffr0ccUQLGH3nJhPhYers7vW4cOHjSSzY8cOl/bZCoU9q9zmdK3Q0FAzefLkTPfl5jqkMChsOeUllytXrphWrVqZDz/8MNPaRl7Wn1tvvTXDuuZOds+JNcp98nOuM+bq/PL39zfz5s3LsO96a1JhP/8VtqysWJNGjBhh7rzzzlz148yZM0aSWbVqVa4eZ5Wc1s+L3DvjixUrpilTpmjv3r2aN2+e1qxZoxdeeMGxPyoqSikpKfr++++1e/dujR8/XqVKlZIkjR49Wvv27dM333yj+Ph4TZ8+XRUrVpR09S9pERERKleunLZt26bPPvtMq1at0qBBg9wyzhvJpUuXNH/+fD3++OPy8PBwd3eKvKioKHXq1Ent27fPtu2ZM2dUunRpeXl5SZI2b96sBg0aqFKlSo42EREROnv2rPbu3evYFhMTo0OHDmnMmDGuHwAy1apVK61evVo///yzJGnnzp3asGED754pBHI65y5cuKCYmBhVr15dVapUKaDeFV2XLl1SbGys0++9WLFiat++vTZv3pzpYzZv3pwhp4iICEf7w4cP6/jx405typQpoxYtWmR5TOnqubR8+fL5GU6RlZecUlJSMrx73c/PTxs2bHD8O7tzYlpamr7++mvVqVNHERERCgwMVIsWLfTll1+6eIRFA/PJvqzIDq6Xl5xyKjfX/nCW11xee+01BQYGOn3COF1e1p/Y2FjFxcVlejywRtmJK851ycnJunz5cp5+z//+979VsWJF3XLLLRo1apSSk5NzfYwbgVVr0tKlS9WsWTN1795dgYGBaty4sWbPnn3dfsyaNUtlypRRo0aN8vy87uDl7g642rX3uKtWrZreeOMNDRw4UB988IGkq/ez7tatmxo0aCBJqlGjhqP90aNH1bhxYzVr1szx+HQLFizQxYsX9fHHH6tkyZKSpGnTpumBBx7Q+PHjnYqPcK0vv/xSp0+fVr9+/dzdlSJv4cKF2r59u7Zt25Zt25MnT+r111/Xk08+6dh2/PjxDHMh/d/Hjx+XJB04cEAjR47UDz/84Cjiw3ojR47U2bNnVa9ePXl6eio1NVVvvvmmevfu7e6u3dByMuc++OADvfDCC7pw4YLq1q2rlStXytvbuwB7WTSdPHlSqampmZ6zsrovf1bnuPTzW/r/Xq/NP/3yyy+aOnWqJk6cmKdxFHV5ySkiIkLvvPOO7rrrLtWsWVOrV6/W4sWLnW7vlN058cSJEzp//ryio6P1xhtvaPz48VqxYoUeeughrV27Vm3atLFu0DbEfLIvK7KD6+Ulp5zIzbU/MspLLhs2bNCcOXOy/B6FvKw/c+bMUVhYmFq1apXvMRVFrFH24Ypz3YgRIxQSEpLrPzA+8sgjCg0NVUhIiHbt2qURI0YoISFBixcvztVxbgRWrUmHDh3S9OnT9eyzz+rFF1/Utm3bNHjwYHl7eysyMtLRbtmyZXr44YeVnJys4OBgrVy50vFGarsocpWwVatWady4cdq/f7/Onj2rK1eu6OLFi0pOTlaJEiU0ePBgPf300/ruu+/Uvn17devWzXFvvKefflrdunXT9u3bFR4erq5duzoWtPj4eDVq1MhRiJekO+64Q2lpaUpISKAYb6E5c+aoY8eOCgkJcXdXirT//ve/GjJkiFauXJnt/XDPnj2rTp066eabb9bYsWNz/Bypqal65JFH9Oqrr6pOnTr57DFy49NPP9W///1vLViwQPXr11dcXJyGDh2qkJAQp4UNBSenc65379669957lZSUpIkTJ6pHjx7auHEj960uAhITE9WhQwd1795dAwYMcHd3ioz33ntPAwYMUL169eTh4aGaNWvqscce00cffeRok905MS0tTZLUpUsXDRs2TJJ06623atOmTZoxYwbF+EKI+QTkTm6u/eEa586dU9++fTV79uwsC0e5XX/+/vtvLViwQKNHj7a288gX1qiCER0drYULF2rdunW5Pq9d+ybDBg0aKDg4WO3atdPBgwdVs2ZNV3cVmUhLS1OzZs301ltvSZIaN26sPXv2aMaMGU41i7Zt2youLk4nT57U7Nmz1aNHD23ZskWBgYHu6nquFanb1Bw5ckT333+/GjZsqC+++EKxsbF6//33JcnxjdVPPPGEDh06pL59+2r37t1q1qyZ48u6OnbsqF9//VXDhg3TsWPH1K5dOz3//PNuGw+kX3/9VatWrdITTzzh7q4UebGxsTpx4oSaNGkiLy8veXl5af369ZoyZYq8vLwc7yg8d+6cOnToIH9/fy1ZskTFixd3HCMoKEi///6703HT/x0UFKRz587pp59+0qBBgxzP8dprr2nnzp3y8vLSmjVrCm7AN5jhw4dr5MiRevjhh9WgQQP17dtXw4YN07hx49zdtRtWTudcmTJlVLt2bd111136/PPPtX//fi1ZssTNvbe/ihUrytPTM9NzVlZfKpTVOS69ffr/5uSYx44dU9u2bdWqVSvNmjUrX2MpyvKSU0BAgL788ktduHBBv/76q/bv369SpUo5fRoyu3NixYoV5eXlpZtvvtnp2GFhYTp69KiLR2l/zCf7siI7uF5ecspOTq9DkLXc5nLw4EEdOXJEDzzwgON3/vHHH2vp0qXy8vLSwYMHc73+fP7550pOTtajjz7q2sEVIaxR9pGfc93EiRMVHR2t7777ziVfRt2iRQtJVz/RAGdWrEmSFBwcnKNzX8mSJVWrVi3dfvvtmjNnjry8vDRnzpw8P687FKlifGxsrNLS0jRp0iTdfvvtqlOnjo4dO5ahXZUqVTRw4EAtXrxYzz33nNM9iAICAhQZGan58+fr3XffdZwsw8LCtHPnTl24cMHRduPGjSpWrJjq1q1r/eBuUDExMQoMDFSnTp3c3ZUir127dtq9e7fi4uIcP82aNVPv3r0VFxcnT09PnT17VuHh4fL29tbSpUsz/LW5ZcuW2r17t9M3aK9cuVKlS5fWzTffrNKlS2d4joEDB6pu3bqKi4tzLHhwveTkZBUr5nzK9/T0dLz7BgUvJ3Pun4wxMsYoJSXFDT0uWry9vdW0aVOtXr3asS0tLU2rV69Wy5YtM31My5YtndpLV89x6e2rV6+uoKAgpzZnz57Vli1bnI6ZmJiou+++W02bNlVMTEyGuYn/yUtO6Xx9fVW5cmVduXJFX3zxhbp06eLYl9050dvbW7fddpsSEhKc2vz8888KDQ3N77CKHOaTfVmRHVwvP+fCrOTlOgTOcptLvXr1MvzOO3fu7HiXZ5UqVXK9/syZM0edO3dWQECA6wdYRLBG2Udez3UTJkzQ66+/rhUrVjhuO51f6beSCg4OdsnxihIr1iTp6t1H8nLtnZaWZrvXx7a9Tc2ZM2cy3GetYsWKunz5sqZOnaoHHnhAGzdu1IwZM5zaDB06VB07dlSdOnV06tQprV27VmFhYZKkV155RU2bNlX9+vWVkpKiZcuWOfb17t1bY8aMUWRkpMaOHas//vhDzzzzjPr27cstaiySlpammJgYRUZGcm/xAuDv769bbrnFaVvJkiVVoUIF3XLLLY5CfHJysubPn6+zZ8/q7Nmzkq7+EcvT01Ph4eG6+eab1bdvX02YMEHHjx/Xyy+/rKioKPn4+EhShucIDAyUr69vhu1wrQceeEBvvvmmqlatqvr162vHjh1655139Pjjj7u7azes7ObcoUOHtGjRIoWHhysgIEC//faboqOj5efnp/vuu89NvS5ann32WUVGRqpZs2Zq3ry53n33XV24cEGPPfaYJOnRRx9V5cqVHe+WHjJkiNq0aaNJkyapU6dOWrhwoX766SfHH+49PDw0dOhQvfHGG6pdu7aqV6+u0aNHKyQkRF27dpX0vxdloaGhmjhxov744w9Hf3hXaeZym9OWLVuUmJioW2+9VYmJiRo7dqzS0tL0wgsvOI6Zk3Pi8OHD1bNnT911111q27atVqxYof/85z9at25dgY7fLphP9uXq7CTpr7/+0tGjRx1vjEp/cR0UFEQ2eZTbnC5duqR9+/Y5/n9iYqLi4uJUqlQp1apVK9vrEORMbnLJ7DVP2bJlJTm/Rsrp+vPLL7/o+++/1/Llyy0dY1HAGmUfuc1q/PjxeuWVV7RgwQJVq1bNcc/+UqVKqVSpUpKyX5MOHjyoBQsW6L777lOFChW0a9cuDRs2THfddZdL3mVfFLl6TZKkYcOGqVWrVnrrrbfUo0cPbd26VbNmzXLMuwsXLujNN99U586dFRwcrJMnT+r9999XYmKiunfv7obfQj6YHIiNjTWSTGxsbE6aWy4yMtJIyvDTv39/884775jg4GDj5+dnIiIizMcff2wkmVOnThljjBk0aJCpWbOm8fHxMQEBAaZv377m5MmTxhhjXn/9dRMWFmb8/PxM+fLlTZcuXcyhQ4ccz7tr1y7Ttm1b4+vra8qXL28GDBhgzp07545fQabmz59fqHLKr2+//dZIMgkJCe7uisvZJas2bdqYIUOGGGOMWbt2babzTpI5fPiw4zFHjhwxHTt2NH5+fqZixYrmueeeM5cvX87yOcaMGWMaNWpk7UDyyC455cTZs2fNkCFDTNWqVY2vr6+pUaOGeemll0xKSoq7u5ZvRSmna+dcYmKi6dixowkMDDTFixc3N910k3nkkUfM/v373dvJPCqsOU2dOtVUrVrVeHt7m+bNm5sff/zRsa9NmzYmMjLSqf2nn35q6tSpY7y9vU39+vXN119/7bQ/LS3NjB492lSqVMn4+PiYdu3aOa1jMTExWZ5LC4vCmFVuclq3bp0JCwszPj4+pkKFCqZv374mMTHR6Xg5PSfOmTPH1KpVy/j6+ppGjRqZL7/80tJx5obdczKG+VSYuDq7rLIZM2ZMAYwmb+yQVW5yOnz4cKYZtGnTJsvjX3sdUlgVxpxyO3+uFRkZabp06ZJhe07Wn1GjRpkqVaqY1NRUVwzDpYpCTqxR7pObrEJDQ7Ndb7Jbk44ePWruuusuU758eePj42Nq1aplhg8fbs6cOVNAI85eYczKijXpP//5j7nllluMj4+PqVevnpk1a5Zj399//20efPBBExISYry9vU1wcLDp3Lmz2bp1q9VDzbGc1s9tWYxH5grj5ETmyMoeyMkeyMkeyMk+yMoeyMkeyMk+yMoeyMkeyMkeyMk+yMoeclo/54ZVAAAAAAAAAABYjGI8AAAAAAAAAAAWoxgPAAAAAAAAAIDFKMYDAAAAAAAAAGAxivEAAAAAAAAAAFiMYjwAAAAAAAAAABbzyk3j+Ph4q/oBFzh8+LAkcrIDsrIHcrIHcrIHcrIPsrIHcrIHcrIPsrIHcrIHcrIHcrIPsrKHnObjYYwx2TU6evSowsLClJycnO+OwVqenp5KTU11dzeQA2RlD+RkD+RkD+RkH2RlD+RkD+RkH2RlD+RkD+RkD+RkH2RlDyVKlFB8fLyqVq2aZZscFeOlqwX5kydPuqxzsEZKSop8fHzc3Q3kAFnZAznZAznZAznZB1nZAznZAznZB1nZAznZAznZAznZB1nZQ8WKFa9biJdyUYwHAAAAAAAAAAB5wxe4AgAAAAAAAABgMYrxAAAAAAAAAABYjGI8AAAAAAAAAAAWoxgPAAAAAAAAAIDFKMYDAAAAAAAAAGAxivEAAAAAAAAAAFiMYjwAAAAAAAAAABajGA8AAAAAAAAAgMUoxgMAAAAAAAAAYDGK8QAAAAAAAAAAWIxiPAAAAAAAAAAAFqMYDwAAAAAAAACAxSjGAwAAAAAAAABgMYrxAAAAAAAAAABYjGI8AAAAAAAAAAAWoxgPAAAAAAAAAIDFKMYDAAAAAAAAAGAxivEAAAAAAAAAAFiMYjwAAAAAAAAAABajGA8AAAAAAAAAgMUoxgMAAAAAAAAAYDGK8QAAAAAAAAAAWIxiPAAAAAAAAAAAFqMYDwAAAAAAAACAxSjGAwAAAAAAAABgMYrxAAAAAAAAAABYjGI8AAAAAAAAAAAWoxgPAAAAAAAAAIDFKMYDAAAAAAAAAGAxivEAAAAAAAAAAFiMYjwAAAAAAAAAABajGA8AAAAAAAAAgMUoxgMAAAAAAAAAYDGK8QAAAAAAAAAAWIxiPAAAAAAAAAAAFqMYDwAAAAAAAACAxSjGAwAAAAAAAABgMYrxAAAAAAAAAABYjGI8AAAAAAAAAAAWoxgPAAAAAAAAAIDFKMYDAAAAAAAAAGAxivEAAAAAAAAAAFiMYjwAAAAAAAAAABajGA8AAAAAAAAAgMUoxgMAAAAAAAAAYDGK8QAAAAAAAAAAWIxiPAAAAAAAAAAAFqMYDwAAAAAAAACAxSjGAwAAAAAAAABgMYrxAAAAAAAAAABYjGI8AAAAAAAAAAAWoxgPAAAAAAAAAIDFKMYDAAAAAAAAAGAxivEAAAAAAAAAAFiMYjwAAAAAAAAAABajGA8AAAAAAAAAgMUoxgMAAAAAAAAAYDGK8QAAAAAAAAAAWIxiPAAAAAAAAAAAFqMYDwAAAAAAAACAxSjGAwAAAAAAAABgMYrxAAAAAAAAAABYjGI8AAAAAAAAAAAWoxgPAAAAAAAAAIDFKMYDAAAAAAAAAGAxivEAAAAAAAAAAFiMYjwAAAAAAAAAABajGA8AAAAAAAAAgMUoxgMAAAAAAAAAYDGK8QAAAAAAAAAAWIxiPAAAAAAAAAAAFqMYDwAAAAAAAACAxSjGAwAAAAAAAABgMYrxAAAAAAAAAABYjGI8AAAAAAAAAAAWoxgPAAAAAAAAAIDFKMYDAAAAAAAAAGAxivEAAAAAAAAAAFiMYjwAAAAAAAAAABajGA8AAAAAAAAAgMUoxgMAAAAAAAAAYDGK8QAAAAAAAAAAWIxiPAAAAAAAAAAAFqMYDwAAAAAAAACAxSjGAwAAAAAAAABgMYrxAAAAAAAAAABYjGI8AAAAAAAAAAAWoxgPAAAAAAAAAIDFKMYDAAAAAAAAAGAxivEAAAAAAAAAAFiMYjwAAAAAAAAAABajGA8AAAAAAAAAgMUoxgMAAAAAAAAAYDGK8QAAAAAAAAAAWIxiPAAAAAAAAAAAFqMYDwAAAAAAAACAxSjGAwAAAAAAAABgMYrxAAAAAAAAAABYjGI8AAAAAAAAAAAWoxgPAAAAAAAAAIDFKMYDAAAAAAAAAGAxivEAAAAAAAAAAFiMYjwAAAAAAAAAABajGA8AAAAAAAAAgMUoxgMAAAAAAAAAYDGK8QAAAAAAAAAAWIxiPAAAAAAAAAAAFqMYDwAAAAAAAACAxSjGAwAAAAAAAABgMYrxAAAAAAAAAABYjGI8AAAAAAAAAAAW+/8AwD6O4owxzW0AAAAASUVORK5CYII=",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Print a table to summarize the results\n",
"summary_table = pd.concat([summary_df_kbest, summary_df_rfe, summary_df_lasso], ignore_index=True)\n",
"summary_table = summary_table[['title', 'count_true_positive', 'count_true_negative',\n",
" 'count_false_positive', 'count_false_negative', 'true_positive_score', 'true_negative_score',\n",
" 'false_positive_score', 'false_negative_score', 'recall_score', 'precision_score',\n",
" 'false_positive_rate_score', 'f1_score', 'f2_score']]\n",
"\n",
"# Rename them\n",
"summary_table.columns = ['Model', 'TP', 'TN', 'FP', 'FN',\n",
" 'TP Rate', 'TN Rate', 'FP Rate', 'FN Rate',\n",
" 'Recall', 'Precision', 'FPR', 'F1', 'F2']\n",
" \n",
"# summary_table.to_csv('flagging_analysis_summary.csv', index=False)\n",
"import matplotlib.pyplot as plt\n",
"\n",
"# Set up figure and axis\n",
"fig, ax = plt.subplots(figsize=(16, 4)) # Adjust width/height as needed\n",
"ax.axis('off') # Hide axes\n",
"\n",
"# Create table from DataFrame\n",
"table = ax.table(cellText=summary_table.round(3).values,\n",
" colLabels=summary_table.columns,\n",
" loc='center',\n",
" cellLoc='center')\n",
"\n",
"table.auto_set_font_size(False)\n",
"table.set_fontsize(10)\n",
"table.scale(1.2, 1.5) # Adjust cell size\n",
"\n",
"# Save as image\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Interpreting the Classification Report\n",
"\n",
"The **Classification Report** provides key metrics to evaluate how well the model performed on each class.\n",
"\n",
"It includes the following metrics for each class (0 and 1):\n",
"* Metric: Meaning\n",
"* Precision: Out of all predicted positives, how many were actually positive?\n",
"* Recall: Out of all actual positives, how many did we correctly identify?\n",
"* F1-score: Harmonic mean of precision and recall (balances both)\n",
"* Support: Number of true samples of that class in the test data\n",
"\n",
"Interpretation:\n",
"* Class 0 = No incident\n",
"* Class 1 = Has resolution incident (rare, but important!)\n",
"\n",
"A few explanatory cases:\n",
"* A high recall for class 1 means we're catching most incidents.\n",
"* A high precision for class 1 means when we predict an incident, we're often correct.\n",
"* The F1-score gives a single balanced measure (good for imbalanced data).\n",
"\n",
"Special note for imbalanced data:\n",
"Since class 1 (or just True) is rare (1% in our case), metrics for that class are more critical.\n",
"We want to maximize recall to catch as many real incidents as possible — without letting precision drop too low (to avoid too many false alarms)."
]
},
{
"cell_type": "markdown",
"id": "c366cfe7",
"metadata": {},
"source": [
"### Results Summary\n",
"\n",
"- Model 1 (KBest) offers a low recall (12%) and precision (20.7%), but keeps the false positives very low, indicating a conservative model.\n",
"- Model 2 (RFE) achieves high recall (62%) but at the cost of extremely low precision (2.9%) and high false positives, meaning it's flagging many non-incident bookings incorrectly.\n",
"- Model 3 (Lasso) provides the best balance between recall and precision, resulting in the highest F1 (21.5%) and F2 (16.3%), with low false positive rate (0.2%)."
]
},
{
"cell_type": "code",
"execution_count": 108,
"id": "4b4da914",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhgAAAHWCAYAAAA1jvBJAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAfBZJREFUeJzt3XdYU2f/BvA7CYQ9VESGKIKbulfdC/esC0ddbe3S1ldrW22to0P71tbaX+tbW611VAXBuifa2rq1Ki4UB7gQVOpAZCQkz++PlEAKKMETDiH357q4TE7OOfnyiObmnGcohBACRERERBJSyl0AERERlT0MGERERCQ5BgwiIiKSHAMGERERSY4Bg4iIiCTHgEFERESSY8AgIiIiyTFgEBERkeQYMIiIiEhyDBhEREQkOQYMIhuwbNkyKBQK45ednR38/f0xZswYJCYmFniMEAIrV65Eu3bt4OnpCWdnZ9SrVw8ff/wxHj9+XOh7rV+/Hj169ICXlxfUajX8/PwwZMgQ/Pbbb0WqNTMzE19//TVatGgBDw8PODo6ombNmpgwYQIuXrxYrO+fiEqegmuREJV9y5Ytw9ixY/Hxxx+jWrVqyMzMxOHDh7Fs2TIEBgbi7NmzcHR0NO6v0+kwfPhwrF27Fm3btsWAAQPg7OyMffv2YfXq1ahbty52796NSpUqGY8RQuCll17CsmXL0KhRIwwaNAg+Pj5ISkrC+vXrcfz4cRw4cACtWrUqtM6UlBR0794dx48fR+/evREaGgpXV1fExcUhPDwcycnJ0Gg0Fm0rIpKIIKIy7+effxYAxLFjx0y2v//++wKAiIiIMNk+Z84cAUBMmTIl37k2bdoklEql6N69u8n2efPmCQDiP//5j9Dr9fmOW7FihThy5MgT6+zVq5dQKpUiKioq32uZmZninXfeeeLxRaXVakVWVpYk5yKigjFgENmAwgLGli1bBAAxZ84c47b09HRRrlw5UbNmTaHVags839ixYwUAcejQIeMx5cuXF7Vr1xbZ2dnFqvHw4cMCgBg3blyR9m/fvr1o3759vu2jR48WVatWNT5PSEgQAMS8efPE119/LYKCgoRSqRSHDx8WKpVKzJo1K985Lly4IACIb7/91rjt/v37YuLEiaJy5cpCrVaL4OBg8fnnnwudTmf290pkC9gHg8iGXb16FQBQrlw547b9+/fj/v37GD58OOzs7Ao8btSoUQCALVu2GI+5d+8ehg8fDpVKVaxaNm3aBAAYOXJksY5/mp9//hnffvstXn31VXz11Vfw9fVF+/btsXbt2nz7RkREQKVSYfDgwQCA9PR0tG/fHr/88gtGjRqF//u//0Pr1q0xbdo0TJ482SL1Elm7gv/3IKIy6eHDh0hJSUFmZiaOHDmC2bNnw8HBAb179zbuExsbCwBo0KBBoefJee38+fMmf9arV6/YtUlxjie5efMmLl++jIoVKxq3hYWF4bXXXsPZs2fx3HPPGbdHRESgffv2xj4m8+fPx5UrV3Dy5EnUqFEDAPDaa6/Bz88P8+bNwzvvvIOAgACL1E1krXgFg8iGhIaGomLFiggICMCgQYPg4uKCTZs2oXLlysZ9Hj16BABwc3Mr9Dw5r6Wmppr8+aRjnkaKczzJwIEDTcIFAAwYMAB2dnaIiIgwbjt79ixiY2MRFhZm3BYZGYm2bduiXLlySElJMX6FhoZCp9Phzz//tEjNRNaMVzCIbMjChQtRs2ZNPHz4EEuXLsWff/4JBwcHk31yPuBzgkZB/h1C3N3dn3rM0+Q9h6enZ7HPU5hq1arl2+bl5YXOnTtj7dq1+OSTTwAYrl7Y2dlhwIABxv0uXbqE06dP5wsoOe7cuSN5vUTWjgGDyIY0b94cTZs2BQD0798fbdq0wfDhwxEXFwdXV1cAQJ06dQAAp0+fRv/+/Qs8z+nTpwEAdevWBQDUrl0bAHDmzJlCj3mavOdo27btU/dXKBQQBYyy1+l0Be7v5ORU4PahQ4di7NixiImJQcOGDbF27Vp07twZXl5exn30ej26dOmC9957r8Bz1KxZ86n1Etka3iIhslEqlQpz587FrVu38N133xm3t2nTBp6enli9enWhH9YrVqwAAGPfjTZt2qBcuXJYs2ZNocc8TZ8+fQAAv/zyS5H2L1euHB48eJBv+7Vr18x63/79+0OtViMiIgIxMTG4ePEihg4darJPcHAw0tLSEBoaWuBXlSpVzHpPIlvAgEFkwzp06IDmzZtjwYIFyMzMBAA4OztjypQpiIuLw4cffpjvmK1bt2LZsmXo1q0bnn/+eeMx77//Ps6fP4/333+/wCsLv/zyC44ePVpoLS1btkT37t2xZMkSbNiwId/rGo0GU6ZMMT4PDg7GhQsXcPfuXeO2U6dO4cCBA0X+/gHA09MT3bp1w9q1axEeHg61Wp3vKsyQIUNw6NAh7Ny5M9/xDx48QHZ2tlnvSWQLOJMnkQ3Imcnz2LFjxlskOaKiojB48GB8//33eP311wEYbjOEhYVh3bp1aNeuHQYOHAgnJyfs378fv/zyC+rUqYM9e/aYzOSp1+sxZswYrFy5Eo0bNzbO5JmcnIwNGzbg6NGjOHjwIFq2bFlonXfv3kXXrl1x6tQp9OnTB507d4aLiwsuXbqE8PBwJCUlISsrC4Bh1Mlzzz2HBg0a4OWXX8adO3ewaNEiVKpUCampqcYhuFevXkW1atUwb948k4CS16pVq/Diiy/Czc0NHTp0MA6ZzZGeno62bdvi9OnTGDNmDJo0aYLHjx/jzJkziIqKwtWrV01uqRAROJMnkS0obKItIYTQ6XQiODhYBAcHm0ySpdPpxM8//yxat24t3N3dhaOjowgJCRGzZ88WaWlphb5XVFSU6Nq1qyhfvryws7MTvr6+IiwsTOzdu7dItaanp4svv/xSNGvWTLi6ugq1Wi1q1Kgh3nrrLXH58mWTfX/55RcRFBQk1Gq1aNiwodi5c+cTJ9oqTGpqqnBychIAxC+//FLgPo8ePRLTpk0T1atXF2q1Wnh5eYlWrVqJL7/8Umg0miJ9b0S2hFcwiIiISHLsg0FERESSY8AgIiIiyTFgEBERkeQYMIiIiEhyDBhEREQkOQYMIiIikpzNrUWi1+tx69YtuLm5QaFQyF0OERGR1RBC4NGjR/Dz84NS+eRrFDYXMG7duoWAgAC5yyAiIrJaN27cQOXKlZ+4j80FjJzlpW/cuGFcHvpZabVa7Nq1C127doW9vb0k57R1bFPpsU2lxfaUHttUWpZoz9TUVAQEBBg/S5/E5gJGzm0Rd3d3SQOGs7Mz3N3d+Y9CImxT6bFNpcX2lB7bVFqWbM+idDFgJ08iIiKSHAMGERERSY4Bg4iIiCTHgEFERESSY8AgIiIiyTFgEBERkeQYMIiIiEhyDBhEREQkOQYMIiIikhwDBhEREUlO1oDx559/ok+fPvDz84NCocCGDRueeszevXvRuHFjODg4oHr16li2bJnF6yQiIiLzyBowHj9+jAYNGmDhwoVF2j8hIQG9evVCx44dERMTg//85z945ZVXsHPnTgtXSkREROaQdbGzHj16oEePHkXef9GiRahWrRq++uorAECdOnWwf/9+fP311+jWrZulyiQiIrIqQgB37gDnzlVAvXpAUFDJ12BVq6keOnQIoaGhJtu6deuG//znP4Uek5WVhaysLOPz1NRUAIZV5rRarSR15ZxHqvMR29QS2KbSYntKj21qPq0WiI8H4uIUiItT4OJFBeLigEuX9PD0vIYrV9rA3l6D//xH2s+7orCqgJGcnIxKlSqZbKtUqRJSU1ORkZEBJyenfMfMnTsXs2fPzrd9165dcHZ2lrS+6OhoSc9HbFNLYJtKi+0pPbZpfmlp9khMdMXNm65ITHRDYqIrEhNdkZTkAp3OtLeDs3M6hgxZi6pVr2HNmmH47Td71Kx5WpI60tPTi7yvVQWM4pg2bRomT55sfJ6amoqAgAB07doV7u7ukryHVqtFdHQ0unTpAnt7e0nOaevYptJjm0qL7Sk9W29TnQ64fj33akRcHP65IqHA7duKIp3D2/sOhg1bg3LlHiA72wFNm95Gv37N0bNnZUlqzLkLUBRWFTB8fHxw+/Ztk223b9+Gu7t7gVcvAMDBwQEODg75ttvb20v+A2yJc9o6tqn02KbSYntKr6y3aVoacPEicOFC7pchTACZmUU/j6MjULMmULu24cvfPw537vwKnU6DcuXKYdCgQTh27Bh69lRK1p7mnMeqAkbLli2xbds2k23R0dFo2bKlTBURERHlJwRw65ZpiMgJEjdumHeuSpVyQ0Tt2kCtWoY/q1QBVCpACIGDBw9i9+7dAIBq1aph0KBBsoc0WQNGWloaLl++bHyekJCAmJgYlC9fHlWqVMG0adOQmJiIFStWAABef/11fPfdd3jvvffw0ksv4bfffsPatWuxdetWub4FIiKyYZmZwOXLBQeJtLSin8fODqhe3TRI5IQJT88nHxsfH28MF02bNkX37t2hUqlk7ywra8D466+/0LFjR+PznL4So0ePxrJly5CUlITr168bX69WrRq2bt2KSZMm4ZtvvkHlypWxZMkSDlElIiKLEQJISckfIi5cAK5eBfT6op+rXLn8IaJ2baBaNaC4FxyCg4PRvHlzeHl5oVmzZsU7iQXIGjA6dOgAIUShrxc0S2eHDh1w8uRJC1ZFRES2SKsFEhIKDhL37xf9PEolEBhY8NWIihUBRdH6az5RcnIyPDw8jP0PzZlTqqRYVR8MIiKiZ/XggeEWxr9DxOXLQHZ20c/j6prbHyLvV/Xqhg6YlhIbG4v169ejSpUqGDFiBJTK0rmsGAMGERGVOXo9cO1awUHiX4MRnyogoOAg4ecnzdWIohJC4I8//sAff/wBAFAoFNBqtQWOlCwNGDCIiMhqPX5sCBH/DhLmDvl0cDCEiH8HiZo1DVcq5KbVarFhwwbExsYCAJ5//nl06dKl1F69ABgwiIiolMs75PPfQaK4Qz7/HSRyhnyWRqmpqQgPD0dSUhKUSiV69+6NRo0ayV3WUzFgEBFRqZCVBVy75oZ16xS4csU0SBR3yGfeIFGrlmEUhzURQiAyMhJJSUlwdnZGWFgYqlSpIndZRcKAQUREJSbvkM9/X41ISLCDXt+pyOfy9ATq1Mk/AVVQUPGHfJY2CoUCvXv3xtatWzFgwAB4Pm1SjFKEAYOIiCSXnW1Y5TPvxFM5j+/dK+yo/D0mFQrDHBH/DhG1a0s35LO0EUIgKSkJfn5+AAyLeo4dOxYKK/tmGTCIiKjY/j3kM+fx5cuGeSWKysUFqFVLDze3RHTs6Ie6dVWoXRuoUcOyQz5Lm6ysLKxfvx6XLl3C6NGjjbdDrC1cAAwYRET0FHq9YZXPf0+FfeECkJxs3rkqVy54Aip/fyA7W4dt206gZ08f2NuX0h6XFvTgwQOsWbMGd+7cgUqlwqNHj+Qu6ZkwYBAREQDDkM+8q3zmhIi4OPOHfOZd5bO0Dfksja5du4a1a9ciPT0drq6uGDp0KPz9/eUu65kwYBAR2RAhgKSkghfnyrP0U5F4exe8rkZpHvJZGp04cQJbt26FXq+Hr68vhg4dCnd3d7nLemYMGEREZVBWVuGrfJpz5d3ODggOLvi2hrUN+SyNrly5gs2bNwMAQkJC0K9fP9mXWZcKAwYRkRUrbJXPhATzVvn09Cz4akRZGvJZGgUFBSEkJAQVK1ZEu3btrLIzZ2EYMIiISrns7MJX+Sx8yGd+OUM+C1pXo6wO+SyN7t27Bzc3N9jb20OhUGDgwIFlKljkYMAgIiolHj4sfJVPc4d8FjQddvXqwD+re5NM4uPjERkZiaCgIAwaNAgKhaJMhguAAYOIqETlDPksKEgUd8jnv4OEvz+vRpQ2QggcO3YMO3bsgBACqampyMrKgmMZnuSDAYOIyAJyhnwWtMpnRkbRz5N3yGfeIFGzJuDmZrn6STo6nQ7bt2/H8ePHAQANGjRA7969YWdXtj+Cy/Z3R0RkQTmrfOadEjvn61mHfOaEiapVOeTTmqWnpyMyMhJXr14FAISGhqJVq1Zl9rZIXgwYRERPkTPkM+/ViPPnVTh3ricyMoo+xEKlyl3lM2+QqFULKF/egt8AyUIIgfDwcNy4cQNqtRoDBw5EzZo15S6rxDBgEBH94++/gfPn89/WiI8vaMin8p+v/Aoa8lmrlmHIp1pt4W+CSg2FQoEuXbpg06ZNGDx4MLy9veUuqUQxYBCRzUlJAc6dA2Jjc/+MjQVu3y76ORQKAW/vdDRq5IQ6dZQmQcLbm50sbZUQAvfv30f5fy5JBQQE4I033oBSWXAYLcsYMIiozLpzJ3+IOHcOuHu36OcwrPKZ/4pE1arZ+P333ejZsyfs7W3vw4Pyy87OxpYtWxAbG4uXX34ZlSpVAgCbDBcAAwYRWTkhDFce8gaInMcpKUU/j7c3EBIC1Klj+HrakE9z5qWgsi8tLQ0RERG4efMmFAoFkpKSjAHDVjFgEJFVEMIwT0TeEJHzpzmzWfr4AHXrGsJE3bq5X15elqudyrbk5GSsWbMGqampcHR0xKBBgxAcHCx3WbJjwCCiUiVn6GdBVyTu3y/6eXx9c0NE3jDB0RokpfPnz2P9+vXQarWoUKEChg0bhgoVKshdVqnAgEFEshACSEzM3z8iNtYwZXZR+fsXfEWCK32SpV2+fBlr164FAAQHB2PgwIFw4lzsRgwYRGRxKSnAX3+ZhonYWCA1tejnqFw5/xWJOnUMQ0KJ5BAUFISgoCBUrFgRXbt2tdnOnIVhwCAii/rpJ2DCBCAzs2j7V6lS8BUJd3fL1klUFGlpaXBycoJKpYJSqcTw4cOh4lSrBWLAICKL0OmAqVOBL78s+PWqVQu+IsH1Nai0SkxMRHh4OGrXro1evXoBAMPFEzBgEJHk0tKAESOATZtyt734IhAamhskXF3lq4/IXGfOnMGmTZuQnZ2Na9euISsrCw4ODnKXVaoxYBCRpG7cAPr0AU6dMjxXqYBvvwXeeEPeuoiKQwiB33//Hfv27QMA1KxZEwMGDGC4KAIGDCKSzLFjQN++hvkqAMDDA4iMBLp0kbcuouLQaDRYv349Lly4AABo3bo1OnXqxM6cRcSAQUSSiIoCRo7M7cwZFARs2WK4HUJkbYQQWLVqFa5fvw6VSoU+ffqgQYMGcpdlVRgwiOiZCAHMmQNMn567rU0bYP16zo5J1kuhUKB169a4f/8+Bg8ejICAALlLsjoMGERUbFlZwCuvAL/8krtt1Cjgxx8B3qIma/T48WO4uLgAMPS3eOutt2Bvby9zVdaJN5KIqFju3gU6dzYNF3PnAsuWMVyQ9dHr9di5cycWLlyI+3nmpGe4KD5ewSAis8XGAr17AwkJhudOTsDKlcDAgfLWRVQcmZmZWLduHS5fvgwAuHLlCpo2bSpzVdaPAYOIzLJzJzBkSO40376+wObNQJMm8tZFVBz37t3DmjVrkJKSAjs7O/Tv3x8hISFyl1UmMGAQUZEtXAi8/Tag1xueN2pkmEyrcmV56yIqjoSEBERGRiIjIwNubm4YOnQo/Pz85C6rzGDAIKKnys4GJk0Cvvsud1v//obbIpyRk6xRfHw8Vq1aBb1eD39/f4SFhcGN89RLigGDiJ7o4UMgLMxwayTHe+8ZOnRyviGyVgEBAfDx8UGFChXQt29f2Nnx41BqbFEiKlRCgqEzZ2ys4bm9PfDDD8DYsfLWRVQcmZmZcHBwgEKhgL29PUaNGgW1Wg2FQiF3aWUSf/8gogIdOAA0b54bLsqXB6KjGS7IOt29exc//vgj9u7da9yWEzbIMhgwiCifX34BOnUCUlIMz2vVAo4cAdq3l7cuouK4dOkSfvrpJ9y/fx+nT59GVlaW3CXZBN4iISIjvR6YORP49NPcbZ07GxYsK1dOvrqIikMIgcOHDyM6OhpCCFSpUgVDhgzhSqglhAGDiAAA6enAmDGGMJHj1VcNI0c4mSFZm+zsbGzduhUxMTEAgIYNG6J3795QqVTyFmZDGDCICElJQL9+huXWAUChAL76CvjPfwyPiayJEAJr1qxBfHw8FAoFunbtihYtWrC/RQljwCCycTExQJ8+wM2bhueursCaNYbRI0TWSKFQoEGDBkhMTMSgQYNQvXp1uUuySQwYRDYqNhaYP98wWZZGY9hWpYph2u/69eWtjag4NBoN1Go1AKB+/fqoXr06nJ2dZa7KdnEUCZENEQL4/XcFevUCQkKAn37KDRctWhhGijBckLURQmDfvn343//+h7S0NON2hgt58QoGkQ3QaoFVqxT4+OP2SEgw/Wfv7g68+SYwY4ZhVVQia6LVarF582acOXMGAHDu3Dm0aNFC5qoIYMAgKtMePAAWLwa++QZITLQD4Gl8rUoVw/oiL78McAkGskaPHj1CREQEEhMToVQq0aNHDy6zXoowYBCVQVevGkLFkiVAnivGAICmTfWYMkWJgQMBLr9A1urWrVsIDw/Ho0eP4OTkhMGDB6NatWpyl0V58L8XojLk6FHD8NKoqNwl1QHDUNNevfRo2fIgpkxpAbWa3a/IeiUkJGD16tXIzs5GxYoVMXToUJQvX17usuhfGDCIrJxebxj58dVXwL59pq85Ohomz5o0CahWTYdt2/7mvBZk9Xx9feHh4YHy5ctj4MCBnJmzlGLAILJSmZmGNUPmzQMuXjR9zdsbmDABeOMNwMvLsE2rLfkaiaSSnZ0NlUoFhUIBR0dHjBkzBs7OzlAqeTWutGLAILIyDx4AixYZ+lgkJ5u+VqcOMHky8OKLhqsXRGXBw4cPER4ejoYNGxpHiLi6uspcFT0NAwaRlUhMBBYsAH74AXj0yPS1Dh2AKVOAHj0A/kJHZcmNGzcQERGBx48fY//+/WjUqJFxMi0q3RgwiEq52FjDbZBVq0xvcygUwIABwHvvAc2by1cfkaWcOnUKmzdvhk6nQ6VKlTB06FCGCysi++86CxcuRGBgIBwdHdGiRQscPXr0ifsvWLAAtWrVgpOTEwICAjBp0iRkZmaWULVEJUMIYP9+wxohISHAsmW54cLBAXjtNSAuzjBahOGCyhq9Xo/o6Ghs2LABOp0OtWvXxksvvQRPT0+5SyMzyHoFIyIiApMnT8aiRYvQokULLFiwAN26dUNcXBy8vb3z7b969WpMnToVS5cuRatWrXDx4kWMGTMGCoUC8+fPl+E7IJKWXg9s2gR88QVw6JDpa56ehhk3334bqFRJlvKILE4IgV9//RUX/+m53K5dO3To0IEroVohWQPG/PnzMW7cOIwdOxYAsGjRImzduhVLly7F1KlT8+1/8OBBtG7dGsOHDwcABAYGYtiwYThy5EiJ1k30JEIA16/nn+DqaQ4fNtwKiYsz3V65sqHj5iuvcMZNKvsUCgWqVKmC+Ph49OvXD88995zcJVExyRYwNBoNjh8/jmnTphm3KZVKhIaG4tC/f3X7R6tWrfDLL7/g6NGjaN68OeLj47Ft2zaMHDmy0PfJyspCVlaW8XlqaioAw/z1WonG7eWcR6rzkfW26blzwKRJKuzd++x3H+vWFXjnHR3CwgRybjs/S3NYa5uWVmxPaen1euh0OgBAw4YNUbNmTXh6erJ9n4ElfkbNOZdsASMlJcXYcSevSpUq4cKFCwUeM3z4cKSkpKBNmzYQQiA7Oxuvv/46Pvjgg0LfZ+7cuZg9e3a+7bt27ZJ8pb3o6GhJz0fW06YZGXaIiKiJzZuDodM9W7gICUnBCy9cRpMmt6FQALt3S1TkP6ylTa0F2/PZpaSkICUlBTVq1IBKpcJuqX/obZyUP6Pp6elF3teqRpHs3bsXc+bMwf/+9z+0aNECly9fxsSJE/HJJ5/go48+KvCYadOmYfLkycbnqampCAgIQNeuXeHu7i5JXVqtFtHR0ejSpQvs7e0lOaets5Y2FQKIjFTgvfdUuHUr9x5xtWoCHToIs87l6iowZIhAixYeAJpIXKn1tKm1YHs+O71ej927d+PmzZsAgAoVKuDBgwdsU4lY4mc05y5AUcgWMLy8vKBSqXD79m2T7bdv34aPj0+Bx3z00UcYOXIkXnnlFQBAvXr18PjxY7z66qv48MMPC5zRzcHBocBpZO3t7SX/AbbEOW1daW7T8+cNs2X+9lvuNkdHYNo04L33FHB0LJ2d0kpzm1ojtmfxZGRkICoqCvHx8QCAjh074vnnn8f27dvZphKTsj3NOY9sw1TVajWaNGmCPXv2GLfp9Xrs2bMHLVu2LPCY9PT0fCFCpVIBMPQ8JioJaWmGuSfq1zcNF717G/pgzJjBWTSJniQlJQVLlixBfHw87O3tMWTIELRr144jRcoYWW+RTJ48GaNHj0bTpk3RvHlzLFiwAI8fPzaOKhk1ahT8/f0xd+5cAECfPn0wf/58NGrUyHiL5KOPPkKfPn2MQYPIUgy3QwwjOhITc7dXq2aYtrtPH/lqI7IW169fx+rVq5GVlQUPDw8MHTq00KvWZN1kDRhhYWG4e/cuZsyYgeTkZDRs2BA7duwwdvy8fv26yRWL6dOnQ6FQYPr06UhMTETFihXRp08ffPbZZ3J9C2QjLlwA3nrLtMOlgwMwdSrw/vuAk5N8tRFZk/Lly8PBwQHe3t4ICwuDi4uL3CWRhcjeyXPChAmYMGFCga/t3bvX5LmdnR1mzpyJmTNnlkBlRAb79wOhoUCe0c7o2RP4v/8DgoPlq4vIWgghjLc/XF1dMXr0aLi7u8POTvaPILIg2acKJyrNHj8GRo/ODRdVqwIbNwJbtjBcEBVFeno6li9fjtOnTxu3lS9fnuHCBvBvmOgJPvwQ+KeTO1q3BnbtAiSePoWozLpz5w7WrFmDBw8eICUlBbVr1+ZiZTaEAYOoEAcOGG6DAIZRIT//zHBBVFRxcXH49ddfodFoUK5cOQwbNozhwsYwYBAVICMDeOklw8gRAPj0U6BGDXlrIrIGQggcPHjQOBtnYGAgBg8eLPnMyVT6MWAQFWDmTOCfxRzRogXwn//IWg6RVRBCYOPGjTh16hQAoEmTJujRowenEbBRDBhE/3LkCPDVV4bHajWwdCnA/x+Jnk6hUMDd3R0KhQI9evRAs2bN5C6JZMSAQZRHVpbh1oheb3g+axZQt66sJRGVenmHoXbs2BF16tSBr6+vzFWR3DhMlSiPjz8GYmMNj5s0Ad59V956iEq7c+fOYcWKFcZlvBUKBcMFAWDAIDI6cQL4738Nj+3tDaNGOFSfqGBCCOzduxdRUVG4evUqjh07JndJVMrwv08iABoNMHYsoNMZnk+fDtSrJ29NRKWVVqvFhg0bEPvP5b7nn38ezz//vMxVUWnDgEEEYO5cIGeiwfr1DWuMEFF+qampCA8PR1JSEpRKJXr37o1GjRrJXRaVQgwYZPNOnzbMcwEYRov8/LNh9AgRmbp16xbWrFmDtLQ0ODs7IywsDFWqVJG7LCqlGDDIpmm1hlsj2dmG51OnAo0by1sTUWnl6OgInU4Hb29vDBs2DJ6ennKXRKUYAwbZLJ0OmDjR0LkTAEJCgI8+krcmotKsfPnyGDVqFMqXL89pv+mpOIqEbFJ6OjBoEPD994bnSqVhQi0HB3nrIipNsrKyEBERgUuXLhm3+fj4MFxQkTBgkM25cwfo2BHYsMHwXKUCfvoJaN5c1rKISpX79+9j6dKluHDhAjZu3Gic54KoqHiLhGxKXBzQs2fuEuxubkBUFNC1q7x1EZUm165dw9q1a5Geng5XV1eEhYXB3t5e7rLIyjBgkM3Ytw/o3x+4d8/w3N8f2LbNMCyViAxOnDiBrVu3Qq/Xw9fXF0OHDoW7u7vcZZEVYsAgmxARAYwaZZhQCzCEiq1bgcqV5a2LqLQQQmDnzp04cuQIACAkJAT9+vXjlQsqNgYMKtOEAL74wnTirK5dgchIgL+UEZnK/me8docOHdCuXTvjAmZExcGAQWXa11+bhouXXgIWLTKsNUJEuXKWWK9bty6CgoLkLofKAI4ioTIrLS13hk4A+OQTYMkShguiHPHx8Vi3bh30ej0AQKVSMVyQZHgFg8qspUuB+/cNj0eONCxgRkSG/hbHjh3Djh07IISAn58fWrZsKXdZVMYwYFCZlJ0NzJ+f+/zdd+Wrhag00el02L59O44fPw4AaNCgAZo1ayZzVVQWMWBQmRQZCVy7ZnjcoweXXicCgPT0dERGRuLq1asAgNDQULRq1YqdOckiGDCozBECmDcv9/l778lXC1FpcffuXaxZswb379+HWq3GwIEDUbNmTbnLojKMAYPKnD17gJMnDY+bNgXat5e3HqLSQKfTIS0tDZ6enhg2bBi8vb3lLonKOAYMKnPyXr14912AV3+JDIuUDR8+HN7e3nB2dpa7HLIBHKZKZcqpU8CuXYbHQUHAgAHy1kMkl+zsbGzatAk3btwwbgsMDGS4oBLDgEFlSt6rF5MnA3a8Rkc2KC0tDcuXL8fJkycRGRnJlVBJFvzvl8qMa9eA8HDD4woVgLFj5a2HSA7JyclYs2YNUlNT4eDgwPVESDYMGFRmLFgA6HSGxxMmALwSTLbm/PnzWL9+PbRaLSpUqIChQ4fCy8tL7rLIRjFgUJlw/z6weLHhsZMTMH68vPUQlSQhBPbt24fff/8dABAcHIyBAwfCyclJ5srIljFgUIkSArhyBcjKevJ+Wi1w/bobzp0r2tohK1cCjx8bHo8dC1Ss+Oy1ElmT27dvAwCaN2+Obt26QalkFzuSFwMGlRghgOHDc/tJPJk9gE5mv4dSaejcSWRLFAoF+vXrh7p16yIkJETucogAcBQJlaD164saLopv0CAgONiy70FUGiQmJmL79u0QQgAA1Go1wwWVKryCQSXi0SPg7bdznw8aBHh4FL6/Xq/HjRs3EBAQUORLvV5eXNSMbMOZM2ewadMmZGdnw8vLi4uVUanEgEElYtYsIDHR8LhHD2Dt2ifPsKnV6rBtWwx69vSDvT0vtBEBhs6cv/32G/bv3w8AqFmzJurXry9zVUQFe6aAkZmZCUdHR6lqoTIqJgb45hvDY0dH4LvvOH03kbk0Gg1+/fVXxMXFAQBat26NTp06sTMnlVpm/2Tq9Xp88skn8Pf3h6urK+Lj4wEAH330EX766SfJCyTrptcDr7+eOz/FRx8ZpvAmoqJ78OABli5diri4OKhUKvTv3x+hoaEMF1Sqmf3T+emnn2LZsmX44osvoFarjdufe+45LFmyRNLiyPpkZADnzuV+ffklcOSI4bU6dYApU+Stj8gaPXz4EHfv3oWLiwvGjBmDBg0ayF0S0VOZfYtkxYoV+PHHH9G5c2e8/vrrxu0NGjTAhQsXJC2OrMvNm0DDhsDffxf8+vffA3kyKREVUdWqVTFo0CD4+fnB40m9o4lKEbOvYCQmJqJ69er5tuv1ei6oY+NWriw8XIwaBbRvX7L1EFkrvV6PPXv24M6dO8ZtderUYbggq2L2FYy6deti3759qFq1qsn2qKgoNGrUSLLCyPps25b7eNSo3Bk4fX2BqVPlqYnI2mRmZmLdunW4fPkyzp07hzfffBN2XBaYrJDZP7UzZszA6NGjkZiYCL1eb+zVvGLFCmzZssUSNZIVuH8fOHTI8LhWLWD5cnnrIbJG9+7dw5o1a5CSkgI7Ozt07tyZ4YKsltm3SPr164fNmzdj9+7dcHFxwYwZM3D+/Hls3rwZXbp0sUSNZAWio3NHivToIW8tRNYoISEBS5YsQUpKCtzc3PDSSy9xZk6yasWKxm3btkV0dLTUtZAV27499zEDBpF5jh07Zpz229/fH2FhYXBzc5O7LKJnYvYVjKCgIPxdQE++Bw8eIIgTHNgkvR7YscPw2NkZaNdO3nqIrIler8f58+chhEC9evUwZswYhgsqE8y+gnH16lXocq6F55GVlYXEnLmgyabExADJyYbHnToZZuskoqJRKpUYPHgwzpw5g2bNmkHBaW6pjChywNi0aZPx8c6dO02GS+l0OuzZsweBgYGSFkfWIe/tkZ495auDyFqkpKQgNjYW7f653Ofk5ITmzZvLXBWRtIocMPr37w8AUCgUGD16tMlr9vb2CAwMxFdffSVpcWQd8g5PZf8Loie7fPkyoqKikJWVBXd3dzRs2FDukogsosgBQ6/XAwCqVauGY8eOwcvLy2JFkfW4dw84fNjwuHZtgBexiAomhMDhw4cRHR0NIQSqVKmCGjVqyF0WkcWY3QcjISHBEnWQldq1y9DJE+DtEaLCZGdnY+vWrYiJiQEANGzYEL1794ZKpZK3MCILKtYw1cePH+OPP/7A9evXodFoTF57++23JSmMrAOHpxI92ePHj7F27Vpcv34dCoUCXbt2RYsWLdiZk8o8swPGyZMn0bNnT6Snp+Px48coX748UlJS4OzsDG9vbwYMK6XXA5cvA+YsJyNE7vBUFxegbVvL1EZkzW7duoXr16/DwcEBgwYNKnAtJ6KyyOyAMWnSJPTp0weLFi2Ch4cHDh8+DHt7e7z44ouYOHGiJWokCxMC6N3b9GqEuTp3BhwcpKuJqKyoUaMGevfujapVq7LvGtkUsyfaiomJwTvvvAOlUgmVSoWsrCwEBATgiy++wAcffGCJGsnCDh9+tnABAC+8IE0tRNZOCIFDhw7hwYMHxm1NmjRhuCCbY/YVDHt7eyiVhlzi7e2N69evG5cRvnHjhuQFkuX9+GPu4x49AD8/846vU8eweiqRrdNqtdi8eTPOnDmDmJgYjBs3jouVkc0y+ye/UaNGOHbsGGrUqIH27dtjxowZSElJwcqVK/Hcc89ZokayoAcPgIgIw2MPDyAqyjDdNxGZ59GjRwgPD8etW7egUCjQtGlThguyaWbfIpkzZw58fX0BAJ999hnKlSuHN954A3fv3sUPP/xgdgELFy5EYGAgHB0d0aJFCxw9evSJ+z948ADjx4+Hr68vHBwcULNmTWzLO9MTmWXlSiAjw/B45EiGC6LiuHXrFhYvXoxbt27ByckJI0eORLNmzeQui0hWZsfrpk2bGh97e3tjR84wgmKIiIjA5MmTsWjRIrRo0QILFixAt27dEBcXB29v73z7azQadOnSBd7e3oiKioK/vz+uXbsGT0/PYtdgy4QA8mbC116TrxYiaxUbG4stW7YgOzsbXl5eGDZsGMqXLy93WUSyM/sKRmFOnDiB3r17m3XM/PnzMW7cOIwdOxZ169bFokWL4OzsjKVLlxa4/9KlS3Hv3j1s2LABrVu3RmBgINq3b48GDRpI8S3YBL0euHABOHcOWLLE8CcAtGoF8A4XkXmEEDhy5Aiys7NRo0YNvPzyywwXRP8w6wrGzp07ER0dDbVajVdeeQVBQUG4cOECpk6dis2bN6Nbt25FPpdGo8Hx48cxbdo04zalUonQ0FAcOnSowGM2bdqEli1bYvz48di4cSMqVqyI4cOH4/333y90RrysrCxkZWUZn6empgIwdMbSmjPpwxPknEeq81mKXg+0b6/CkSP5c+XLL2dDqxUyVFUwa2lTa8I2lZZWq4VCoUC/fv1w7tw5tG7dGkqlku37DPgzKi1LtKc55ypywPjpp58wbtw4lC9fHvfv38eSJUswf/58vPXWWwgLC8PZs2dRp06dIr9xSkoKdDodKlWqZLK9UqVKuHDhQoHHxMfH47fffsOIESOwbds2XL58GW+++Sa0Wi1mzpxZ4DFz587F7Nmz823ftWsXnCXucBAdHS3p+aSWmOiCI0dC8213d8+Cq+subNuml6GqJyvtbWqN2KbPRqPR4NGjR6hQoQIA4PA/i/E8y+1iMsWfUWlJ2Z7p6elF3rfIAeObb77Bf//7X7z77rtYt24dBg8ejP/97384c+YMKleuXKxCzaXX6+Ht7Y0ff/wRKpUKTZo0QWJiIubNm1dowJg2bRomT55sfJ6amoqAgAB07doV7u7uktSl1WoRHR2NLl26wN7eXpJzWsK+faZTE48dq4daLTBqlArNmnWXqaqCWUubWhO26bO7efMm1q1bh8ePH6NRo0a4fv0621NC/BmVliXaM+cuQFEUOWBcuXIFgwcPBgAMGDAAdnZ2mDdvXrHDhZeXF1QqFW7fvm2y/fbt2/Dx8SnwGF9fX9jb25vcDqlTpw6Sk5Oh0WigVqvzHePg4ACHAqaYtLe3l/wH2BLnlFJKSu7jL74A3n1Xsi44FlPa29QasU2LJyYmBlu2bDFeeQ0ICMD169fZnhbANpWWlO1pznmK/AmTkZFhvKWgUCjg4OBgHK5aHGq1Gk2aNMGePXuM2/R6Pfbs2YOWLVsWeEzr1q1x+fJl49LxAHDx4kX4+voWGC7IVN4s9687U0RUCL1ej+joaGzcuBE6nQ61a9fGSy+9BA8PD7lLIyrVzOrkuWTJEri6ugIwLD+8bNmyfNPfmrPY2eTJkzF69Gg0bdoUzZs3x4IFC/D48WOMHTsWADBq1Cj4+/tj7ty5AIA33ngD3333HSZOnIi33noLly5dwpw5c7jAWhHlDRiFXCQiojyysrKwbt06XLp0CQDQrl07dOjQAQqFgh0RiZ6iyAGjSpUqWLx4sfG5j48PVq5cabKPQqEw68M+LCwMd+/exYwZM5CcnIyGDRtix44dxo6f169fN05LDgABAQHYuXMnJk2ahPr168Pf3x8TJ07E+++/X+T3tGW8gkFknitXruDSpUuws7NDv379OFsxkRmKHDCuXr1qkQImTJiACRMmFPja3r17821r2bKlsdc2mSc5OfcxAwbR09WtWxedOnVCUFAQ/P395S6HyKqU/l5+JJmcKxgKBcCFHYkKdurUKTx+/Nj4vG3btgwXRMXAgGFDcgJGxYoA12AiMqXX67F9+3Zs2LABa9euhU6nk7skIqvGjxkbIURuwODtESJTGRkZiIqKQnx8PACgevXqJv2/iMh8DBg24uFDIGfGdAYMolwpKSlYs2YN7t27B3t7e7zwwgtmzUpMRAVjwLARHEFClN+VK1cQGRmJrKwseHh4YOjQoYVO9EdE5inWNcArV65g+vTpGDZsGO7cuQMA2L59O87lLM1JpQ7nwCAypdfrsXPnTmRlZSEgIADjxo1juCCSkNkB448//kC9evVw5MgR/Prrr0hLSwNg6Hld2HogJD9ewSAypVQqERYWhmbNmmHUqFFwcXGRuySiMsXsgDF16lR8+umnxmXbc3Tq1InzU5RinAODyLAS5Pnz543PK1SogJ49e8KOw6qIJGd2wDhz5gxeeOGFfNu9vb2Rknc1LSpVeAWDbN2dO3ewePFiREZGGkeLEJHlmB0wPD09kZSUlG/7yZMnORlNKcaAQbYsLi4OP/30Ex48eABPT0+4ubnJXRJRmWd2wBg6dCjef/99JCcnQ6FQQK/X48CBA5gyZQpGjRpliRpJAuzkSbZICIH9+/cjPDwcGo0GgYGBeOWVV1CxYkW5SyMq88y+8ThnzhyMHz8eAQEB0Ol0qFu3LnQ6HYYPH47p06dbokaSQE4fDE4TTrYiOzsbmzdvxunTpwEATZo0QY8ePaBSqWSujMg2mB0w1Go1Fi9ejI8++ghnz55FWloaGjVqhBo1aliiPpJAZiZw7JjhsZcXpwkn23Du3DmcPn0aCoUCPXr0QLNmzeQuicimmP1Rs3//frRp0wZVqlRBlSpVLFETSejOHSAkJPc5+1+Qrahfvz6SkpJQs2ZNBAUFyV0Okc0xuw9Gp06dUK1aNXzwwQeIjY21RE0koc2bgbyDe+rXl68WIku7ePEisv6ZE1+hUKB79+4MF0QyMTtg3Lp1C++88w7++OMPPPfcc2jYsCHmzZuHmzdvWqI+ekZXruQ+rl8f+OIL+WohshQhBPbu3Ys1a9Zg3bp10Ov1cpdEZPPMDhheXl6YMGECDhw4gCtXrmDw4MFYvnw5AgMD0alTJ0vUSM8gb8CIjAQ4kpjKGq1Wi6ioKPzxxx8ADJNnEZH8nqm7X7Vq1TB16lQ0aNAAH330kfEfOJUeOQFDqQQCA2UthUhyqampCA8PR1JSEpRKJXr16oXGjRvLXRYR4RkCxoEDB7Bq1SpERUUhMzMT/fr1w9y5c6WsjSSQEzACAoA8M7sTWb2bN28iIiICaWlpcHZ2xpAhQ1C1alW5yyKif5gdMKZNm4bw8HDcunULXbp0wTfffIN+/frB2dnZEvXRM7h/H3jwwPCY/dyoLNHpdMbFFr29vTFs2DB4enrKXRYR5WF2wPjzzz/x7rvvYsiQIfDijE2lWt7+F8HB8tVBJDWVSoVBgwbh4MGD6NOnDxwcHOQuiYj+xeyAceDAAUvUQRbAgEFlSVZWFpKSkhD4T2ciPz8/DBo0SN6iiKhQRQoYmzZtQo8ePWBvb49NmzY9cd++fftKUhg9OwYMKivu37+P8PBw3Lt3D2PGjOHCikRWoEgBo3///khOToa3tzf69+9f6H4KhQI6nU6q2ugZMWBQWXDt2jWsXbsW6enpcHV1lbscIiqiIgWMvJPWcAIb68GAQdbuxIkT2Lp1K/R6PXx9fTF06FC4u7vLXRYRFYHZE22tWLHCOBVvXhqNBitWrJCkKJJGTsCoUAHw8JC3FiJz6PV67NixA5s3b4Zer0dISAjGjh3LcEFkRcwOGGPHjsXDhw/zbX/06BHGjh0rSVH0bDIygFOngMREw3MOUSVrExMTgyNHjgAAOnTogIEDB8Le3l7mqojIHGaPIhFCQKFQ5Nt+8+ZNePDXZNndugXUqwfcu5e7jbdHyNo0bNgQCQkJqFOnDurWrSt3OURUDEUOGI0aNYJCoYBCoUDnzp1hZ5d7qE6nQ0JCArp3726RIqno1q0zDRcA0KyZPLUQmePGjRvw9fWFnZ0dlEolBg4cKHdJRPQMihwwckaPxMTEoFu3bia9udVqNQIDA/kfQikQE5P7eOBAoHFj4PXXZSuH6KmEEDh27Bh27NiB+vXro1+/fgVeJSUi61LkgDFz5kwAQGBgIMLCwuDo6Gixoqj4Tp0y/KlUAitWAJzBnUoznU6H7du34/jx4wAMYUOv10OlUslcGRE9K7P7YIwePdoSdZAEsrOBs2cNj2vUYLig0i09PR2RkZG4evUqACA0NBStWrXi1QuiMqJIAaN8+fK4ePEivLy8UK5cuSf+B3Dv3x0AqMTExQE5I4gbNpS1FKInunPnDsLDw3H//n2o1WoMHDgQNWvWlLssIpJQkQLG119/DTc3N+Nj/oZROuXtf9GggWxlED2RTqfDmjVr8ODBA3h6emLYsGHw9vaWuywikliRAkbe2yJjxoyxVC30jPIGDF7BoNJKpVKhb9++2LdvHwYNGgRn3ssjKpPMnmjrxIkTOHPmjPH5xo0b0b9/f3zwwQfQaDSSFkfm+eOP3MeNGslXB9G/ZWdnIzk52fi8WrVqGDlyJMMFURlmdsB47bXXcPHiRQBAfHw8wsLC4OzsjMjISLz33nuSF0hFc+cO8Ndfhsf16wM+PvLWQ5QjLS0NK1aswLJly5CSkmLczlutRGWb2QHj4sWLaPjP9ffIyEi0b98eq1evxrJly7Bu3Tqp66Mi2rkTEMLwuEcPeWshypGcnIwlS5bgxo0bUCgUSEtLk7skIiohxZoqPGdF1d27d6N3794AgICAAJPfTqhkbd+e+7hnT/nqIMpx/vx5rF+/HlqtFhUqVMCwYcNQoUIFucsiohJidsBo2rQpPv30U4SGhuKPP/7A999/DwBISEhApUqVJC+Qnk6nM1zBAAB3d6BlS3nrIdsmhMC+ffvw+++/AwCCg4MxcOBAODk5yVwZEZUkswPGggULMGLECGzYsAEffvghqlevDgCIiopCq1atJC+Qni4yMnf9ka5dAS46SXI6efKkMVw0b94c3bp1g1Jp9t1YIrJyZgeM+vXrm4wiyTFv3jxO7yuDd98Fvvwy9zn7X5DcGjRogLNnzyIkJARNmjSRuxwikonZASPH8ePHcf78eQBA3bp10bhxY8mKoqLR64Effsh9rlYzYJA87t69iwoVKkCpVEKlUmHkyJEcJUJk48wOGHfu3EFYWBj++OMPeHp6AgAePHiAjh07Ijw8HBUrVpS6RirE5cvAo0e5zzduBHx95auHbNOZM2ewceNGNGvWDN26dQPAIahEVIxhqm+99RbS0tJw7tw53Lt3D/fu3cPZs2eRmpqKt99+2xI1UiFy5r0AgE8+Abp3l68Wsj1CCOzZswe//vordDod7t27B51OJ3dZRFRKmH0FY8eOHdi9ezfq1Klj3Fa3bl0sXLgQXbt2lbQ4erJ/VrgGAPBWN5UkjUaDX3/9FXFxcQCAVq1aoXPnzuzMSURGZgcMvV4P+wKGKdjb2xvnx6CSwYBBcnjw4AHCw8Nx+/ZtqFQq9OnTBw24uh4R/YvZv2506tQJEydOxK1bt4zbEhMTMWnSJHTu3FnS4qhwej1w4oThcUAAwMUoqSTodDosX74ct2/fhouLC0aPHs1wQUQFMjtgfPfdd0hNTUVgYCCCg4MRHByMatWqITU1Fd9++60laqQCXLqU28GzaVN5ayHboVKp0KVLF/j4+GDcuHEICAiQuyQiKqXMvkUSEBCAEydOYM+ePcZhqnXq1EFoaKjkxVHhDh7MfcyAQZak1+vx8OFDlCtXDoChz1Xt2rXZ34KInsisgBEREYFNmzZBo9Ggc+fOeOuttyxVFz3Fn3/mPm7bVr46qGzLzMzEunXrkJycjHHjxsHd3R0AGC6I6KmKHDC+//57jB8/HjVq1ICTkxN+/fVXXLlyBfPmzbNkfVSIP/4w/OngADRvLm8tVDbdu3cPa9asQUpKCuzs7HDnzh1jwCAiepoi/xry3XffYebMmYiLi0NMTAyWL1+O//3vf5asjQpx4waQkGB4/PzzhpBBJKWEhAQsXrwYKSkpcHNzw9ixY43rDhERFUWRA0Z8fDxGjx5tfD58+HBkZ2cjKSnJIoVR4fbty33crp18dVDZdOzYMaxcuRKZmZnw9/fHuHHj4OfnJ3dZRGRlinyLJCsrCy4uLsbnSqUSarUaGRkZFimMCpaaCuS9cNS+vXy1UNlz4sQJbNu2DQBQr1499O3bF3Z2xV6yiIhsmFn/c3z00UdwdnY2PtdoNPjss8/g4eFh3DZ//nzpqiMTp08DLVsC6emG53Z2hlskRFJ57rnncOzYMYSEhKB169ZcU4SIiq3IAaNdu3bGaYFztGrVCvHx8cbn/M/Istavzw0XgOH2SJ6LSkTFkpqaCjc3NygUCqjVarzyyitQqVRyl0VEVq7IAWPv3r0WLIOK4sGD3MfPPw8sXixbKVRGXL58GVFRUWjTpg3atGkDAAwXRCQJDma3Ig8f5j5esgQICpKvFrJuQggcOnQIq1evRlZWFi5fvsy1hIhIUqUiYCxcuBCBgYFwdHREixYtcPTo0SIdFx4eDoVCgf79+1u2wFIiNTX3MacjoOLKzs7Gpk2bsGvXLggh0KhRI4wcOZKTZxGRpGT/HyUiIgKTJ0/GzJkzceLECTRo0ADdunXDnTt3nnjc1atXMWXKFLS1oWks817ByNOvlqjItFotVq9ejZiYGCgUCnTr1g19+vThbREikpzsAWP+/PkYN24cxo4di7p162LRokVwdnbG0qVLCz1Gp9NhxIgRmD17NoJs5D6BRgMcOmR4rFAArq7y1kPWJzs7G5cuXcLNmzfh4OCA4cOH4/nnn2fnbCKyCFkHuGs0Ghw/fhzTpk0zblMqlQgNDcWhnE/TAnz88cfw9vbGyy+/jH15Z50qQFZWFrKysozPU/+5z6DVaqHVap/xO4DxXHn/lFpqKtCggR0ePzZ8ELi5Ceh02dDpLPJ2pYKl29QWCSHg7e2NtLQ0DBkyBF5eXmzfZ8CfUemxTaVlifY051zFChj79u3DDz/8gCtXriAqKgr+/v5YuXIlqlWrZuyJXhQpKSnQ6XSoVKmSyfZKlSrhwoULBR6zf/9+/PTTT4iJiSnSe8ydOxezZ8/Ot33Xrl0mc3pIITo6WtLz5ThyxAeJiS2MzytVeoBt2/58whFlh6Xa1FYIIZCdnQ17e3sAgJeXF8qXL1/kfk70dPwZlR7bVFpStmd63rkSnsLsgLFu3TqMHDkSI0aMwMmTJ41XBx4+fIg5c+YYZwG0hEePHmHkyJFYvHgxvLy8inTMtGnTMHnyZOPz1NRUBAQEoGvXrpIt3KTVahEdHY0uXboY/yOX0p07uZewHR0FoqJcUadOT8nfpzSxdJvaAq1Wi23btiExMRFjxoyBvb09oqOj0a1bN7apBPgzKj22qbQs0Z6peUcbPIXZAePTTz/FokWLMGrUKISHhxu3t27dGp9++qlZ5/Ly8oJKpcLt27dNtt++fRs+Pj759r9y5QquXr2KPn36GLflDK2zs7NDXFwcgoODTY5xcHCAQwGrgdnb20v+A2yJcwKmnTtXrFCgfn3b+YdnqTYt6x49eoSIiAgkJiZCqVQiOTnZ2F+JbSottqf02KbSkrI9zTmP2Z084+Li0K6AFbY8PDzwIO9MUEWgVqvRpEkT7Nmzx7hNr9djz549aNmyZb79a9eujTNnziAmJsb41bdvX3Ts2BExMTEICAgw99uxCn//nfu4QgX56iDrcOvWLSxevBiJiYlwcnLCiy++iFq1asldFhHZGLOvYPj4+ODy5csIDAw02b5///5ijeiYPHkyRo8ejaZNm6J58+ZYsGABHj9+jLFjxwIARo0aBX9/f8ydOxeOjo547rnnTI739PQEgHzby5J793Ifly8vXx1U+p07dw4bNmxAdnY2vLy8MGzYMJTnDw0RycDsgDFu3DhMnDgRS5cuhUKhwK1bt3Do0CFMmTIFH330kdkFhIWF4e7du5gxYwaSk5PRsGFD7Nixw9jx8/r16zY/ARADBhXFqVOnsGHDBgBAjRo1MGDAADg6OspbFBHZLLMDxtSpU6HX69G5c2ekp6ejXbt2cHBwwJQpU/DWW28Vq4gJEyZgwoQJBb72tDVQli1bVqz3tCa8RUJFUaNGDZQrVw61a9dGaGiozQdzIpKX2QFDoVDgww8/xLvvvovLly8jLS0NdevWhStnfrKYnCsYajUg8chasnKZmZnGqxTOzs549dVXedWCiEqFYk+0pVarUbduXSlroULkBIzy5Q2zeBIBwI0bNxAREYGOHTuiSZMmAMBwQUSlhtkBo2PHjk+cWvi33357poIov5xbJLw9QjliYmKwZcsW6HQ6nDhxAo0aNeItESIqVcwOGA0bNjR5rtVqERMTg7Nnz2L06NFS1UX/yMwEciZOYwdP0uv12L17t3Eq/dq1a+OFF15guCCiUsfsgPH1118XuH3WrFlIS0t75oLIVN4RJLyCYduysrKwbt06XLp0CQDQtm3bp15RJCKSi2SLnb344oto3rw5vvzyS6lOaRP0euDiRRS6cNnZs7mPeQXDdmVnZ2Pp0qW4c+cO7Ozs0LdvX9SrV0/usoiICiVZwDh06BA7mJlJCKBtW+DgwaLtz4Bhu+zs7PDcc8/h6NGjGDp0KPz9/eUuiYjoicwOGAMGDDB5LoRAUlIS/vrrr2JNtGXLrl0rergAAA7asT0ajQZqtRoA0KZNGzRp0kTyVYCJiCzB7IDh4eFh8lypVKJWrVr4+OOP0bVrV8kKswUZGabPX3658H1r1waGD7dsPVR66PV67Ny5E9euXcNLL70EtVoNhULBcEFEVsOsgKHT6TB27FjUq1cP5cqVs1RNNiMzM/fxa68BixbJVwuVHhkZGYiKikJ8fDwAwyrCderUkbkqIiLzmDW2TaVSoWvXrmavmkoFy8rKfczuKwQAKSkpWLJkCeLj42Fvb48hQ4YwXBCRVTL7Fslzzz2H+Ph4VKtWzRL12JS8AcPBQb46qHS4cuUKIiMjkZWVBQ8PDwwdOhQ+Pj5yl0VEVCxmz87z6aefYsqUKdiyZQuSkpKQmppq8kVFd/t27mMGDNt25swZrFq1CllZWQgICMC4ceMYLojIqhX5CsbHH3+Md955Bz179gQA9O3b12SCHyEEFAoFdIVN6EAmDh0CwsJyn/MWiW2rUqUKnJ2dUaNGDfTq1Qt2dpKNICcikkWR/xebPXs2Xn/9dfz++++WrMdmREaaPg8OlqcOkk92drYxSHh4eOC1116Dq6srZ+YkojKhyAFDCAEAaN++vcWKsSV5b4+MHw/8a3oRKuPu3LmD8PBwdOnSxdiJ083NTeaqiIikY1YfDP5mJZ07d3Iff/YZYG8vXy1UsuLi4vDTTz/h/v37+OOPP6DX6+UuiYhIcmbd6K1Zs+ZTQ8a9vKtzUaFyAoZaDbi7y1sLlQwhBA4ePIjdu3cDAAIDAzF48GCuhEpEZZJZAWP27Nn5ZvKk4skJGN7eAC8MlX3Z2dnYvHkzTp8+DQBo0qQJevToAZVKJXNlRESWYVbAGDp0KLy9vS1VS5mm1QKXLhkWONPrgeRkw3Y2Z9mXnZ2N5cuX4+bNm1AoFOjRoweaNWsmd1lERBZV5IDB/hfFl5EBhIQACQn5X2PAKPvs7Ozg7++PlJQUDB48GEFBQXKXRERkcWaPIiHzHTxYcLgAgOeeK9laqOTo9Xpj/4quXbvi+eefh6enp7xFERGVkCIHDPZ0L75/L92Ss2qqvz/w9tslXg5ZmBACf/75JxISEjBy5EioVCoolUqGCyKyKZwusATknUF90SLDyqlUNmm1WmzYsAGxsbEAgAsXLiAkJETmqoiISh4DRgl4+DD3MYekll2pqakIDw9HUlISlEolevXqxXBBRDaLAaME5L2CwVG+ZdPNmzcRERGBtLQ0ODs7Y8iQIahatarcZRERyYYBw8L0euDIkdznDBhlz/nz57Fu3TrodDp4e3tj2LBh7G9BRDaPAcOC9HqgeXPg+PHcbbxFUvZUrFgRdnZ2qF69Ol544QU4ODjIXRIRkewYMCwoLs40XDg5AQEB8tVD0hFCGOeG8fLywiuvvIIKFSpwvhgion9wEQQLevTI9PmGDQCvnFu/+/fv48cff0RCnslNvLy8GC6IiPJgwLCgx49zH7//PtC1q3y1kDSuXbuGJUuWIDk5Gdu3b+cEdEREheAtEgvKGzBcXOSrg6Rx4sQJbN26FXq9Hr6+vhg6dCivWhARFYIBw4IYMMoGvV6PXbt24cg/w4FCQkLQr18/2Nvby1wZEVHpxYBhQXn7YDBgWCetVouIiAhcuXIFANChQwe0a9eOVy6IiJ6CAcNC9Hpg3Ljc5wwY1snOzg4uLi6ws7PDCy+8gLp168pdEhGRVWDAsJB/fuE1qllTnjqoeHKGoSoUCvTp0wetW7eGt7e33GUREVkNjiKxkH8vPtu8uTx1kHmEEDh69CgiIyONI0Ts7OwYLoiIzMQrGCVg9Gi5K6Ci0Ol02L59O47/MztabGwsFysjIiomBgwiAOnp6YiMjMTVq1cBAF26dGF/CyKiZ8CAQTbvzp07CA8Px/3796FWqzFw4EDUZKcZIqJnwoBBNu3y5cuIjIyERqOBp6cnhg0bxv4WREQSYMAgm+bk5ASdToeqVatiyJAhcHZ2lrskIqIygQGDbJq/vz/GjBkDX19fqFQqucshIiozOEyVbEpaWhpWrlyJW7duGbdVrlyZ4YKISGIMGGQzkpOTsXjxYsTHx2Pjxo1cCZWIyIJ4i4Rswvnz57F+/XpotVpUqFABgwcP5noiREQWxIBBZZoQAn/++Sf27t0LAAgODsbAgQPh5OQkb2FERGUcAwaVWdnZ2diwYQPOnTsHAGjevDm6desGpZJ3BomILI0Bw0JmzJC7AlIqldBoNFAqlejZsyeaNGkid0lERDaDAcNCjhzJfRwYKFsZNk2pVGLgwIG4c+cOAgIC5C6HiMim8FqxheS9Cj9xonx12JqzZ89i69atxhEiDg4ODBdERDLgFQwLyVmu3ccHKFdO3lpsgRACv//+O/bt2wcAqFatGhcrIyKSEQOGheQEDPYntDyNRoP169fjwoULAIDWrVujdu3aMldFRGTbGDAsJCdgcKoFy3rw4AHCw8Nx+/ZtqFQq9OnTBw0aNJC7LCIim8eAYSE5k0TyCoblXL9+HREREUhPT4eLiwvCwsLY34KIqJRgwLAQ3iKxPK1Wi4yMDPj4+GDo0KHw8PCQuyQiIvoHA4aFMGBYXnBwMIYNG4aqVatCrVbLXQ4REeXBjz8LYcCQXmZmJtatW4e///7buK1GjRoMF0REpRA//iyEAUNa9+7dw08//YSzZ88iKiqKK6ESEZVypeLjb+HChQgMDISjoyNatGiBo0ePFrrv4sWL0bZtW5QrVw7lypVDaGjoE/eXCwOGdBISErB48WKkpKTAzc0Nffr04UqoRESlnOwffxEREZg8eTJmzpyJEydOoEGDBujWrRvu3LlT4P579+7FsGHD8Pvvv+PQoUMICAhA165dkZiYWMKVPxmHqUrj+PHjWLlyJTIzM+Hv749x48bBz89P7rKIiOgpZA8Y8+fPx7hx4zB27FjUrVsXixYtgrOzM5YuXVrg/qtWrcKbb76Jhg0bonbt2liyZAn0ej327NlTwpUXTAjg4kUgNdXwnFcwiken0+HmzZvYuXMnhBCoV68eRo8eDTc3N7lLIyKiIpB1FIlGo8Hx48cxbdo04zalUonQ0FAcOnSoSOdIT0+HVqtF+fLlC3w9KysLWVlZxuep/3zya7VaaLXaZ6g+V855tFot+vZVYceO3FShUAhotdmSvI8t0Wg0yMjIAAB06NABLVu2BADJ/s5sUd6fU3p2bE/psU2lZYn2NOdcsgaMlJQU6HQ6VKpUyWR7pUqVjNM+P837778PPz8/hIaGFvj63LlzMXv27Hzbd+3aBWdnZ/OLfoL163/Hjh29TLY5Od3Gtm1HCjmCniQwMBDp6el48OABtm/fLnc5ZUZ0dLTcJZQpbE/psU2lJWV7pqenF3lfq54H4/PPP0d4eDj27t0LR0fHAveZNm0aJk+ebHyemppq7Lfh7u4uSR1arRbR0dFo06ajyfZJk3R4/fUKqFatpyTvU9ZduXIFt27dQtu2bY1tOmjQINjb28tdWpmQ06ZdunRhm0qA7Sk9tqm0LNGeOXcBikLWgOHl5QWVSoXbt2+bbL99+zZ8fHyeeOyXX36Jzz//HLt370b9+vUL3c/BwQEODg75ttvb20v+A6xQ5J7vhReA+fNVAFSSvkdZJITA4cOHER0dDSEEKleujGrVqgGwzN+TrWObSovtKT22qbSkbE9zziNrF0S1Wo0mTZqYdNDM6bCZc8+9IF988QU++eQT7NixA02bNi2JUoskO09XCxVzRZFkZ2dj06ZN2LVrF4QQaNSoEYKDg+Uui4iInpHst0gmT56M0aNHo2nTpmjevDkWLFiAx48fY+zYsQCAUaNGwd/fH3PnzgUA/Pe//8WMGTOwevVqBAYGIjk5GQDg6uoKV1dX2b4PwDRg2MnesqXf48ePERERgRs3bkChUKBr165o0aIFFAoF9DnjfImIyCrJ/jEYFhaGu3fvYsaMGUhOTkbDhg2xY8cOY8fP69evQ5lnrOf3338PjUaDQYMGmZxn5syZmDVrVkmWno9Ol/uYAePJbt++jTVr1uDhw4dwcHDAoEGDUL16dbnLIiIiiZSKj8EJEyZgwoQJBb62d+9ek+dXr161fEHF9O23uUGIAePJUlJS8PDhQ5QvXx7Dhg2Dl5eX3CUREZGE+DEooRMncqftrFpVxkKsQEhICLKzs1GzZk04OTnJXQ4REUmM80xKKG/Hzrfekq+O0kir1WL79u0mQ5waNGjAcEFEVEYxYFiIp6fcFZQejx49wvLly3H06FFERkZyJVQiIhvAWyRkUbdu3UJ4eDgePXoEJycndO7cmSuhEhHZAAYMspizZ89i48aNyM7ORsWKFTF06NBC14whIqKyhQFDQklJ/M0cMMzMuXfvXvz5558AgBo1amDgwIEFzqhKRERlEwOGRLZsqYaEBAYMwNChM2exupYtWyI0NNRkLhMiIir7GDAkcuCAv/Gxvz9gy5+narUaw4YNw7Vr19CgQQO5yyEiIhkwYEgk78CIdesAW+vHeOPGDSQnJ6NZs2YAAE9PT3hyKA0Rkc1iwLCAfz5jbcapU6ewefNm6HQ6VKhQAUFBQXKXREREMmPAoGLLWfn24MGDAIDatWujcuXKMldFRESlAQMGFUtWVhbWrVuHS5cuAQDatm2Ljh07co4LIiICwIAhGb3edj5Y79+/jzVr1uDu3buws7ND3759Ua9ePbnLIiKiUoQBQwI6HXDxou1MIBUfH4+7d+/C1dUVQ4cOhb+//9MPIiIim8KAIYG4ONPnZf0uQZMmTaDRaBASEgJ3d3e5yyEiolLIhmdrkI5en/u4QYOyFzD0ej3++OMPZGRkGLe1bNmS4YKIiArFgCGxsjZENSMjA6tWrcLevXsRFRXFlVCJiKhIeIuECpWSkoI1a9bg3r17sLe3R9OmTTlKhIiIioQBgwp0+fJlREVFISsrCx4eHhg6dCh8fHzkLouIiKwEAwaZEELgyJEj2LVrF4QQCAgIQFhYGFxcXOQujYiIrAgDhgQWLlTJXYJkNBoNjhw5AiEEGjZsiF69esHOjj8mRERkHn5ySODUqdzHVavKV4cUHBwcMGzYMMTHx6NFixbsc0FERMXCgCGBvL/gT5ggXx3FdefOHdy9exchISEAAG9vb3h7e8tcFRERWTMGDIl5eMhdgXni4uLw66+/Ijs7G+7u7ggICJC7JCIiKgMYMGyUEAIHDhzAnj17AADVqlVDhQoVZK6KiIjKCgYMG5SdnY3Nmzfj9OnTAICmTZuie/fuUKnKTmdVIiKSFwOGjUlLS0N4eDgSExOhUCjQo0cPNCtr048SEZHsGDBszJkzZ5CYmAhHR0cMHjwYQUFBcpdERERlEAOGjXn++efx+PFjNGrUiH0uiIjIYrjYWRknhMBff/0FjUYDAFAoFAgNDWW4ICIii2LAKMO0Wi2ioqKwdetWbNy4kSuhEhFRieEtkjIqNTUV4eHhSEpKglKpRPXq1TkrJxERlRgGjDLo5s2biIiIQFpaGpydnREWFoYqVarIXRYREdkQBowy5vTp09i0aRN0Oh28vb0xbNgweHp6yl0WERHZGAYMCRw+XDq6smRlZWHXrl3Q6XSoVasWXnjhBTg4OMhdFhER2SAGDAn4+wskJsrfv8HBwQFhYWG4dOkSOnbsyD4XREQkGwYMCeRdTbWkP9Pv37+Pe/fuITg4GAAQEBDABcuIiEh2pePafhnh41Oyw0CvXbuGJUuWICIiArdv3y7R9yYiInoSXsGwUidOnMDWrVuh1+vh6+sLJycnuUsiIiIyYsCwMnq9Hrt27cKRI0cAACEhIejXrx/s7e1lroyIiCgXA4YVyczMRFRUFK5cuQIA6NChA9q1a8fOnEREVOowYEjg2rWS+YA/evQorly5Ant7e/Tv3x9169YtkfclIiIyFwOGBBQKASEUSE62bNBo06YN7t+/j+bNm8PX19ei70VERPQsOIpEAjnDVB0dpR1FIoRAbGwsdDodAECpVKJfv34MF0REVOoxYEiodm3pzqXT6bB161ZERkZi+/btXAmViIisCm+RlELp6emIjIzE1atXAQDlypWTtyAiIiIzMWCUMnfu3EF4eDju378PtVqNgQMHombNmnKXRUREZBYGjFLk4sWLWLduHTQaDTw9PTFs2DB4e3vLXRYREZHZGDBKiczMTKxfvx4ajQZVq1bFkCFD4OzsLHdZRJIRQiA7O9vYadnaabVa2NnZITMzs8x8T3Jjm0qruO1pb28PlUr1zO/PgFFKODo6YsCAAYiLi0OPHj0k+cslKi00Gg2SkpKQnp4udymSEULAx8cHN27c4GR3EmGbSqu47alQKFC5cmW4uro+0/szYMgoLS0NDx8+hL+/PwCgRo0aqFGjhsxVEUlLr9cjISEBKpUKfn5+UKvVZeLDQ6/XIy0tDa6urlAqOSBPCmxTaRWnPYUQuHv3Lm7evIkaNWo80y+7DBgySU5Oxpo1a6DVajFu3DiOFKEyS6PRQK/XIyAgoEzd9tPr9dBoNHB0dOSHoUTYptIqbntWrFgRV69ehVarZcCwNufPn8f69euh1WpRoUIF6PV6uUsisjh+YBBZB6muMDJglCAhBPbt24fff/8dABAcHIyBAwdyqXUiIipzGDBKiFarxaZNm3D27FkAQPPmzdGtWzf+VkdERGUSP91KyP79+3H27FkolUr07t0bPXr0YLggojIrLi4OPj4+ePTokdylUB4ajQaBgYH466+/LP5e/IQrIW3atEH16tUxcuRINGnSRO5yiKgIxowZA4VCAYVCAXt7e1SrVg3vvfceMjMz8+27ZcsWtG/fHm5ubnB2dkazZs2wbNmyAs+7bt06dOjQAR4eHnB1dUX9+vXx8ccf4969exb+jkrOtGnT8NZbb8HNzS3fa7Vr14aDgwOSk5PzvVa/fn188803+bbPmjULDRs2NNmWnJyMt956C0FBQXBwcEBAQAD69OmDPXv2SPZ9FCQyMhK1a9eGo6Mj6tWrh23btj31mFWrVqFBgwZwdnaGr68vXnrpJfz999/G18+dO4eBAwciMDAQCoUCCxYsyHcOnU6Hjz76CNWqVYOTkxOCg4PxySefmKxVlZaWhgkTJqBy5cpwcXHB888/j0WLFhlfV6vVmDJlCt5///1na4QiYMCwoKtXrxr/4u3t7TFixAgEBgbKWxQRmaV79+5ISkpCfHw8vv76a/zwww+YOXOmyT7ffvst+vXrh9atW+PIkSM4ffo0hg4ditdffx1Tpkwx2ffDDz9EWFgYmjVrhu3bt+Ps2bP46quvcOrUKaxcubLEvi+NRmOxc1+/fh1btmzBmDFj8r22f/9+ZGRkYNCgQVi+fHmx3+Pq1ato0qQJfvvtN8ybNw9nzpzBjh070LFjR4wfP/4Zqn+ygwcPYtiwYXj55Zdx8uRJ9O/fH/379zfe/i7IgQMHMGrUKLz88ss4d+4cIiMjcfToUYwbN864T3p6OoKCgvD555/Dx8enwPP897//xffff4/vvvsO58+fx3//+1988cUX+Pbbb437TJ48GTt27MAvv/yCc+fO4fXXX8fbb7+NTZs2GfcZMWIE9u/fj3PnzknQIk8gbMzDhw8FAPHw4UPJzmlvrxeAEA0b6oUQQuj1erFnzx4xa9YssWfPHsnex5ZoNBqxYcMGodFo5C6lzJCrTTMyMkRsbKzIyMgo0feVwujRo0W/fv1Mtg0YMEA0atRI6HQ6cf/+fXH16lVhb28vJk+enO/4//u//xMAxOHDh4UQQhw5ckQAEAsWLCjw/e7fv19oLTdu3BBDhw4V5cqVE87OzqJJkybG8xZU58SJE0X79u2Nz9u3by/Gjx8vJk6cKCpUqCA6dOgghg0bJoYMGWJynEajERUqVBDLly8XQgih0+nEnDlzRGBgoHB0dBT169cXkZGRhdYphBDz5s0TTZs2LfC1MWPGiKlTp4rt27eLmjVrmrym0+lEQECAmD9/fr7jZs6cKRo0aGB83qNHD+Hv7y/S0tLy7fukdnxWQ4YMEb169TLZ1qJFC/Haa68Vesy8efNEUFCQybb/+7//E/7+/gXuX7VqVfH111/n296rVy/x0ksvmWwbMGCAGDFihPF5SEiI+Pjjj4UQwvgz2rhxY/Hhhx+aHNexY0cxffr0At//Sf9mzfkMLRVXMBYuXIjAwEA4OjqiRYsWOHr06BP3L87lqZKi0Wiwdu1a7Nu3D4BhHLLgUutE+TRtClSuXPJfTZsWv+azZ8/i4MGDUKvVxm3r1q2DVqvNd6UCAF577TW4urpizZo1AAyXyV1dXfHmm28WeH5PT88Ct6elpaF9+/ZITEzEpk2bcOrUKbz33ntmD3Ffvnw51Go1Dhw4gEWLFmHEiBHYvHkz0tLSjPvs3LkT6enpeOGFFwAAc+fOxYoVK7Bo0SKcO3cOkyZNwosvvog//vij0PfZt28fmhbQ0I8ePUJkZCRefPFFdOnSBQ8fPjT+X2mOe/fuYceOHRg/fjxcXFzyvV5YOwK5fwdP+npSTYcOHUJoaKjJtm7duuHQoUOFHtOyZUvcuHED27ZtgxACt2/fRlRUFHr27Pn0bzaPVq1aYc+ePbh48SIA4NSpU9i/fz969Ohhss+mTZuQmJhoHLl48eJFdO3a1eRczZs3L1bbm0P2USQRERGYPHkyFi1ahBYtWmDBggXo1q0b4uLiClzoK+fy1Ny5c9G7d2+sXr0a/fv3x4kTJ/Dcc8/J8B3kcnJ6gKVLI3D79m2oVCr06dMHDRo0kLUmotIqORlITJS7iqfbsmULXF1dkZ2djaysLCiVSnz33XfG1y9evAgPDw/4+vrmO1atViMoKMj4gXDp0iUEBQXB3t7erBpWr16Nu3fv4tixYyhfvjwAoHr16mZ/LzVq1MAXX3xhfB4cHAwXFxesX78eI0eONL5X37594ebmhqysLMyZMwe7d+9Gy5YtAQBBQUHYv38/fvjhB7Rv377A97l27VqBASM8PBw1atRASEgIAGDo0KH46aef0LZtW7O+j8uXL0MIgdq1a5t1HAD07dsXLVq0eOI+ObMrFyQ5ORmVKlUy2VapUqUC+5PkaN26NVatWoWwsDBkZmYiOzsbffr0wcKFC82qferUqUhNTUXt2rWhUqmg0+nw2WefYcSIEcZ9vv32W7z66quoXLky7OzsoFQq8cMPP6Bdu3Ym5/Lz88O1a9fMen9zyR4w5s+fj3HjxmHs2LEAgEWLFmHr1q1YunQppk6dmm//b775Bt27d8e7774LAPjkk08QHR2N7777zqQjS0mrUuU6OnSIwO3b6XBxcUFYWBgCAgJkq4eotCvkNnOpe9+OHTvi+++/x+PHj/H111/Dzs4OAwcOLNYEecW9mhkTE4NGjRoZw0Vx/buDuZ2dHYYMGYJVq1Zh5MiRePz4MTZu3Ijw8HAAhg/y9PR0dOnSxeQ4jUaDRo0aFfo+GRkZcHR0zLd96dKlePHFF43PX3zxRbRv3x7ffvttgZ1BC/MsV4Xd3NzMei8pxMbGYuLEiZgxYwa6deuGpKQkvPvuu3j99dfx008/Ffk8a9euxapVq7B69WqEhIQgJiYG//nPf+Dn54fRo0cDMASMw4cPY9OmTQgICMCuXbvw1ltvoXLlyiZXXpycnCy+NpCsAUOj0eD48eOYNm2acZtSqURoaGihl5sOHTqEyZMnm2zr1q0bNmzYUOD+WVlZyMrKMj5PTU0FYJiXQqvVPuN3YODoqMXw4avh4JCFSpUqYfDgwXB3d5fs/LYop+3YhtKRq021Wi2EENDr9SYfyk+5E2pRRc0GQgg4OzsjKCgIALBkyRI0atQIixcvxksvvQTAcFXg4cOHuHnzJvz8/EyO12g0uHLlCjp06AC9Xo8aNWpg//79yMrKMusqRs6HdWGhRqFQ5GvfnE6cebc5OzvnO8ewYcPQsWNHJCcnIzo6Gk5OTujatSv0er3x/8vNmzfn+63ewcGh0Hq8vLxw7949k9djY2Nx+PBhHD161GQEg06nw+rVqzFu3DgIIeDm5oYHDx7kO/f9+/fh4eEBvV6P4OBgKBQKnD9/Hv369Su40QqxatUqvPHGG0/cZ+vWrYVeVfHx8UFycrJJfcnJyfDx8Sm0PebMmYNWrVrhnXfeAQA899xz+O6779C+fXt8/PHHBV79yvk3k9e7776L999/H0OGDAEAhISE4OrVq5g7dy5GjhyJjIwMfPDBB1i3bh169eoFIQQCAwMRFxeHefPmoVOnTsZz/f3336hYsWKBNefc2i9oqnBz/v+QNWCkpKRAp9MVeLnpwoULBR5j7uWpuXPnYvbs2fm279q1S7J1ETIy+mDbtp5o3PgM6tVzwv79+yU5LwHR0dFyl1DmlHSb2tnZwcfHB2lpaRYduWAJWq0W2dnZxg9aAJg4cSKmT5+O3r17Gz+M7e3t8fnnn+PTTz81Of6HH37A48eP0adPH6SmpqJv37749ttv8fXXX+P111/P934PHz6Eh4dHvu01atTAkiVLcO3atQLXLXJ3d8fp06dN6jx+/Djs7e2N27Kzs6HRaEz2AQwfdv7+/lixYgWio6PRt29fZGRkICMjA5UrV4aDgwPi4uIKvGLx73PlqFu3br56Fi1ahFatWmHevHkm+65evRpLlixBWFiY8Xs9evRovnMfO3YMNWrUQGpqKuzs7NCpUycsXLgQo0ePztcPo7B2BIAOHTrgzz//LPC1HL6+voV+b02bNsXOnTuNV90BYMeOHWjcuHGhx+TUnPf1nKHOqamp+erX6/XIzMzMd77Hjx8jKyvLZHven9HU1FRotdp8x+p0Omi1WpNtJ0+eREhISIE1azQaZGRk4M8//0R2drbJa+Zc9ZD9FomlTZs2zeSKR2pqKgICAtC1a1e4u7tL8h6jRulw/boHKlcehD59SkW/Waun1WoRHR2NLl26mH2/mgomV5tmZmbixo0bcHV1LfCyeWlmb28POzs7k/8rRo0ahVmzZmHlypV49dVXUbduXfz3v//FlClT4O7ujhdffBH29vbYtGkTZs6cicmTJxt/c+zUqRPeffddTJ8+HX///Tf69+8PPz8/XL58GT/88APatGmDt99+O18dY8eOxYIFCzB69Gh89tln8PX1xcmTJ+Hn54eWLVuie/fu+Pbbb7Fhwwa0bNkSq1atwoULF9CoUSNj7XZ2dlCr1QX+vzdixAgsX74cFy9exJ49e4z7uLu745133sH06dPh4OCANm3a4OHDhzh48CDc3NyMl+X/rXfv3nj11Vfh4uIClUoFrVaLtWvXYtasWXj++edN9vXw8MDChQtx48YN1K1bF2+88QZ69uyJ7777Di+88AJ0Oh3Cw8Nx7NgxLFq0yFjbokWL0LZtW3Tt2hWzZs1C/fr1kZ2djd27dxs7pBbE3d39iX0snmby5Mno2LEjlixZgp49eyIiIgIxMTFYsmSJsbYPPvgAiYmJxmG4/fv3x2uvvYZVq1YZb5F8+OGHaN68OWrVqgXA8KEeGxsLwBAG//77b8THx8PV1dXY36ZPnz74+uuvUbNmTYSEhODkyZP4/vvvMXbsWLi7u8Pd3R3t27fH7NmzUaFCBVSpUgW7du1CREQEvvzyS5O/+yNHjmD27NkF/jxkZmbCyckJ7dq1y/dvtrAQVaCnjjOxoKysLKFSqcT69etNto8aNUr07du3wGMCAgLyDd+ZMWOGqF+/fpHe0xLDVDmkUnpsU+lxmKr5Chr+KYQQc+fOFRUrVhQ3b94UOp1OCCHExo0bRdu2bYWLi4twdHQUTZo0EUuXLi3wvBEREaJdu3bCzc1NuLi4iPr164uPP/74icMrr169KgYOHCjc3d2Fs7OzaNq0qThy5Ijx9RkzZohKlSoJDw8PMWnSJDFhwoR8w1QnTpxY4LljY2MFAFG1alWh1+tNXtPr9WLBggWiVq1awt7eXlSsWFF069ZN/PHHH4XWqtVqhZ+fn9ixY4cQQoioqCihVCpFcnJygfvXqVNHTJo0yTiscvv27aJ169aiXLlyxiG1Bb3frVu3xPjx40XVqlWFWq0W/v7+om/fvuL3338vtDYprF27VtSsWVOo1WoREhIitm7davL66NGjTdpeCMOw1Lp16wonJyfh6+srRowYIW7evGl8PSEhQQDI95X3PKmpqWLixImiSpUqwtHRUQQFBYkPP/xQZGVlGfdJSkoSY8aMEX5+fsLR0VHUqFFDfPnllyZ/rwcPHhSenp4iPT29wO9PqmGqss+D0bx5czFhwgTjc51OJ/z9/cXcuXML3H/IkCGid+/eJttatmz5xDHIeTFgWAe2qfQYMKSV82GYEzDI1HfffSe6du1q1jFsU2kV1p5DhgwRn332WaHHSRUwZL9FMnnyZIwePRpNmzZF8+bNsWDBAjx+/Nh4f2vUqFHw9/fH3LlzARjuf7Zv3x5fffUVevXqhfDwcPz111/48ccf5fw2iIgoj9deew0PHjzAo0ePSnzUBhVOo9GgXr16mDRpksXfS/aAERYWhrt372LGjBlITk5Gw4YNsWPHDmNHzuvXr5ssCtaqVSusXr0a06dPxwcffIAaNWpgw4YNss+BQUREuezs7PDhhx/KXQb9i1qtxvTp00vkvWQPGAAwYcIETJgwocDX9u7dm2/b4MGDMXjwYAtXRURERMXFIQ9EREQkOQYMIioRgmvyEFkFqf6tMmAQkUXlzLlh6WmJiUgaORPi/XsWT3OVij4YRFR2qVQqeHp64s6dOwAM01UrFAqZq3p2er0eGo0GmZmZJh3RqfjYptIqTnvq9XrcvXsXzs7OsLN7tojAgEFEFufzzwpjOSGjLBBCICMjA05OTmUiMJUGbFNpFbc9lUolqlSp8sx/BwwYRGRxCoUCvr6+8Pb2LjML2Gm1Wvz5559o164dp7OXCNtUWsVtT7VaLckVJAYMIioxKpXqme/rlhYqlQrZ2dlwdHTkh6FE2KbSkrs9eZOLiIiIJMeAQURERJJjwCAiIiLJ2VwfjJwJRMxa0/4ptFot0tPTkZqayvuGEmGbSo9tKi22p/TYptKyRHvmfHYWZTIumwsYjx49AgAEBATIXAkREZF1evToETw8PJ64j0LY2Py9er0et27dgpubm2TjrFNTUxEQEIAbN27A3d1dknPaOrap9Nim0mJ7So9tKi1LtKcQAo8ePYKfn99Th7La3BUMpVKJypUrW+Tc7u7u/EchMbap9Nim0mJ7So9tKi2p2/NpVy5ysJMnERERSY4Bg4iIiCTHgCEBBwcHzJw5Ew4ODnKXUmawTaXHNpUW21N6bFNpyd2eNtfJk4iIiCyPVzCIiIhIcgwYREREJDkGDCIiIpIcAwYRERFJjgGjiBYuXIjAwEA4OjqiRYsWOHr06BP3j4yMRO3ateHo6Ih69eph27ZtJVSp9TCnTRcvXoy2bduiXLlyKFeuHEJDQ5/6d2BrzP0ZzREeHg6FQoH+/ftbtkArZG6bPnjwAOPHj4evry8cHBxQs2ZN/tvPw9z2XLBgAWrVqgUnJycEBARg0qRJyMzMLKFqS78///wTffr0gZ+fHxQKBTZs2PDUY/bu3YvGjRvDwcEB1atXx7JlyyxXoKCnCg8PF2q1WixdulScO3dOjBs3Tnh6eorbt28XuP+BAweESqUSX3zxhYiNjRXTp08X9vb24syZMyVceellbpsOHz5cLFy4UJw8eVKcP39ejBkzRnh4eIibN2+WcOWlk7ntmSMhIUH4+/uLtm3bin79+pVMsVbC3DbNysoSTZs2FT179hT79+8XCQkJYu/evSImJqaEKy+dzG3PVatWCQcHB7Fq1SqRkJAgdu7cKXx9fcWkSZNKuPLSa9u2beLDDz8Uv/76qwAg1q9f/8T94+PjhbOzs5g8ebKIjY0V3377rVCpVGLHjh0WqY8BowiaN28uxo8fb3yu0+mEn5+fmDt3boH7DxkyRPTq1ctkW4sWLcRrr71m0Tqtiblt+m/Z2dnCzc1NLF++3FIlWpXitGd2drZo1aqVWLJkiRg9ejQDxr+Y26bff/+9CAoKEhqNpqRKtCrmtuf48eNFp06dTLZNnjxZtG7d2qJ1WquiBIz33ntPhISEmGwLCwsT3bp1s0hNvEXyFBqNBsePH0doaKhxm1KpRGhoKA4dOlTgMYcOHTLZHwC6detW6P62pjht+m/p6enQarUoX768pcq0GsVtz48//hje3t54+eWXS6JMq1KcNt20aRNatmyJ8ePHo1KlSnjuuecwZ84c6HS6kiq71CpOe7Zq1QrHjx833kaJj4/Htm3b0LNnzxKpuSwq6c8mm1vszFwpKSnQ6XSoVKmSyfZKlSrhwoULBR6TnJxc4P7JyckWq9OaFKdN/+3999+Hn59fvn8stqg47bl//3789NNPiImJKYEKrU9x2jQ+Ph6//fYbRowYgW3btuHy5ct48803odVqMXPmzJIou9QqTnsOHz4cKSkpaNOmDYQQyM7Oxuuvv44PPvigJEoukwr7bEpNTUVGRgacnJwkfT9ewSCr8/nnnyM8PBzr16+Ho6Oj3OVYnUePHmHkyJFYvHgxvLy85C6nzNDr9fD29saPP/6IJk2aICwsDB9++CEWLVokd2lWae/evZgzZw7+97//4cSJE/j111+xdetWfPLJJ3KXRkXEKxhP4eXlBZVKhdu3b5tsv337Nnx8fAo8xsfHx6z9bU1x2jTHl19+ic8//xy7d+9G/fr1LVmm1TC3Pa9cuYKrV6+iT58+xm16vR4AYGdnh7i4OAQHB1u26FKuOD+jvr6+sLe3h0qlMm6rU6cOkpOTodFooFarLVpzaVac9vzoo48wcuRIvPLKKwCAevXq4fHjx3j11Vfx4YcfQqnk78fmKuyzyd3dXfKrFwCvYDyVWq1GkyZNsGfPHuM2vV6PPXv2oGXLlgUe07JlS5P9ASA6OrrQ/W1NcdoUAL744gt88skn2LFjB5o2bVoSpVoFc9uzdu3aOHPmDGJiYoxfffv2RceOHRETE4OAgICSLL9UKs7PaOvWrXH58mVjWAOAixcvwtfX16bDBVC89kxPT88XInLCm+ASWsVS4p9NFuk6WsaEh4cLBwcHsWzZMhEbGyteffVV4enpKZKTk4UQQowcOVJMnTrVuP+BAweEnZ2d+PLLL8X58+fFzJkzOUz1X8xt088//1yo1WoRFRUlkpKSjF+PHj2S61soVcxtz3/jKJL8zG3T69evCzc3NzFhwgQRFxcntmzZIry9vcWnn34q17dQqpjbnjNnzhRubm5izZo1Ij4+XuzatUsEBweLIUOGyPUtlDqPHj0SJ0+eFCdPnhQAxPz588XJkyfFtWvXhBBCTJ06VYwcOdK4f84w1XfffVecP39eLFy4kMNUS4Nvv/1WVKlSRajVatG8eXNx+PBh42vt27cXo0ePNtl/7dq1ombNmkKtVouQkBCxdevWEq649DOnTatWrSoA5PuaOXNmyRdeSpn7M5oXA0bBzG3TgwcPihYtWggHBwcRFBQkPvvsM5GdnV3CVZde5rSnVqsVs2bNEsHBwcLR0VEEBASIN998U9y/f7/kCy+lfv/99wL/X8xpx9GjR4v27dvnO6Zhw4ZCrVaLoKAg8fPPP1usPi7XTkRERJJjHwwiIiKSHAMGERERSY4Bg4iIiCTHgEFERESSY8AgIiIiyTFgEBERkeQYMIiIiEhyDBhEREQkOQYMojJm2bJl8PT0lLuMYlMoFNiwYcMT9xkzZgz69+9fIvUQUfEwYBCVQmPGjIFCocj3dfnyZblLw7Jly4z1KJVKVK5cGWPHjsWdO3ckOX9SUhJ69OgBALh69SoUCgViYmJM9vnmm2+wbNkySd6vMLNmzTJ+nyqVCgEBAXj11Vdx7949s87DMES2isu1E5VS3bt3x88//2yyrWLFijJVY8rd3R1xcXHQ6/U4deoUxo4di1u3bmHnzp3PfO7Clu/Oy8PD45nfpyhCQkKwe/du6HQ6nD9/Hi+99BIePnyIiIiIEnl/ImvGKxhEpZSDgwN8fHxMvlQqFebPn4969erBxcUFAQEBePPNN5GWllboeU6dOoWOHTvCzc0N7u7uaNKkCf766y/j6/v370fbtm3h5OSEgIAAvP3223j8+PETa1MoFPDx8YGfnx969OiBt99+G7t370ZGRgb0ej0+/vhjVK5cGQ4ODmjYsCF27NhhPFaj0WDChAnw9fWFo6Mjqlatirlz55qcO+cWSbVq1QAAjRo1gkKhQIcOHQCYXhX48ccf4efnZ7JMOgD069cPL730kvH5xo0b0bhxYzg6OiIoKAizZ89Gdnb2E79POzs7+Pj4wN/fH6GhoRg8eDCio6ONr+t0Orz88suoVq0anJycUKtWLXzzzTfG12fNmoXly5dj48aNxqshe/fuBQDcuHEDQ4YMgaenJ8qXL49+/frh6tWrT6yHyJowYBBZGaVSif/7v//DuXPnsHz5cvz222947733Ct1/xIgRqFy5Mo4dO4bjx49j6tSpsLe3BwBcuXIF3bt3x8CBA3H69GlERERg//79mDBhglk1OTk5Qa/XIzs7G9988w2++uorfPnllzh9+jS6deuGvn374tKlSwCA//u//8OmTZuwdu1axMXFYdWqVQgMDCzwvEePHgUA7N69G0lJSfj111/z7TN48GD8/fff+P33343b7t27hx07dmDEiBEAgH379mHUqFGYOHEiYmNj8cMPP2DZsmX47LPPivw9Xr16FTt37oRarTZu0+v1qFy5MiIjIxEbG4sZM2bggw8+wNq1awEAU6ZMwZAhQ9C9e3ckJSUhKSkJrVq1glarRbdu3eDm5oZ9+/bhwIEDcHV1Rffu3aHRaIpcE1GpZrF1Womo2EaPHi1UKpVwcXExfg0aNKjAfSMjI0WFChWMz3/++Wfh4eFhfO7m5iaWLVtW4LEvv/yyePXVV0227du3TyiVSpGRkVHgMf8+/8WLF0XNmjVF06ZNhRBC+Pn5ic8++8zkmGbNmok333xTCCHEW2+9JTp16iT0en2B5wcg1q9fL4QQIiEhQQAQJ0+eNNnn38vL9+vXT7z00kvG5z/88IPw8/MTOp1OCCFE586dxZw5c0zOsXLlSuHr61tgDUIIMXPmTKFUKoWLi4twdHQ0LoU9f/78Qo8RQojx48eLgQMHFlprznvXqlXLpA2ysrKEk5OT2Llz5xPPT2Qt2AeDqJTq2LEjvv/+e+NzFxcXAIbf5ufOnYsLFy4gNTUV2dnZyMzMRHp6OpydnfOdZ/LkyXjllVewcuVK42X+4OBgAIbbJ6dPn8aqVauM+wshoNfrkZCQgDp16hRY28OHD+Hq6gq9Xo/MzEy0adMGS5YsQWpqKm7duoXWrVub7N+6dWucOnUKgOH2RpcuXVCrVi10794dvXv3RteuXZ+prUaMGIFx48bhf//7HxwcHLBq1SoMHToUSqXS+H0eOHDA5IqFTqd7YrsBQK1atbBp0yZkZmbil19+QUxMDN566y2TfRYuXIilS5fi+vXryMjIgEajQcOGDZ9Y76lTp3D58mW4ubmZbM/MzMSVK1eK0QJEpQ8DBlEp5eLigurVq5tsu3r1Knr37o033ngDn332GcqXL4/9+/fj5ZdfhkajKfCDctasWRg+fDi2bt2K7du3Y+bMmQgPD8cLL7yAtLQ0vPbaa3j77bfzHVelSpVCa3Nzc8OJEyegVCrh6+sLJycnAEBqaupTv6/GjRsjISEB27dvx+7duzFkyBCEhoYiKirqqccWpk+fPhBCYOvWrWjWrBn27duHr7/+2vh6WloaZs+ejQEDBuQ71tHRsdDzqtVq49/B559/jl69emH27Nn45JNPAADh4eGYMmUKvvrqK7Rs2RJubm6YN28ejhw58sR609LS0KRJE5Ngl6O0dOQlelYMGERW5Pjx49Dr9fjqq6+Mv53n3O9/kpo1a6JmzZqYNGkShg0bhp9//hkvvPACGjdujNjY2HxB5mmUSmWBx7i7u8PPzw8HDhxA+/btjdsPHDiA5s2bm+wXFhaGsLAwDBo0CN27d8e9e/dQvnx5k/Pl9HfQ6XRPrMfR0REDBgzAqlWrcPnyZdSqVQuNGzc2vt64cWPExcWZ/X3+2/Tp09GpUye88cYbxu+zVatWePPNN437/PsKhFqtzld/48aNERERAW9vb7i7uz9TTUSlFTt5ElmR6tWrQ6vV4ttvv0V8fDxWrlyJRYsWFbp/RkYGJkyYgL179+LatWs4cOAAjh07Zrz18f777+PgwYOYMGECYmJicOnSJWzcuNHsTp55vfvuu/jvf/+LiIgIxMXFYerUqYiJicHEiRMBAPPnz8eaNWtw4cIFXLx4EZGRkfDx8SlwcjBvb284OTlhx44duH37Nh4+fFjo+44YMQJbt27F0qVLjZ07c8yYMQMrVqzA7Nmzce7cOZw/fx7h4eGYPn26Wd9by5YtUb9+fcyZMwcAUKNGDfz111/YuXMnLl68iI8++gjHjh0zOSYwMBCnT59GXFwcUlJSoNVqMWLECHh5eaFfv37Yt28fEhISsHfvXrz99tu4efOmWTURlVpydwIhovwK6hiYY/78+cLX11c4OTmJbt26iRUrVggA4v79+0II006YWVlZYujQoSIgIECo1Wrh5+cnJkyYYNKB8+jRo6JLly7C1dVVuLi4iPr16+frpJnXvzt5/ptOpxOzZs0S/v7+wt7eXjRo0EBs377d+PqPP/4oGjZsKFxcXIS7u7vo3LmzOHHihPF15OnkKYQQixcvFgEBAUKpVIr27dsX2j46nU74+voKAOLKlSv56tqxY4do1aqVcHJyEu7u7qJ58+bixx9/LPT7mDlzpmjQoEG+7WvWrBEODg7i+vXrIjMzU4wZM0Z4eHgIT09P8cYbb4ipU6eaHHfnzh1j+wIQv//+uxBCiKSkJDFq1Cjh5eUlHBwcRFBQkBg3bpx4+PBhoTURWROFEELIG3GIiIiorOEtEiIiIpIcAwYRERFJjgGDiIiIJMeAQURERJJjwCAiIiLJMWAQERGR5BgwiIiISHIMGERERCQ5BgwiIiKSHAMGERERSY4Bg4iIiCT3/6FE2DY5QwuaAAAAAElFTkSuQmCC",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# ROC Curve\n",
"fpr, tpr, _ = roc_curve(y_test_lasso, y_pred_proba_lasso)\n",
"roc_auc = auc(fpr, tpr)\n",
"\n",
"plt.figure(figsize=(6, 5))\n",
"plt.plot(fpr, tpr, color='blue', lw=2, label=f'ROC curve (AUC = {roc_auc:.4f})')\n",
"plt.plot([0, 1], [0, 1], color='gray', linestyle='--')\n",
"plt.xlabel('False Positive Rate')\n",
"plt.ylabel('True Positive Rate')\n",
"plt.title('ROC Curve')\n",
"plt.legend(loc='lower right')\n",
"plt.grid(True)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Interpreting the ROC Curve\n",
"\n",
"The **Receiver Operating Characteristic (ROC) curve** shows how well the model distinguishes between the positive and negative classes across all decision thresholds.\n",
"\n",
"A quick reminder of the definitions:\n",
"* True Positive Rate (TPR) = Recall\n",
"* False Positive Rate (FPR) = Proportion of negatives wrongly classified as positives\n",
"\n",
"What we display in this plot is:\n",
"* The x-axis is False Positive Rate\n",
"* The y-axis is True Positive Rate\n",
"\n",
"The curve shows how TPR and FPR change as the threshold varies\n",
"\n",
"It's important to note that:\n",
"* A model with no skill will produce a diagonal line (AUC = 0.5)\n",
"* A model with perfect discrimination will hug the top-left corner (AUC = 1.0)\n",
"\n",
"The Area Under the Curve (ROC AUC) gives a single performance score:\n",
"* Closer to 1 means better at ranking positive cases higher than negative ones\n",
"\n",
"**Important!**\n",
"\n",
"While useful, the ROC curve can sometimes overestimate performance when the dataset is imbalanced, because it includes negatives (which dominate in our case, around 99%!). That’s why we also MUST check the Precision-Recall curve."
]
},
{
"cell_type": "code",
"execution_count": 109,
"id": "6790d41d",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhgAAAHWCAYAAAA1jvBJAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAWj5JREFUeJzt3XdYU/f+B/B3CCEE2bIEqbj3xMrFhVoUxVHb3mrVKtrWUeXWirZ1o+1V3Np6XbWutlqstlpbJ6LUUa2KYq1742I42COBfH9/+CM1EpRxQhjv1/PwkPPNOSeffAjy9kyZEEKAiIiISEJmpi6AiIiIKh4GDCIiIpIcAwYRERFJjgGDiIiIJMeAQURERJJjwCAiIiLJMWAQERGR5BgwiIiISHIMGERERCQ5Bgyicmro0KHw8vIq0jJRUVGQyWSIiooySk3lXadOndCpUyfd9K1btyCTybB+/XqT1URUXjFgEBXS+vXrIZPJdF+WlpaoV68egoODER8fb+ryyry8P9Z5X2ZmZnB0dESPHj1w7NgxU5cnifj4eEyYMAENGjSAlZUVqlSpAm9vb/z3v/9FUlKSqcsjKlXmpi6AqLz5/PPPUbNmTWRlZeHIkSNYsWIFdu3ahb///htWVlalVsfq1auh1WqLtEzHjh2RmZkJCwsLI1X1cgMGDEBgYCByc3Nx5coVLF++HJ07d8bJkyfRtGlTk9VVUidPnkRgYCDS0tLw7rvvwtvbGwBw6tQpzJkzB4cOHcK+fftMXCVR6WHAICqiHj16oHXr1gCADz74AFWrVsWiRYvwyy+/YMCAAQaXSU9PR5UqVSStQ6FQFHkZMzMzWFpaSlpHUbVq1QrvvvuubrpDhw7o0aMHVqxYgeXLl5uwsuJLSkrCG2+8AblcjjNnzqBBgwZ6z8+aNQurV6+W5LWM8VkiMgbuIiEqoS5dugAAbt68CeDpsRHW1ta4fv06AgMDYWNjg0GDBgEAtFotlixZgsaNG8PS0hKurq4YOXIknjx5km+9u3fvhp+fH2xsbGBra4tXX30VmzZt0j1v6BiM8PBweHt765Zp2rQpvvzyS93zBR2DsWXLFnh7e0OlUsHJyQnvvvsu7t27pzdP3vu6d+8e+vbtC2trazg7O2PChAnIzc0tdv86dOgAALh+/breeFJSEj7++GN4enpCqVSiTp06mDt3br6tNlqtFl9++SWaNm0KS0tLODs7o3v37jh16pRunnXr1qFLly5wcXGBUqlEo0aNsGLFimLX/LxVq1bh3r17WLRoUb5wAQCurq6YOnWqblomk2HGjBn55vPy8sLQoUN103m75X7//XeMHj0aLi4uqF69OrZu3aobN1SLTCbD33//rRu7dOkS/v3vf8PR0RGWlpZo3bo1duzYUbI3TfQS3IJBVEJ5fxirVq2qG8vJyUFAQADat2+PBQsW6HadjBw5EuvXr8ewYcPw0Ucf4ebNm/jf//6HM2fO4OjRo7qtEuvXr8d7772Hxo0bY9KkSbC3t8eZM2ewZ88eDBw40GAdERERGDBgAF577TXMnTsXAHDx4kUcPXoUY8eOLbD+vHpeffVVhIWFIT4+Hl9++SWOHj2KM2fOwN7eXjdvbm4uAgIC4OPjgwULFmD//v1YuHAhateujQ8//LBY/bt16xYAwMHBQTeWkZEBPz8/3Lt3DyNHjsQrr7yCP/74A5MmTcKDBw+wZMkS3bzvv/8+1q9fjx49euCDDz5ATk4ODh8+jOPHj+u2NK1YsQKNGzdGnz59YG5ujl9//RWjR4+GVqvFmDFjilX3s3bs2AGVSoV///vfJV6XIaNHj4azszOmT5+O9PR09OzZE9bW1vjxxx/h5+enN+/mzZvRuHFjNGnSBABw/vx5tGvXDh4eHpg4cSKqVKmCH3/8EX379sVPP/2EN954wyg1E0EQUaGsW7dOABD79+8XiYmJ4s6dOyI8PFxUrVpVqFQqcffuXSGEEEFBQQKAmDhxot7yhw8fFgDExo0b9cb37NmjN56UlCRsbGyEj4+PyMzM1JtXq9XqHgcFBYkaNWropseOHStsbW1FTk5Oge/h4MGDAoA4ePCgEEIItVotXFxcRJMmTfRe67fffhMAxPTp0/VeD4D4/PPP9dbZsmVL4e3tXeBr5rl586YAIGbOnCkSExNFXFycOHz4sHj11VcFALFlyxbdvF988YWoUqWKuHLlit46Jk6cKORyuYiNjRVCCHHgwAEBQHz00Uf5Xu/ZXmVkZOR7PiAgQNSqVUtvzM/PT/j5+eWred26dS98bw4ODqJ58+YvnOdZAERoaGi+8Ro1aoigoCDddN5nrn379vl+rgMGDBAuLi564w8ePBBmZmZ6P6PXXntNNG3aVGRlZenGtFqtaNu2rahbt26hayYqKu4iISoif39/ODs7w9PTE++88w6sra2xbds2eHh46M33/P/ot2zZAjs7O3Tt2hUPHz7UfXl7e8Pa2hoHDx4E8HRLRGpqKiZOnJjveAmZTFZgXfb29khPT0dERESh38upU6eQkJCA0aNH671Wz5490aBBA+zcuTPfMqNGjdKb7tChA27cuFHo1wwNDYWzszPc3NzQoUMHXLx4EQsXLtT73/+WLVvQoUMHODg46PXK398fubm5OHToEADgp59+gkwmQ2hoaL7XebZXKpVK9zg5ORkPHz6En58fbty4geTk5ELXXpCUlBTY2NiUeD0FGT58OORyud5Y//79kZCQoLe7a+vWrdBqtejfvz8A4PHjxzhw4AD69euH1NRUXR8fPXqEgIAAXL16Nd+uMCKpcBcJUREtW7YM9erVg7m5OVxdXVG/fn2YmelndXNzc1SvXl1v7OrVq0hOToaLi4vB9SYkJAD4Z5dL3ibuwho9ejR+/PFH9OjRAx4eHujWrRv69euH7t27F7jM7du3AQD169fP91yDBg1w5MgRvbG8Yxye5eDgoHcMSWJiot4xGdbW1rC2ttZNjxgxAm+//TaysrJw4MABfPXVV/mO4bh69Sr++uuvfK+V59leubu7w9HRscD3CABHjx5FaGgojh07hoyMDL3nkpOTYWdn98LlX8bW1hapqaklWseL1KxZM99Y9+7dYWdnh82bN+O1114D8HT3SIsWLVCvXj0AwLVr1yCEwLRp0zBt2jSD605ISMgXjomkwIBBVERt2rTR7dsviFKpzBc6tFotXFxcsHHjRoPLFPTHtLBcXFwQExODvXv3Yvfu3di9ezfWrVuHIUOGYMOGDSVad57n/xdtyKuvvqoLLsDTLRbPHtBYt25d+Pv7AwB69eoFuVyOiRMnonPnzrq+arVadO3aFZ9++qnB18j7A1oY169fx2uvvYYGDRpg0aJF8PT0hIWFBXbt2oXFixcX+VRfQxo0aICYmBio1eoSnQJc0MGyz26ByaNUKtG3b19s27YNy5cvR3x8PI4ePYrZs2fr5sl7bxMmTEBAQIDBddepU6fY9RK9CAMGUSmpXbs29u/fj3bt2hn8g/HsfADw999/F/kffwsLC/Tu3Ru9e/eGVqvF6NGjsWrVKkybNs3gumrUqAEAuHz5su5smDyXL1/WPV8UGzduRGZmpm66Vq1aL5x/ypQpWL16NaZOnYo9e/YAeNqDtLQ0XRApSO3atbF37148fvy4wK0Yv/76K7Kzs7Fjxw688soruvG8XVJS6N27N44dO4affvqpwFOVn+Xg4JDvwltqtRoPHjwo0uv2798fGzZsQGRkJC5evAghhG73CPBP7xUKxUt7SSQ1HoNBVEr69euH3NxcfPHFF/mey8nJ0f3B6datG2xsbBAWFoasrCy9+YQQBa7/0aNHetNmZmZo1qwZACA7O9vgMq1bt4aLiwtWrlypN8/u3btx8eJF9OzZs1Dv7Vnt2rWDv7+/7utlAcPe3h4jR47E3r17ERMTA+Bpr44dO4a9e/fmmz8pKQk5OTkAgLfeegtCCMycOTPffHm9ytvq8mzvkpOTsW7duiK/t4KMGjUK1apVw/jx43HlypV8zyckJOC///2vbrp27dq640jyfP3110U+3dff3x+Ojo7YvHkzNm/ejDZt2ujtTnFxcUGnTp2watUqg+ElMTGxSK9HVBTcgkFUSvz8/DBy5EiEhYUhJiYG3bp1g0KhwNWrV7FlyxZ8+eWX+Pe//w1bW1ssXrwYH3zwAV599VUMHDgQDg4OOHv2LDIyMgrc3fHBBx/g8ePH6NKlC6pXr47bt29j6dKlaNGiBRo2bGhwGYVCgblz52LYsGHw8/PDgAEDdKepenl5Ydy4ccZsic7YsWOxZMkSzJkzB+Hh4fjkk0+wY8cO9OrVC0OHDoW3tzfS09Nx7tw5bN26Fbdu3YKTkxM6d+6MwYMH46uvvsLVq1fRvXt3aLVaHD58GJ07d0ZwcDC6deum27IzcuRIpKWlYfXq1XBxcSnyFoOCODg4YNu2bQgMDESLFi30ruR5+vRp/PDDD/D19dXN/8EHH2DUqFF466230LVrV5w9exZ79+6Fk5NTkV5XoVDgzTffRHh4ONLT07FgwYJ88yxbtgzt27dH06ZNMXz4cNSqVQvx8fE4duwY7t69i7Nnz5bszRMVxJSnsBCVJ3mnDJ48efKF8wUFBYkqVaoU+PzXX38tvL29hUqlEjY2NqJp06bi008/Fffv39ebb8eOHaJt27ZCpVIJW1tb0aZNG/HDDz/ovc6zp6lu3bpVdOvWTbi4uAgLCwvxyiuviJEjR4oHDx7o5nn+NNU8mzdvFi1bthRKpVI4OjqKQYMG6U67fdn7Cg0NFYX5pyTvlM/58+cbfH7o0KFCLpeLa9euCSGESE1NFZMmTRJ16tQRFhYWwsnJSbRt21YsWLBAqNVq3XI5OTli/vz5okGDBsLCwkI4OzuLHj16iOjoaL1eNmvWTFhaWgovLy8xd+5csXbtWgFA3Lx5UzdfcU9TzXP//n0xbtw4Ua9ePWFpaSmsrKyEt7e3mDVrlkhOTtbNl5ubKz777DPh5OQkrKysREBAgLh27VqBp6m+6DMXEREhAAiZTCbu3LljcJ7r16+LIUOGCDc3N6FQKISHh4fo1auX2Lp1a6HeF1FxyIR4wTZXIiIiomLgMRhEREQkOQYMIiIikhwDBhEREUmOAYOIiIgkx4BBREREkmPAICIiIslVugttabVa3L9/HzY2Ni+8MyURERHpE0IgNTUV7u7u+e639LxKFzDu378PT09PU5dBRERUbt25cyffHaOfV+kCho2NDYCnzbG1tZVknRqNBvv27dNd+plKjj2VHnsqLfZTeuyptIzRz5SUFHh6eur+lr5IpQsYebtFbG1tJQ0YVlZWsLW15S+FRNhT6bGn0mI/pceeSsuY/SzMIQY8yJOIiIgkx4BBREREkmPAICIiIskxYBAREZHkGDCIiIhIcgwYREREJDkGDCIiIpIcAwYRERFJjgGDiIiIJMeAQURERJIzacA4dOgQevfuDXd3d8hkMmzfvv2ly0RFRaFVq1ZQKpWoU6cO1q9fb/Q6iYiIqGhMGjDS09PRvHlzLFu2rFDz37x5Ez179kTnzp0RExODjz/+GB988AH27t1r5EqJiIioKEx6s7MePXqgR48ehZ5/5cqVqFmzJhYuXAgAaNiwIY4cOYLFixcjICDAWGW+1IXEC4jNjMX5xPNQmBvvBj1mMjPUd6oPMxn3bBERUdlWru6meuzYMfj7++uNBQQE4OOPPy5wmezsbGRnZ+umU1JSADy9y5xGo5GkrlfXvAqNVgNclmR1L9TctTn+fO/PCh8y8n42Uv2MiD2VGvspPfZUWsboZ1HWVa4CRlxcHFxdXfXGXF1dkZKSgszMTKhUqnzLhIWFYebMmfnG9+3bBysrK0nqEkJIsp7COBt/Fqu3rYanpWepvaYpRUREmLqECoc9lRb7KT32VFpS9jMjI6PQ85argFEckyZNQkhIiG46JSUFnp6e6NatG2xtbSV5jSHaIYi9GwsPDw+YmRlny8KRO0dw9fFVAED7Du3R2LmxUV6nrNBoNIiIiEDXrl2hUBhvt1Nlwp5Ki/2UHnsqLWP0M28vQGGUq4Dh5uaG+Ph4vbH4+HjY2toa3HoBAEqlEkqlMt+4QqGQrOEre63Erl27EBgYaLRfig92fKALGApz6Wov66T8OdFT7Km02E/psafSkrKfRVlPudqR7+vri8jISL2xiIgI+Pr6mqgiIiIiMsSkASMtLQ0xMTGIiYkB8PQ01JiYGMTGxgJ4untjyJAhuvlHjRqFGzdu4NNPP8WlS5ewfPly/Pjjjxg3bpwpyiciIqICmDRgnDp1Ci1btkTLli0BACEhIWjZsiWmT58OAHjw4IEubABAzZo1sXPnTkRERKB58+ZYuHAhvvnmG5OeokpERET5mfQYjE6dOr3wDAxDV+ns1KkTzpw5Y8SqiIiIqKTK1TEYREREVD4wYBAREZHkGDCIiIhIcgwYREREJDkGDCIiIpIcAwYRERFJjgGDiIiIJMeAQURERJJjwCAiIiLJMWAQERGR5BgwiIiISHIMGERERCQ5BgwiIiKSHAMGERERSY4Bg4iIiCTHgEFERESSY8AgIiIiyTFgEBERkeQYMIiIiEhyDBhEREQkOQYMIiIikhwDBhEREUmOAYOIiIgkx4BBREREkmPAICIiIskxYBAREZHkGDCIiIhIcgwYREREJDkGDCIiIpIcAwYRERFJjgGDiIiIJMeAQURERJJjwCAiIiLJMWAQERGR5BgwiIiISHIMGERERCQ5BgwiIiKSHAMGERERSY4Bg4iIiCTHgEFERESSY8AgIiIiyTFgEBERkeQYMIiIiEhyDBhEREQkOQYMIiIikhwDBhEREUmOAYOIiIgkx4BBREREkmPAICIiIskxYBAREZHkGDCIiIhIcgwYREREJDkGDCIiIpIcAwYRERFJjgGDiIiIJMeAQURERJJjwCAiIiLJMWAQERGR5BgwiIiISHIMGERERCQ5kweMZcuWwcvLC5aWlvDx8cGJEydeOP+SJUtQv359qFQqeHp6Yty4ccjKyiqlaomIiKgwTBowNm/ejJCQEISGhuL06dNo3rw5AgICkJCQYHD+TZs2YeLEiQgNDcXFixexZs0abN68GZMnTy7lyomIiOhFTBowFi1ahOHDh2PYsGFo1KgRVq5cCSsrK6xdu9bg/H/88QfatWuHgQMHwsvLC926dcOAAQNeutWjsrifeh/H7x6HEMLUpRARUSVnbqoXVqvViI6OxqRJk3RjZmZm8Pf3x7Fjxwwu07ZtW3z//fc4ceIE2rRpgxs3bmDXrl0YPHhwga+TnZ2N7Oxs3XRKSgoAQKPRQKPRSPJe8tYj1foM0Wq1/7xeTv7aE9IT0Gp1KyRkJOB/3f+HEa1GGK2W0lAaPa1s2FNpsZ/SY0+lZYx+FmVdJgsYDx8+RG5uLlxdXfXGXV1dcenSJYPLDBw4EA8fPkT79u0hhEBOTg5GjRr1wl0kYWFhmDlzZr7xffv2wcrKqmRv4jkRERGSru9Zd+7c0T0+fOgwbqtu6z3/3f3vkJDxdNfSzyd+RvW46karpTQZs6eVFXsqLfZTeuyptKTsZ0ZGRqHnNVnAKI6oqCjMnj0by5cvh4+PD65du4axY8fiiy++wLRp0wwuM2nSJISEhOimU1JS4OnpiW7dusHW1laSujQaDSIiItC1a1coFApJ1vm8X3b+Ajx++rhDxw5o7NxY91xSVhKGLBuim65evToCAwONUkdpKY2eVjbsqbTYT+mxp9IyRj/z9gIUhskChpOTE+RyOeLj4/XG4+Pj4ebmZnCZadOmYfDgwfjggw8AAE2bNkV6ejpGjBiBKVOmwMws/yElSqUSSqUy37hCoZD8A2yMdeZ59r0pzPVfZ/Xx1UjJTtGbt6L8chqzp5UVeyot9lN67Km0pOxnUdZjsoM8LSws4O3tjcjISN2YVqtFZGQkfH19DS6TkZGRL0TI5XIAqLQHNmZoMrD4+GJTl0FERKTHpLtIQkJCEBQUhNatW6NNmzZYsmQJ0tPTMWzYMADAkCFD4OHhgbCwMABA7969sWjRIrRs2VK3i2TatGno3bu3LmhUNt+c/gYPMx6augwiIiI9Jg0Y/fv3R2JiIqZPn464uDi0aNECe/bs0R34GRsbq7fFYurUqZDJZJg6dSru3bsHZ2dn9O7dG7NmzTLVWzApda4a8/+Yb+oyiIiI8jH5QZ7BwcEIDg42+FxUVJTetLm5OUJDQxEaGloKlZV93539DndT7gIA6letj8uPLpu4IiIioqdMfqlwKp5cbS7mHJ2jm57YfqIJqyEiItLHgFFObb2wFdceXwMAdKnZBf+q/i8TV0RERPQPBoxySEBg9pHZuunJ7XkvFiIiKlsYMMqhnVd24q/4vwAAPh4+6FKzi4krIiIi0seAUQ4tOr5I93hyh8mQyWQmrIaIiCg/BoxyKCH96T1Hmrg0Qa96vUxcDRERUX4MGOXYpPaTYCbjj5CIiMoe/nUqp2o71Ea/xv1MXQYREZFBDBjl1GftPoO5mcmvk0ZERGQQA0Y55G7jjiHNh7x8xiISQmB9zHp8/vvnSFenS75+IiKqPPhf4HLi2WMtJvhOgNI8/y3oS2rjuY0Y9svTG83ZKm3x8b8+lvw1iIiocuAWjHLi9fqvQ2GmQDPXZhjhPULy9T9IfYCPdn+km45Li5P8NYiIqPLgFoxyome9nkj8JBFVLKpIfuyFEAIjfxuJJ1lPJF0vERFVXgwY5YidpZ1R1vv9X9/j1yu/GmXdRERUOXEXSSV3P/U+Ptrz0ctnJCIiKgIGjEosb9dIUlYSAKCOYx3TFkRERBUGA0Yl9u3Zb/Hbld8AAK5VXDHXf66JKyIiooqCx2BUUvdS7mHsnrG66VW9VsHe0t50BRERUYXCLRiVkBACI34bgeTsZADAoKaD8HqD101cFRERVSQMGJXQhrMbsOvqLgCAm7UbvurxlYkrIiKiioYBo5K5l3IPH+/5WDe9qtcqOKocTVcQERFVSAwYlYgQAsN/Ha7bNfJus3fRp34fE1dFREQVEQNGJfLt2W+x+9puAEA162r4svuXJq6IiIgqKgaMSiI7JxtTDkzRTX/d+2vuGiEiIqNhwKgkvjn9De6l3gMA9K7XG73q9TJxRUREVJExYFQCWTlZCDsSppue0WmG6YohIqJKgQGjElhzeo1u60Wf+n3QqlorE1dEREQVHQNGBZeVk4XZR2brpmf4zTBdMUREVGkwYFRw35z+BvdT7wMAXq//OlpWa2niioiIqDJgwKjAnj/2ItQv1ITVEBFRZcKAUYGtjl6t23rRt0Ffbr0gIqJSw4BRQXHrBRERmRIDRgX1dfTXeJD2AADwRoM30MKthWkLIiKiSoUBowLK1GRizpE5uunpftNNWA0REVVG5qYugKS34/IOZOZkAuDWCyIiMg1uwaiA8sIFwGMviIjINBgwKrA3G76J5m7NTV0GERFVQgwYFRi3XhARkakwYFRQbzV8C81cm5m6DCIiqqQYMCoonjlCRESmxIBRQThZOcFM9vTH+e9G/+bWCyIiMimeplpBOFk54bs3vkP0/WhM7TjV1OUQEVElx4BRgQxsOhADmw40dRlERETcRUJERETSY8AgIiIiyTFgEBERkeQYMIiIiEhyDBhEREQkOQYMIiIikhwDBhEREUmOAYOIiIgkx4BBREREkmPAICIiIskxYBAREZHkGDCIiIhIcgwYREREJDkGDCIiIpIcAwYRERFJjgGDiIiIJMeAQURERJIzecBYtmwZvLy8YGlpCR8fH5w4ceKF8yclJWHMmDGoVq0alEol6tWrh127dpVStURERFQY5qZ88c2bNyMkJAQrV66Ej48PlixZgoCAAFy+fBkuLi755ler1ejatStcXFywdetWeHh44Pbt27C3ty/94omIiKhAJg0YixYtwvDhwzFs2DAAwMqVK7Fz506sXbsWEydOzDf/2rVr8fjxY/zxxx9QKBQAAC8vr9IsmYiIiArBZAFDrVYjOjoakyZN0o2ZmZnB398fx44dM7jMjh074OvrizFjxuCXX36Bs7MzBg4ciM8++wxyudzgMtnZ2cjOztZNp6SkAAA0Gg00Go0k7yVvPVKtz1RycnJ0j3O1uSZ9PxWlp2UJeyot9lN67Km0jNHPoqzLZAHj4cOHyM3Nhaurq964q6srLl26ZHCZGzdu4MCBAxg0aBB27dqFa9euYfTo0dBoNAgNDTW4TFhYGGbOnJlvfN++fbCysir5G3lGRESEpOsrbX+n/a17fOP6DezKNP2xLeW9p2UReyot9lN67Km0pOxnRkZGoec16S6SotJqtXBxccHXX38NuVwOb29v3Lt3D/Pnzy8wYEyaNAkhISG66ZSUFHh6eqJbt26wtbWVpC6NRoOIiAh07dpVt+umPLK+bQ1ce/q4Vu1aCOwcaLJaKkpPyxL2VFrsp/TYU2kZo595ewEKw2QBw8nJCXK5HPHx8Xrj8fHxcHNzM7hMtWrVoFAo9HaHNGzYEHFxcVCr1bCwsMi3jFKphFKpzDeuUCgk/wAbY52lydz8n4+D3ExeJt5Lee9pWcSeSov9lB57Ki0p+1mU9ZjsNFULCwt4e3sjMjJSN6bVahEZGQlfX1+Dy7Rr1w7Xrl2DVqvVjV25cgXVqlUzGC6IiIjINEx6HYyQkBCsXr0aGzZswMWLF/Hhhx8iPT1dd1bJkCFD9A4C/fDDD/H48WOMHTsWV65cwc6dOzF79myMGTPGVG+BiIiIDDDpMRj9+/dHYmIipk+fjri4OLRo0QJ79uzRHfgZGxsLM7N/MpCnpyf27t2LcePGoVmzZvDw8MDYsWPx2WefmeotEBERkQEmP8gzODgYwcHBBp+LiorKN+br64vjx48buSoiIiIqiWIFjNzcXKxfvx6RkZFISEjQOyYCAA4cOCBJcURERFQ+FStgjB07FuvXr0fPnj3RpEkTyGQyqesiIiKicqxYASM8PBw//vgjAgNNd50EIiIiKruKdRaJhYUF6tSpI3UtREREVEEUK2CMHz8eX375JYQQUtdDREREFUCxdpEcOXIEBw8exO7du9G4ceN8V/b6+eefJSmOiIiIyqdiBQx7e3u88cYbUtdCREREFUSxAsa6deukroOIiIgqkBJdaCsxMRGXL18GANSvXx/Ozs6SFEVERETlW7EO8kxPT8d7772HatWqoWPHjujYsSPc3d3x/vvvF+le8URERFQxFStghISE4Pfff8evv/6KpKQkJCUl4ZdffsHvv/+O8ePHS10jERERlTPF2kXy008/YevWrejUqZNuLDAwECqVCv369cOKFSukqo+IiIjKoWJtwcjIyNDd8fRZLi4u3EVCRERExQsYvr6+CA0NRVZWlm4sMzMTM2fOhK+vr2TFERERUflUrF0kX375JQICAlC9enU0b94cAHD27FlYWlpi7969khZIRERE5U+xAkaTJk1w9epVbNy4EZcuXQIADBgwAIMGDYJKpZK0QCIiIip/in0dDCsrKwwfPlzKWoiIiKiCKHTA2LFjB3r06AGFQoEdO3a8cN4+ffqUuDAiIiIqvwodMPr27Yu4uDi4uLigb9++Bc4nk8mQm5srRW1ERERUThU6YGi1WoOPiYiIiJ5XrNNUDUlKSpJqVURERFTOFStgzJ07F5s3b9ZNv/3223B0dISHhwfOnj0rWXFERERUPhUrYKxcuRKenp4AgIiICOzfvx979uxBjx498Mknn0haIBEREZU/xTpNNS4uThcwfvvtN/Tr1w/dunWDl5cXfHx8JC2QiIiIyp9ibcFwcHDAnTt3AAB79uyBv78/AEAIwTNIiIiIqHhbMN58800MHDgQdevWxaNHj9CjRw8AwJkzZ1CnTh1JCyQiIqLyp1gBY/HixfDy8sKdO3cwb948WFtbAwAePHiA0aNHS1ogERERlT/FChgKhQITJkzINz5u3LgSF0RERETlHy8VTkRERJLjpcKJiIhIcrxUOBEREUlOskuFExEREeUpVsD46KOP8NVXX+Ub/9///oePP/64pDURERFROVesgPHTTz+hXbt2+cbbtm2LrVu3lrgoIiIiKt+KFTAePXoEOzu7fOO2trZ4+PBhiYsiIiKi8q1YAaNOnTrYs2dPvvHdu3ejVq1aJS6KiIiIyrdiXWgrJCQEwcHBSExMRJcuXQAAkZGRWLhwIZYsWSJlfURERFQOFStgvPfee8jOzsasWbPwxRdfAAC8vLywYsUKDBkyRNICiYiIqPwpVsAAgA8//BAffvghEhMToVKpdPcjoYpNK7SIvh+NJi5NoFKoTF0OERGVUcW+DkZOTg7279+Pn3/+GUIIAMD9+/eRlpYmWXFU9gz7ZRjafNMGgZsCTV0KERGVYcXagnH79m10794dsbGxyM7ORteuXWFjY4O5c+ciOzsbK1eulLpOKgN+u/Ibvj37LQDg8O3DJq6GiIjKsmJtwRg7dixat26NJ0+eQKX6ZzP5G2+8gcjISMmKo7IjTZ2GMbvGmLoMIiIqJ4q1BePw4cP4448/YGFhoTfu5eWFe/fuSVIYlS0zomYgNjnW1GUQEVE5UawtGFqt1uAdU+/evQsbG5sSF0Vly5kHZ7Dk+BJTl0FEROVIsQJGt27d9K53IZPJkJaWhtDQUAQG8uC/iiRXm4sRv41ArsgfKImIiApSrF0kCxYsQPfu3dGoUSNkZWVh4MCBuHr1KpycnPDDDz9IXSOZ0PKTy3Hq/ikAQCPnRjA3M8df8X+ZuCoiIirrihUwPD09cfbsWWzevBlnz55FWloa3n//fQwaNEjvoE8q3+6m3MWUA1N006t6rcK4veNMWBEREZUXRQ4YGo0GDRo0wG+//YZBgwZh0KBBxqiLyoCPdn+EVHUqAGBEqxFo/0p7E1dERETlRZEDhkKhQFZWljFqoTJk19VdOJdwDgDgWsUVc/znmLgiIiIqT4p1kOeYMWMwd+5c5OTkSF0PlRF54QIAlnRfAgeVgwmrISKi8qZYx2CcPHkSkZGR2LdvH5o2bYoqVaroPf/zzz9LUhyZXkDtAPRv3N/UZRARUTlTrIBhb2+Pt956S+paqIxRmauwoucKyGQyU5dCRETlTJEChlarxfz583HlyhWo1Wp06dIFM2bM4JkjFVSoXyhqOtQ0dRlERFQOFekYjFmzZmHy5MmwtraGh4cHvvrqK4wZw/tTVBQW8n8u/d7UpSlCfENMWA0REZVnRQoY3377LZYvX469e/di+/bt+PXXX7Fx40ZotVpj1UelqLV7a7xW8zXUq1oP373xHRRyhalLIiKicqpIu0hiY2P1LgXu7+8PmUyG+/fvo3r16pIXR6VLIVdg/5D9pi6DiIgqgCJtwcjJyYGlpaXemEKhgEajkbQoIiIiKt+KtAVDCIGhQ4dCqVTqxrKysjBq1Ci9U1V5mioREVHlVqSAERQUlG/s3XfflawYIiIiqhiKFDDWrVtnrDqIiIioAinWpcKltmzZMnh5ecHS0hI+Pj44ceJEoZYLDw+HTCZD3759jVsgERERFYnJA8bmzZsREhKC0NBQnD59Gs2bN0dAQAASEhJeuNytW7cwYcIEdOjQoZQqJSIiosIyecBYtGgRhg8fjmHDhqFRo0ZYuXIlrKyssHbt2gKXyc3NxaBBgzBz5kzUqlWrFKull8nR5mDOkTmYdmAasnJ4110iosqqWPcikYparUZ0dDQmTZqkGzMzM4O/vz+OHTtW4HKff/45XFxc8P777+Pw4cMvfI3s7GxkZ2frplNSUgAAGo1GstNr89ZTGU7XFULoHht6v5MPTsaCYwsAAHUc6mBgk4HFep3K1NPSwp5Ki/2UHnsqLWP0syjrMmnAePjwIXJzc+Hq6qo37urqikuXLhlc5siRI1izZg1iYmIK9RphYWGYOXNmvvF9+/bBysqqyDW/SEREhKTrK4uSk5IBPA0au3bt0nvuVPIpLLi5QDd96NQh2Mfal+j1KkNPSxt7Ki32U3rsqbSk7GdGRkah5zVpwCiq1NRUDB48GKtXr4aTk1Ohlpk0aRJCQv65p0ZKSgo8PT3RrVs32NraSlKXRqNBREQEunbtCoWiYl9e+4v4L4BMQCaT6V3V9XbybQxbM0xv3kaNGiGwTeDzqyiUytTT0sKeSov9lB57Ki1j9DNvL0BhmDRgODk5QS6XIz4+Xm88Pj4ebm5u+ea/fv06bt26hd69e+vG8u6DYm5ujsuXL6N27dp6yyiVSr0Lg+VRKBSSf4CNsc6y5tlbt+e9V3WuGu9ufxdPsp7ozSuXy0vcj8rQ09LGnkqL/ZQeeyotKftZlPWY9CBPCwsLeHt7IzIyUjem1WoRGRkJX1/ffPM3aNAA586dQ0xMjO6rT58+6Ny5M2JiYuDp6Vma5dP/m7h/Iv689ycAQAbZS+YmIqLKwOS7SEJCQhAUFITWrVujTZs2WLJkCdLT0zFs2NPN7UOGDIGHhwfCwsJgaWmJJk2a6C1vb28PAPnGqXRsu7gNi48vBvD0du8ftflId5AnERFVXiYPGP3790diYiKmT5+OuLg4tGjRAnv27NEd+BkbGwszM5OfTUsG3HhyA8N++ee4i0XdFsHJqnDHxhARUcVm8oABAMHBwQgODjb4XFRU1AuXXb9+vfQF0UtphRb9tvRDcvbTs0r6Ne6H0a+Oxo/nfzRxZUREVBZw0wAVi4BA9INoAEBdx7pY3Xu13gGgRERUuTFgUIko5UpseXsLbJXSnPJLREQVAwMGlcjSHkvR3K25qcsgIqIyhgGDiu3dZu/ig1YfmLoMIiIqgxgwqEjae7YHADRzbYYVPVfwuAsiIjKoTJxFQuXHwoCFGNB0AJq4NIGVQtp7uRARUcXBgEFFYiYzQxuPNqYug4iIyjjuIiEiIiLJMWAQERGR5BgwiIiISHIMGERERCQ5BgwiIiKSHAMGERERSY4Bg4iIiCTHgEFERESSY8AgIiIiyTFgEBERkeQYMIiIiEhyDBhEREQkOQYMIiIikhwDBhEREUmOAYOIiIgkx4BBREREkmPAICIiIskxYBAREZHkGDCIiIhIcgwYREREJDkGDCIiIpIcAwYRERFJjgGDiIiIJMeAQaUu/O9wdP2uK3Ze2WnqUoiIyEjMTV0AVS7LTixD8O5gAMD91PvoWa+niSsiIiJj4BYMKjVf/fmVLlwAwIXECyashoiIjIkBg0rFkuNLMHbPWL2xatbVTFQNEREZGwMGGd2iY4swbu+4fOMymcwE1RARUWlgwCCjWvDHAozfN143PcNvBjxtPU1YERERlQYGDDKatWfW4pOIT3TTMzvNRGinUBNWREREpYVnkZDRnEs4p3v8387/xZSOU0xYDRERlSYGDDK62V1mY1KHSaYug4iIShEDBhnVnNfm4LP2n5m6DCIiKmU8BoMk9a/q/4JcJgcAzPOfx3BBRFRJcQsGSaqGfQ3cHHsTWTlZqFu1rqnLISIiE2HAIMl52pXsNNTjd49j/tH5SE5IRpecLlAoFBJVRkREpYUBg8qMa4+vYVLkJGy9sFU3duDWAbze8HUTVkVERMXBgEEm9yjjEb449AWWn1wOjVaj91xKdoqJqiIiopJgwCCT0eRqMP/ofMw6PAvJ2cmmLoeIiCTEgEEmk5iRiE/3f6qbVpmrMN53PCzNLTH14FQTVkZERCXF01TJ5GSQ4b0W7+Hqf67iiy5fwEZpY+qSiIiohLgFg0qdu4077qTcAQAE1A7AvK7z0My1mYmrIiIiKTFgUKlb+/pabIjZgK61u8K/lr+pyyEiIiNgwKBS18i5EeZ2nWvqMoiIyIh4DAYRERFJjgGDiIiIJMeAQURERJJjwCAiIiLJMWAQERGR5BgwiIiISHIMGERERCQ5BgwiIiKSHAMGERERSa5MBIxly5bBy8sLlpaW8PHxwYkTJwqcd/Xq1ejQoQMcHBzg4OAAf3//F85PREREpc/kAWPz5s0ICQlBaGgoTp8+jebNmyMgIAAJCQkG54+KisKAAQNw8OBBHDt2DJ6enujWrRvu3btXypUTERFRQUweMBYtWoThw4dj2LBhaNSoEVauXAkrKyusXbvW4PwbN27E6NGj0aJFCzRo0ADffPMNtFotIiMjS7lyIiIiKohJb3amVqsRHR2NSZMm6cbMzMzg7++PY8eOFWodGRkZ0Gg0cHR0NPh8dnY2srOzddMpKSkAAI1GA41GU4Lq/5G3HqnWV9nl5ubqPWZfpcHPqbTYT+mxp9IyRj+Lsi6TBoyHDx8iNzcXrq6ueuOurq64dOlSodbx2Wefwd3dHf7+hm/7HRYWhpkzZ+Yb37dvH6ysrIpe9AtERERIur7K6kLiBd3jc+fOYdfdXaVeQ7Y2G5GPIvH7k99Rr0o9vO/xfqnXYCz8nEqL/ZQeeyotKfuZkZFR6HnL9e3a58yZg/DwcERFRcHS0tLgPJMmTUJISIhuOiUlRXfchq2trSR1aDQaREREoGvXrlAoFJKsszK7cfIG8P+H1DRt2hSBzQKLvI50dTp+vforatjVgG9130Ivl6ZOw9env8aSP5cgLj0OAHA54zIWvr0QXvZeRa6jLOHnVFrsp/TYU2kZo595ewEKw6QBw8nJCXK5HPHx8Xrj8fHxcHNze+GyCxYswJw5c7B//340a9aswPmUSiWUSmW+cYVCIfkH2BjrrIzkcrne46L0NF2djhWnVmDu0bl4mPEQAHD749t4xe6VFy6XlJWEpX8uxZI/l+Bx5uN8z6uFusL8bPk5lRb7KT32VFpS9rMo6zFpwLCwsIC3tzciIyPRt29fANAdsBkcHFzgcvPmzcOsWbOwd+9etG7dupSqpbIsXZ2O5SeXY/4f85GYkaj33LXH1woMGInpiVh8fDH+d+J/SFWn6sZlkEFAGLVmIqKKzOS7SEJCQhAUFITWrVujTZs2WLJkCdLT0zFs2DAAwJAhQ+Dh4YGwsDAAwNy5czF9+nRs2rQJXl5eiIt7uhnb2toa1tbWJnsfZBpp6jRdsMjbYlEY91LuYcEfC7AqehUyczJ143KZHAOaDsCk9pOw6NgirDmzxhhlExFVeCYPGP3790diYiKmT5+OuLg4tGjRAnv27NEd+BkbGwszs3/Opl2xYgXUajX+/e9/660nNDQUM2bMKM3SyYQKChYyyPBOk3eQlZOFbZe25VvuxpMbmHtkLtafXQ91rlo3rjBTYFiLYfis/Weo5VDL4OudeXAGVx9fxZVHV3Dl0RXdYxlk+Ln/z+hYo6Nx3iwRUTlk8oABAMHBwQXuEomKitKbvnXrlvELojIrTZ2GZSeWYcGxBfmCxYCmAzC1w1Q0dG6IKZFTsA3/BIyLiRcRdiQMm85tQq745zRYlbkKI7xHYELbCahuW73A1/3Xmn+9sK7v//qeAYOI6BllImAQvUxqdiqWnVyGBX8swKPMR7pxM5kZ3mnyji5YGPL2lrfxJPOJ3jEVNhY2GPPqGIzzHQeXKi4Gl1OYFf5gJo2W5+0TET2LAYPKtDR1GuYcmWMwWAxoMgBTO05FA6cGL1zHs2eFOKocMdZnLP7T5j9wUDm8cLl3m72LbZe2QUCgrmNd1KtaD/Wq1tM91mg18P7au2RvkIiogmLAoDJt9O7RetNmMjMMbDoQUztMRX2n+gUuZ26m/9F2reKKCW0nYFTrUbC2KNzBwO1eaYe4CXEFPn/pYeEuBkdEVBkxYFC5UNhgkefNhm9iZfRK2FjYYNy/xuG9lu9BpVCVQqVERAQwYFAZ5KjSv6/M4GaDMbXjVNSrWq/Q62ju1hxx4+Mgk8mkLo+IiAqBAYPKnDcavIHg1sG4eesm5r41F43dGhdrPQwXRESmw4BBZU4ViypY1G0Rdu3aVaStFmWVEIJhh4gqHQYMIglcfXQVi44tQlxaHB6kPXj6PfXp9ydZT9CvcT/88NYPpi6TiKjUMGAQSeDonaM4eudogc+H/x2OlT1Xws7SrhSrIiIyHbOXz0JEhrhUcYGZrOBfIaVcCQu5hW46R5tTGmUREZUJ3IJBVEyOKkfsGbQHUbei4GTlBDdrN1Szqfb0u3U12Cpt0fuH3th5daepSyUiKnUMGEQl0LV2V3St3dXUZRARlTncRUJERESSY8AgIiIiyTFgEBERkeQYMIiIiEhyDBhEREQkOQYMIiIikhwDBhEREUmOAYOIiIgkx4BBREREkmPAICIiIsnxUuFEpWTW4VmQy+RIzk5GUlaS3ldNh5pY22ctPGw9TF0mEZEkGDCISsni44sLfO7q46vYcHYDJneYrDf+KOMRziWcw53kO3it1mtwt3E3dplERJJgwCAyotburQt9N9VzCeew9sxa/J3wN/5O+BvnEs4hLi1O93wTlyY49+E5Y5VKRCQpBgwiI5rcYTJaVWuFpKwk2Fvaw05pB3tLe93X6Qen0eXbLgCA8L/DEf53eIHruph4sbTKJiIqMQYMIiOykFugT/0+BT5vo7Qp8Lmqqqpo6toUUbeijFAZEZFxMWAQmVBLt5YY3Xo0YuJj0KBqAzRxaYKmrk3RxKUJXKu4QiaT4dXVr+LU/VOmLpWIqEgYMIhMSG4mx7Key0xdBhGR5HgdDCIiIpIcAwYRERFJjgGDiIiIJMeAQURERJJjwCAiIiLJMWAQERGR5HiaKlEFosnVICE9AfHp8YhPi0d8ejzi0uIQnxaPdHU66mfUN7icEAJPsp7AVmkLczP+s0BEJcd/SYjKiVyRi51XduqFh2cDRHx6PB5nPn7pep4ceoLEjEQ8SHuAuLQ43ZdGq4GbtRuiR0TzpmpEVGIMGETlSK8fepV4HbOOzCrwubi0OHgs8kBA7QCoFCqozFWwNLeEylwFleLpYxlkMJOZQSaTQQaZ3nczmRm61uqKVz1eLXGdRFS+MWAQlXGOKseXzqMyV8HN2g2u1q5wrfL/X9auT8equKL/1v7IFbn5lpNBBpcqLohPj9cb33t9b7HrnXJgCvo37o/6VeujikUVWFtY676qKKpApVBBCIFckQut0CJX+/S7VmiRK3Ihgwwda3SEnaVdsWuQmhACmTmZSFOnITU7FanqVDxJf4IkTZKpSyMqsxgwiMq4xQGLsfCPhVDIFXCt4qofJP7/u7WFNWQyWYHruDPuDn78+0dcu3gN3dp2Q3W76nCzdoNzFWeYm5kjIT0BvTb1wqn7pyAgSlzz5vObS7yOv0b9hVyRi0xNJjJzMnXfs3KyXjyWkwmt0OKthm+hnWc7pKpT9YJB3vfnx9I0Bc+Tpk4zGNDMYIZmvs3Q0qNlid8vUUXDgEFUxjVyboQ1r68p0Tqq2VTD6NajsSthF7rX7g6FQqH3vEsVF5wYfgJCCKhz1QX+8c7KyYIQAgICWqHVPRZC4M97f+KLQ1+UqM5nNVvZrETLbzq3SaJKCqaFFq2+aYXxvuNhb2mf78vN2g11HOsYvQ6isogBg4h0ZDIZlOZKKM2VsLe0L9KyPev1xHjf8biVdAtp6jSka9KRpk7TfaWrn05n5mTCTGYGuUwOM5nZ08dmTx/PiJphcEtBaZNBBmsLa9gobWBjYaP32EZpg33X9+FhxkPd/AuPLSxwXeN9x2NBtwWlUTZRmcKAQUSSsbO0Q3O35sVefqT3SMw+PBv3Uu8ZPMj02e+W5pYGx24n38bCYwshl8n1g4GBoGBozNrCGlYKK5jJCr5MUFJWEl5d/SquPb720ve0+fxmBgyqlBgwiKjMcK7ijMXdF5doHc3dmqNP/T4SVWSYvaU9zo04h+93fI9WbVshPScdSVlJel/To6YDALRCa9RaiMoqBgwDhBDIyclBbm7hNtVqNBqYm5sjKyur0MvQi7Gn0ivrPZXL5TA3N3/hwaplidxMDmcLZzR1aZrvmBYAWH16Ne6k3DFBZURlAwPGc9RqNR48eICMjIxCLyOEgJubG+7cuVNu/nEs69hT6ZWHnlpZWaFatWqwsLAwdSmSuZ96H75rfA0+J8TLz9hxVDliRqcZaOPRRurSiIyKAeMZWq0WN2/ehFwuh7u7OywsLAr1D7FWq0VaWhqsra1hZsbbu0iBPZVeWe6pEAJqtRqJiYm4efMm6tatW+ZqLCqluVL3+Pjd4yVa1+5ru9HJqxNsLGxgq7T957vy6feutbqioXPDkpZMJCkGjGeo1WpotVp4enrCysqq0MtptVqo1WpYWlqW+38Uywr2VHplvacqlQoKhQK3b9/W1Vmejfcdj08iPkGaOk2S9UXdiirwOXMzc9wddxeu1q6SvBaRFBgwDCiL//gSVQYV6XdvVOtRGOk9skS7o5b+uRRfHPoCjzIfvfBg0RxtDs4nnmfAoDKFAYOIyEhKeqzLf3z+g//4/Ed3qfKU7BS9q43+Z/d/cC7hHICnp84mZyXnu0+MmcxM754xzz9PZCwMGEREZZxMJoOVwgpWCiu4WbvpxnvX660LGG/9+Fax128mM0MVRRU4qBx0VyF1sHTQuyqprdIWCjMFzM3MoZD///ciTlsprOBk5YQqiioMN5UAAwZVOGvWrMHmzZuxb98+U5dCz9izZw8mTpyI06dPV6hdIaYk1S4RrdA+3SqiTkVscqwk63wRlbkKzlWc4Wzl/M93K2e4VnGFs8bZ6K9PpYO/5RXE0KFDn272lMlgYWGBOnXq4PPPP0dOTg4AICoqSve8TCaDs7MzAgMDce7cORNXLq2srCxMmzYNoaGh+Z67e/cuLCws0KRJk3zP3bp1CzKZDDExMfme69SpEz7++GO9sTNnzuDtt9+Gq6srLC0tUbduXQwfPhxXrlyR6q3kI4TA9OnTUa1aNahUKvj7++Pq1asvXObQoUPo3bs33N3dIZfLsXPnznzzpKWlITg4GNWrV4dKpUKjRo2wcuVK3fN5vTH0tWXLFt18kZGRaNu2LWxsbODm5obPPvtM9/kDgO7dn94DZePGjRJ0gwAgqHkQPvb5GN3rdEdA7QB0q90NXWt1xWs1X0OXml3Q2aszOnl1QscaHdHhlQ5o/0p7tPNsB9/qvvhX9X/Bx8MHbTzawLuaNxo4NYBrFVdYyI1/inBmTiZik2MR/SAae67twXd/fYdFxxfhs8jP8N7597AyeiV+PP8jDt48iHPx5/Ag9QE0uRqj10XS4haMCqR79+5Yt24dsrOzsWvXLowZMwYKhQKTJk3SzXP58mXY2tri/v37+OSTT9CzZ09cu3atVK87oNFoDF6YSApbt26Fra0t2rVrl++59evXo1+/fjh06BD+/PNP+Pj4FOs1fvvtN7z11lsICAjAxo0bUbt2bSQkJGDLli2YNm0aNm8u+Z1EDZk3bx6++uorbNiwATVr1sS0adMQEBCACxcuFHjGRXp6Opo3b4733nsPb775psF5QkJCcODAAXz//ffw8vLCvn37MHr0aLi7u6NPnz7w9PTEgwcP9Jb5+uuvMX/+fPTo0QMAcPbsWQQGBmLKlCn49ttvce/ePYwaNQq5ublYsOCfy2QPHToUX331FQYPHixRVyo3O0u7El/51JCsnCw8yXyiuyrpk6wnSFOnQZOrQY42BznaHGi0Tx/njT0/bWgsTZOGxPREJGYkIiE9AQ8zHho8ePWjvR8Zfr9KO1S1qgpHlSMcLB3goHKAo6UjHFQOcLB0gKPKEfaW9lCaK6EwU0AhVxTpu4XcAuZm5edib2UdA0YFolQq4eb2dP/shx9+iG3btmHHjh16AcPFxQX29vZwc3PDxx9/jD59+uDSpUto1qzgO1cePXoUU6ZMwYkTJ6BUKtGmTRuEh4fDwcEBXl5e+Pjjj/X+h9+iRQv07dsXM2bMAPB0//Hy5cuxe/duREZGYvz48Vi7di2mTJmCDz/8ULfcmTNn4O3tjZs3b8LT0xPJyckYP348duzYgezsbLRu3RqLFy9G8+YF3+siPDwcvXv3zjcuhMC6deuwfPlyVK9eHWvWrClWwMjIyMCwYcMQGBiIbdu26cZr1qwJHx8fJCUlFXmdhSGEwJIlSzB16lS8/vrrAIBvv/0Wrq6u2L59O9555x2Dy/Xo0UMXAgryxx9/ICgoCJ06dQIAjBgxAqtWrcKJEyfQp08fyOVy3ecqz7Zt29CvXz9YW1sDADZv3oxmzZph+vSnl8euU6cO5s2bh379+iE0NBQ2NjYAgN69eyM4OBjXr19H7dq1i90PMi5Lc0tUs6mGajbVjPo6WqHFk8wnSMxIxH92/wf7b+x/4fzJ2clIzk7GjSc3jFpX3vEjLwokzlbOqONYB3Ud66KOYx3UcayD2o61YaUo/CUOKjoGjEJo/XVrxKXFvXAeIYTkqdfN2g2nRpwq9vIqlQqPHj0y+FxycjLCw8MB4IVbL2JiYvDaa6/hvffew5dffglzc3McPHiwyJeanjFjBubMmYMlS5bA3NwcmZmZ2LRpk17A2LhxI9q1a4caNWpAq9Vi6NChsLa2xu7du2FnZ4dVq1bhtddew5UrV+Do6GjwdY4cOWLwf8cHDx5ERkYG/P394eHhgbZt22Lx4sWoUqVKkd7H3r178fDhQ3z66acGn7e3ty9w2VGjRuH7779/4frT0gxfM+HmzZuIi4uDv7+/bszOzg4+Pj44duxYgQGjMNq2bYsdO3bgvffeg7u7O6KionDlyhUsXmz4f8bR0dGIiYnBsmXLdGPZ2dn5tqKoVCpkZWUhOjpaF15eeeUVuLq64vDhwwwYBDOZGapaVUVVq6qIGByBM/fO4OfIn+HV2AtPsp/gYcZDJKYn4mHmQ93jx5mP8STriVHv8ZK3BSYzJ/OF8x28dTDfmLuNO+o41kEth1pwUjk9fX+qp1td8ra+5E2rFCpjvYUygQGjEOLS4nAv9Z6pyyg0IQQiIyOxd+9e/Oc//9F7rnr16gCebjoHgD59+qBBgwYFrmvevHlo3bo1li9frhtr3LhxkWsaOHAghg0bppseNGgQFi5ciNjYWLzyyivQarUIDw/H1KlTATwNCtHR0YiPj4dK9fSXcMGCBdi+fTu2bt2KESNG5HuNpKQkJCcnw93dPd9za9aswTvvvAO5XI4mTZqgVq1a2LJlC4YOHVqk95F3zMOLelaQzz//HBMmTCjycgAQF/c04Lq66h/U5+rqqnuuuJYuXYoRI0agevXqMDc3h5mZGVavXo2OHTsanH/NmjVo2LAh2rZtqxsLCAjAkiVL8MMPP6Bfv36Ii4vD559/DgD5dq+4u7vj9u3bJaqZKqYmLk0QaxeLwGaBL9yNqhVapGan6sLGk8wnusdJWUlQ56qhydVAo9VAk6t5Ov3/jzVajf7jInzPW486V42snCyDtd1PvY/7qfdx6Pahl75flbkqX+h4NowUFEwUcuPsYpYaA0YhPHtaWEGMtQWjKH777TdYW1tDo9FAq9Vi4MCBut0UeQ4fPgwrKyscP34cs2fP1juYz5CYmBi8/fbbRS09n9atW+tNt2jRAg0bNsSmTZswceJE/P7770hISNC91l9//YX09HQ4O+sfUZ6ZmYnr168bfI3MzKf/23j+f9JJSUn4+eefceTIEd3Yu+++izVr1hQ5YBTm3hEFcXFxgYuLS7GXN5alS5fi+PHj2LFjB2rUqIFDhw5hzJgxcHd319tiAkC35WnatGl64926dcP8+fMxatQoDB48GEqlEtOmTcPhw4fznTGiUqmKdK8foueZycxgZ2kHO0s71ERNk9TwOPMxrj++jmuPrz39enJN9zghPaFQ68jMycTdlLu4m3K3SK9tY2FTqGBiZ2GHe1n3kJKdgqqKqsV5myXCgFEIL9tNodVqkZKSAltbW5Oefte5c2esWLECFhYWcHd3h7l5/h9vzZo1YW9vj/r16yMhIQH9+/fHoUMFJ+28rQcFMTMzy/dHV6PJf7S3oV0RgwYN0gWMTZs2oXv37qha9ekvQVpaGtzc3HDw4MF8PS1oN0TVqlUhk8nw5MkTvfFNmzYhKytL75gLIQS0Wi2uXLmCevXqwdbWFsDTXUfPS0pKgp2dHQCgXr16AIBLly7B19fwDawKUpJdJHnHQMTHx6NatX/2i8fHx6NFixZFquNZmZmZmDx5MrZt24aePXsCAJo1a4aYmBgsWLAgX8DYunUrMjIyMGTIkHzrCgkJwbhx4/DgwQM4ODjg1q1bmDRpEmrVqqU33+PHj/MFR6LyxlHlCEcPR7zq8Wq+51KyUxCbHIvHmY/xKOMRHmU+0j1+nPn4n+nMR7rn1bnqQr923inFt5JuFWr+v6z+wsreL/7PpDGUiYCxbNkyzJ8/H3FxcWjevDmWLl2KNm0KvnNg3tH6t27dQt26dTF37lwEBgaWYsVlU5UqVVCnTp1Czz9mzBiEhYVh27ZteOONNwzO06xZM0RGRmLmzJkGn3d2dtbbBJ6SkoKbN28W6vUHDhyIqVOnIjo6Glu3btXbmtKyZUvEx8fD3Nw83x+oglhYWKBRo0a4cOECunXrphtfs2YNxo8fn29rxejRo7F27VrMmTMHjo6OcHJyQnR0NPz8/PTez7Vr13TBolu3bnBycsK8efP0DvLMk5SUVGAAKskukpo1a8LNzQ2RkZG6QJGSkoI///xT7ziWotJoNNBoNPlCnFwuh1abfx/3mjVr0KdPnwIDgkwm0+2i+uGHH+Dp6YlWrVrpns/KysL169fRsmXLYtdMVNbZKm3RxCX/6fAFEUIgQ5OhFzr0gkjGIzzOMhxWcsXLj4dzsHQoydspPmFi4eHhwsLCQqxdu1acP39eDB8+XNjb24v4+HiD8x89elTI5XIxb948ceHCBTF16lShUCjEuXPnCvV6ycnJAoBITk7O91xmZqa4cOGCyMzMLNJ7yM3NFU+ePBG5ublFWk5KQUFB4vXXXy/w+YMHDwoA4smTJ3rjn376qWjatKnQarUGl7t8+bKwsLAQH374oTh79qy4ePGiWL58uUhMTBRCCDFx4kTh5uYmDh06JP766y/Rt29fYW1tLUJDQ3XrACC2bdtmcP3t2rUTzZs3FzY2NiIjI0M3npOTI/71r3+J5s2bi71794qbN2+Ko0ePismTJ4uTJ08W+D5DQkLEW2+9pZs+c+aMACAuXryYb97ly5cLNzc3odFohBBCzJ49W1StWlV8//334tq1a+LPP/8UvXr1El5eXnq1bd++XSgUCtG7d28REREhbt68KU6ePCk++eQT0b9//wJrK6k5c+YIe3t78csvv4i//vpLvP7666JmzZp6n9cuXbqIpUuX6qZTU1PFmTNndH2YNWuWiI6OFrdv39bN4+fnJxo3biwOHjwobty4IdatWycsLS3F8uXL9V7/6tWrQiaTid27dxusb968eeKvv/4Sf//9t/j888+FQqHI93M/ePCgsLa2Funp6QbXUdzfQVNQq9Vi+/btQq1Wm7qUCoM9LRqtViuSMpPE9cfXxcl7J8Weq3vEpr82iaV/LhUzo2aK4N+Chd+XfmLLuS2SveaL/oY+z+QBo02bNmLMmDG66dzcXOHu7i7CwsIMzt+vXz/Rs2dPvTEfHx8xcuTIQr0eA8YTvfHY2Fhhbm4uNm/eXOCyUVFRom3btkKpVAp7e3sREBCgW09ycrLo37+/sLW1FZ6enmL9+vWiefPmhQ4Yy5cvFwDEkCFD9MZzc3NFbGysCA4OFu7u7kKhUAhPT08xaNAgERsbW2Ct58+fFyqVSiQlJQkhhAgODhaNGjUyOO+DBw+EmZmZ+OWXX4QQT0PNV199JZo2bSqsrKxE9erVRf/+/cXNmzfzLXvy5Enx5ptvCmdnZ6FUKkWdOnXEiBEjxNWrVwusraS0Wq2YNm2acHV1FUqlUrz22mvi8uXLevPUqFFDr/d5P/fnv4KCgnTzPHjwQAwdOlS4u7sLS0tLUb9+fbFw4cJ8oXPSpEnC09OzwM95586dhZ2dnbC0tBQ+Pj5i165d+eYZMWLEC39XGTAqN/ZUWsboZ1EChkyIEhy1VkJqtRpWVlbYunUr+vbtqxsPCgpCUlISfvnll3zLvPLKKwgJCdG77kJoaCi2b9+Os2fP5ps/Ozsb2dnZuumUlBR4enri4cOHuv3uebKysnDnzh14eXkV6VbRQgikpqbCxsaGF2iRSEl62q9fP7Rq1QoTJ040UnXlk6k/pw8fPkTDhg1x4sQJ1Kxp+MC8rKws3Lp1C56enmX+du0ajQYRERHo2rWr0S4cV9mwp9IyRj9TUlLg5OSE5OTkfH9Dn2fSYzAePnyI3Nxcg6feXbp0yeAycXFxRTpVLywszODxA/v27YOVlf4FUczNzeHm5oa0tDSo1YU/4CZPampqkZehFytOT6dPn449e/YgJSXFCBWVf6b6nJ4/fx7z589H1apVC/zZqNVqZGZm4tChQ3qXGS/LIiIiTF1ChcOeSkvKfhblDLAycZCnMU2aNAkhISG66bwtGN26dStwC4a1tTW3YJhYSXrapEkTg/cbqexM/Tn18/PTO4DWkKysLKhUKnTs2JFbMCoh9lRaxtqCUVgmDRhOTk6Qy+WIj4/XG4+Pj893aeI8bm5uRZpfqVRCqVTmG1coFPkanpubC5lMBjMzsyKdbpp3tH3eslRy7Kn0ykNPzczMIJPJDP5+llXlqdbygj2VlpT9LMp6TPqvjIWFBby9vREZGakb02q1iIyMLPAaA76+vnrzA083/xT1mgRERERkPCbfRRISEoKgoCC0bt0abdq0wZIlS5Cenq67rPSQIUPg4eGBsLAwAMDYsWPh5+eHhQsXomfPnggPD8epU6fw9ddfS1aTCY97JarU+LtHVHGYPGD0798fiYmJmD59OuLi4tCiRQvs2bNHdyBnbGys3ubctm3bYtOmTZg6dSomT56MunXrYvv27ZLsc8/b9JORkfHSK1gSkfTyDiDj5nGi8s/kAQMAgoODERwcbPC5qKiofGNvv/22JPfHeJ5cLoe9vT0SEp5eR97KyqpQB8NptVqo1WpkZWWV2X3b5Q17Kr2y3FMhBDIyMpCQkAB7e3vI5XJTl0REJVQmAkZZknewaF7IKAwhBDIzM6FSqXgWiUTYU+mVh57a29sXeMA2EZUvDBjPkclkqFatGlxcXAzetMsQjUaDQ4cOoWPHjty0KxH2VHplvacKhYJbLogqEAaMAsjl8kL/YyeXy5GTkwNLS8sy+Q93ecSeSo89JaLSVLZ2xBIREVGFwIBBREREkmPAICIiIslVumMw8i7kI+WNsDQaDTIyMpCSksJ92xJhT6XHnkqL/ZQeeyotY/Qz729nYS6KV+kCRt6dJD09PU1cCRERUfmUmpoKOzu7F84jE5Xs2rxarRb379+X9I6SeXdovXPnTr47tFLxsKfSY0+lxX5Kjz2VljH6mXdXZnd395desK/SbcEwMzND9erVjbJuW1tb/lJIjD2VHnsqLfZTeuyptKTu58u2XOThQZ5EREQkOQYMIiIikhwDhgSUSiVCQ0OhVCpNXUqFwZ5Kjz2VFvspPfZUWqbuZ6U7yJOIiIiMj1swiIiISHIMGERERCQ5BgwiIiKSHAMGERERSY4Bo5CWLVsGLy8vWFpawsfHBydOnHjh/Fu2bEGDBg1gaWmJpk2bYteuXaVUaflRlJ6uXr0aHTp0gIODAxwcHODv7//Sn0FlU9TPaJ7w8HDIZDL07dvXuAWWQ0XtaVJSEsaMGYNq1apBqVSiXr16/N1/RlH7uWTJEtSvXx8qlQqenp4YN24csrKySqnasu/QoUPo3bs33N3dIZPJsH379pcuExUVhVatWkGpVKJOnTpYv3698QoU9FLh4eHCwsJCrF27Vpw/f14MHz5c2Nvbi/j4eIPzHz16VMjlcjFv3jxx4cIFMXXqVKFQKMS5c+dKufKyq6g9HThwoFi2bJk4c+aMuHjxohg6dKiws7MTd+/eLeXKy6ai9jPPzZs3hYeHh+jQoYN4/fXXS6fYcqKoPc3OzhatW7cWgYGB4siRI+LmzZsiKipKxMTElHLlZVNR+7lx40ahVCrFxo0bxc2bN8XevXtFtWrVxLhx40q58rJr165dYsqUKeLnn38WAMS2bdteOP+NGzeElZWVCAkJERcuXBBLly4Vcrlc7Nmzxyj1MWAUQps2bcSYMWN007m5ucLd3V2EhYUZnL9fv36iZ8+eemM+Pj5i5MiRRq2zPClqT5+Xk5MjbGxsxIYNG4xVYrlSnH7m5OSItm3bim+++UYEBQUxYDynqD1dsWKFqFWrllCr1aVVYrlS1H6OGTNGdOnSRW8sJCREtGvXzqh1lleFCRiffvqpaNy4sd5Y//79RUBAgFFq4i6Sl1Cr1YiOjoa/v79uzMzMDP7+/jh27JjBZY4dO6Y3PwAEBAQUOH9lU5yePi8jIwMajQaOjo7GKrPcKG4/P//8c7i4uOD9998vjTLLleL0dMeOHfD19cWYMWPg6uqKJk2aYPbs2cjNzS2tssus4vSzbdu2iI6O1u1GuXHjBnbt2oXAwMBSqbkiKu2/TZXuZmdF9fDhQ+Tm5sLV1VVv3NXVFZcuXTK4TFxcnMH54+LijFZneVKcnj7vs88+g7u7e75flsqoOP08cuQI1qxZg5iYmFKosPwpTk9v3LiBAwcOYNCgQdi1axeuXbuG0aNHQ6PRIDQ0tDTKLrOK08+BAwfi4cOHaN++PYQQyMnJwahRozB58uTSKLlCKuhvU0pKCjIzM6FSqSR9PW7BoHJnzpw5CA8Px7Zt22BpaWnqcsqd1NRUDB48GKtXr4aTk5Opy6kwtFotXFxc8PXXX8Pb2xv9+/fHlClTsHLlSlOXVi5FRUVh9uzZWL58OU6fPo2ff/4ZO3fuxBdffGHq0qiQuAXjJZycnCCXyxEfH683Hh8fDzc3N4PLuLm5FWn+yqY4Pc2zYMECzJkzB/v370ezZs2MWWa5UdR+Xr9+Hbdu3ULv3r11Y1qtFgBgbm6Oy5cvo3bt2sYtuowrzme0WrVqUCgUkMvlurGGDRsiLi4OarUaFhYWRq25LCtOP6dNm4bBgwfjgw8+AAA0bdoU6enpGDFiBKZMmQIzM/7/uKgK+ttka2sr+dYLgFswXsrCwgLe3t6IjIzUjWm1WkRGRsLX19fgMr6+vnrzA0BERESB81c2xekpAMybNw9ffPEF9uzZg9atW5dGqeVCUfvZoEEDnDt3DjExMbqvPn36oHPnzoiJiYGnp2dpll8mFecz2q5dO1y7dk0X1gDgypUrqFatWqUOF0Dx+pmRkZEvROSFN8FbaBVLqf9tMsqhoxVMeHi4UCqVYv369eLChQtixIgRwt7eXsTFxQkhhBg8eLCYOHGibv6jR48Kc3NzsWDBAnHx4kURGhrK01SfU9SezpkzR1hYWIitW7eKBw8e6L5SU1NN9RbKlKL283k8iyS/ovY0NjZW2NjYiODgYHH58mXx22+/CRcXF/Hf//7XVG+hTClqP0NDQ4WNjY344YcfxI0bN8S+fftE7dq1Rb9+/Uz1Fsqc1NRUcebMGXHmzBkBQCxatEicOXNG3L59WwghxMSJE8XgwYN18+edpvrJJ5+IixcvimXLlvE01bJg6dKl4pVXXhEWFhaiTZs24vjx47rn/Pz8RFBQkN78P/74o6hXr56wsLAQjRs3Fjt37izlisu+ovS0Ro0aAkC+r9DQ0NIvvIwq6mf0WQwYhhW1p3/88Yfw8fERSqVS1KpVS8yaNUvk5OSUctVlV1H6qdFoxIwZM0Tt2rWFpaWl8PT0FKNHjxZPnjwp/cLLqIMHDxr8dzGvj0FBQcLPzy/fMi1atBAWFhaiVq1aYt26dUarj7drJyIiIsnxGAwiIiKSHAMGERERSY4Bg4iIiCTHgEFERESSY8AgIiIiyTFgEBERkeQYMIiIiEhyDBhEREQkOQYMIqoQZDIZtm/fDgC4desWZDIZb0dPZEIMGERUYkOHDoVMJoNMJoNCoUDNmjXx6aefIisry9SlEZGJ8HbtRCSJ7t27Y926ddBoNIiOjkZQUBBkMhnmzp1r6tKIyAS4BYOIJKFUKuHm5gZPT0/07dsX/v7+iIiIAPD01txhYWGoWbMmVCoVmjdvjq1bt+otf/78efTq1Qu2trawsbFBhw4dcP36dQDAyZMn0bVrVzg5OcHOzg5+fn44ffp0qb9HIio8Bgwiktzff/+NP/74AxYWFgCAsLAwfPvtt1i5ciXOnz+PcePG4d1338Xvv/8OALh37x46duwIpVKJAwcOIDo6Gu+99x5ycnIAAKmpqQgKCsKRI0dw/Phx1K1bF4GBgUhNTTXZeySiF+MuEiKSxG+//QZra2vk5OQgOzsbZmZm+N///ofs7GzMnj0b+/fvh6+vLwCgVq1aOHLkCFatWgU/Pz8sW7YMdnZ2CA8Ph0KhAADUq1dPt+4uXbrovdbXX38Ne3t7/P777+jVq1fpvUkiKjQGDCKSROfOnbFixQqkp6dj8eLFMDc3x1tvvYXz588jIyMDXbt21ZtfrVajZcuWAICYmBh06NBBFy6eFx8fj6lTpyIqKgoJCQnIzc1FRkYGYmNjjf6+iKh4GDCISBJVqlRBnTp1AABr165F8+bNsWbNGjRp0gQAsHPnTnh4eOgto1QqAQAqleqF6w4KCsKjR4/w5ZdfokaNGlAqlfD19YVarTbCOyEiKTBgEJHkzMzMMHnyZISEhODKlStQKpWIjY2Fn5+fwfmbNWuGDRs2QKPRGNyKcfToUSxfvhyBgYEAgDt37uDhw4dGfQ9EVDI8yJOIjOLtt9+GXC7HqlWrMGHCBIwbNw4bNmzA9evXcfr0aSxduhQbNmwAAAQHByMlJQXvvPMOTp06hatXr+K7777D5cuXAQB169bFd999h4sXL+LPP//EoEGDXrrVg4hMi1swiMgozM3NERwcjHnz5uHmzZtwdnZGWFgYbty4AXt7e7Rq1QqTJ08GAFStWhUHDhzAJ598Aj8/P8jlcrRo0QLt2rUDAKxZswYjRoxAq1at4OnpidmzZ2PChAmmfHtE9BIyIYQwdRFERERUsXAXCREREUmOAYOIiIgkx4BBREREkmPAICIiIskxYBAREZHkGDCIiIhIcgwYREREJDkGDCIiIpIcAwYRERFJjgGDiIiIJMeAQURERJL7PzaHiYI08qCDAAAAAElFTkSuQmCC",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# PR Curve\n",
"precision, recall, _ = precision_recall_curve(y_test_lasso, y_pred_proba_lasso)\n",
"pr_auc = average_precision_score(y_test_lasso, y_pred_proba_lasso)\n",
"\n",
"plt.figure(figsize=(6, 5))\n",
"plt.plot(recall, precision, color='green', lw=2, label=f'PR curve (AUC = {pr_auc:.4f})')\n",
"plt.xlabel('Recall')\n",
"plt.ylabel('Precision')\n",
"plt.title('Precision-Recall Curve')\n",
"plt.legend(loc='lower left')\n",
"plt.grid(True)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Interpreting the Precision-Recall (PR) Curve\n",
"\n",
"The **Precision-Recall (PR) curve** helps evaluate model performance, especially on imbalanced datasets like ours (where positive cases are rare).\n",
"\n",
"A quick reminder of the definitions:\n",
"* Precision = How many of the predicted positives are actually positive\n",
"* Recall = How many of the actual positives the model correctly identifies\n",
"\n",
"What we display in this plot is:\n",
"* The x-axis is Recall \n",
"* The y-axis is Precision \n",
"\n",
"The curve shows the trade-off between them at different model thresholds\n",
"\n",
"In imbalanced datasets, accuracy can be misleading — the PR curve focuses only on the positive class, making it much more meaningful:\n",
"* A higher curve means better performance\n",
"* The area under the curve (PR AUC) summarizes this: closer to 1 is better"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Feature Importance\n",
"Understanding what drives the prediction is useful for future experiments and business knowledge. Here we track both the native feature importances of the trees, as well as a more heavy SHAP values analysis.\n",
"\n",
"Important! Be aware that SHAP analysis might take quite a bit of time."
]
},
{
"cell_type": "code",
"execution_count": 110,
"id": "d66ffe2c",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAxoAAAHqCAYAAACDTThiAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsnXdUFdf3t59L7yAogkpTqqgIigoWUFEs2BVbVLAX7NhiAewNQVHRWLBr7L0XNPaKvRIUa1CjCDbaef/gvfPzCiomJjH5zrPWXfHOnDlz9pm55JT92VshhBDIyMjIyMjIyMjIyMh8Q9T+6QbIyMjIyMjIyMjIyPz3kCcaMjIyMjIyMjIyMjLfHHmiISMjIyMjIyMjIyPzzZEnGjIyMjIyMjIyMjIy3xx5oiEjIyMjIyMjIyMj882RJxoyMjIyMjIyMjIyMt8ceaIhIyMjIyMjIyMjI/PNkScaMjIyMjIyMjIyMjLfHHmiISMjIyMjIyMjIyPzzZEnGjIyMjIyMjIyMjIy3xx5oiEjIyMjIyMjsWTJEhQKRb6f4cOH/yX3PH78OOHh4bx8+fIvqf/PoOyPs2fP/tNN+cPMnTuXJUuW/NPNkPkfROOfboCMjIyMjIzM98fYsWOxs7NTOVamTJm/5F7Hjx8nIiKCoKAgTExM/pJ7/C8zd+5cChcuTFBQ0D/dFJn/MeSJhoyMjIyMjEwe6tevT8WKFf/pZvwpXr9+jb6+/j/djH+MN2/eoKen9083Q+Z/GNl1SkZGRkZGRuar2bVrF9WrV0dfXx9DQ0MaNmzI1atXVcpcunSJoKAgSpYsiY6ODhYWFnTu3Jnnz59LZcLDwxkyZAgAdnZ2kpvW3bt3uXv3LgqFIl+3H4VCQXh4uEo9CoWCa9eu0a5dOwoVKkS1atWk8ytWrKBChQro6upiampKmzZtuH///h+yPSgoCAMDA5KTkwkICMDAwIDixYszZ84cAC5fvkytWrXQ19fHxsaGVatWqVyvdMc6cuQIPXr0wMzMDCMjIzp27MiLFy/y3G/u3Lm4urqira1NsWLF6NOnTx43M19fX8qUKcO5c+eoUaMGenp6/Pjjj9ja2nL16lUOHz4s9a2vry8Av//+O6GhoZQtWxYDAwOMjIyoX78+Fy9eVKk7Pj4ehULB2rVrmTBhAiVKlEBHR4fatWtz586dPO09deoUDRo0oFChQujr61OuXDlmzpypUubGjRu0bNkSU1NTdHR0qFixIlu3blUpk5mZSUREBA4ODujo6GBmZka1atXYt29fgZ6TzD+PvKMhIyMjIyMjk4fU1FSePXumcqxw4cIALF++nE6dOuHv78+UKVN48+YNsbGxVKtWjQsXLmBrawvAvn37+PXXXwkODsbCwoKrV6/y008/cfXqVU6ePIlCoaB58+bcunWL1atXExUVJd2jSJEiPH369Kvb3apVKxwcHJg4cSJCCAAmTJjA6NGjCQwMpGvXrjx9+pSYmBhq1KjBhQsX/pC7VnZ2NvXr16dGjRpMnTqVlStXEhISgr6+PiNHjqR9+/Y0b96cefPm0bFjR7y8vPK4ooWEhGBiYkJ4eDg3b94kNjaWe/fuSQN7yJ1ARURE4OfnR69evaRyZ86c4dixY2hqakr1PX/+nPr169OmTRt++OEHihYtiq+vL3379sXAwICRI0cCULRoUQB+/fVXNm/eTKtWrbCzs+O3335j/vz5+Pj4cO3aNYoVK6bS3smTJ6OmpkZoaCipqalMnTqV9u3bc+rUKanMvn37CAgIwNLSkv79+2NhYcH169fZvn07/fv3B+Dq1atUrVqV4sWLM3z4cPT19Vm7di1NmzZlw4YNNGvWTLJ90qRJdO3alUqVKvHq1SvOnj3L+fPnqVOnzlc/M5l/ACEjIyMjIyMj8/+Ji4sTQL4fIYRIS0sTJiYmolu3birXPXnyRBgbG6scf/PmTZ76V69eLQBx5MgR6di0adMEIJKSklTKJiUlCUDExcXlqQcQYWFh0vewsDABiLZt26qUu3v3rlBXVxcTJkxQOX758mWhoaGR5/in+uPMmTPSsU6dOglATJw4UTr24sULoaurKxQKhVizZo10/MaNG3naqqyzQoUKIiMjQzo+depUAYgtW7YIIYRISUkRWlpaom7duiI7O1sqN3v2bAGIxYsXS8d8fHwEIObNm5fHBldXV+Hj45Pn+Lt371TqFSK3z7W1tcXYsWOlY4cOHRKAcHFxEe/fv5eOz5w5UwDi8uXLQgghsrKyhJ2dnbCxsREvXrxQqTcnJ0f6d+3atUXZsmXFu3fvVM57e3sLBwcH6Zibm5to2LBhnnbL/HuQXadkZGRkZGRk8jBnzhz27dun8oHcFeuXL1/Stm1bnj17Jn3U1dWpXLkyhw4dkurQ1dWV/v3u3TuePXtGlSpVADh//vxf0u6ePXuqfN+4cSM5OTkEBgaqtNfCwgIHBweV9n4tXbt2lf5tYmKCk5MT+vr6BAYGSsednJwwMTHh119/zXN99+7dVXYkevXqhYaGBjt37gRg//79ZGRkMGDAANTU/m/I1q1bN4yMjNixY4dKfdra2gQHBxe4/dra2lK92dnZPH/+HAMDA5ycnPJ9PsHBwWhpaUnfq1evDiDZduHCBZKSkhgwYECeXSLlDs3vv//OwYMHCQwMJC0tTXoez58/x9/fn9u3b/Pw4UMgt0+vXr3K7du3C2yTzPeF7DolIyMjIyMjk4dKlSrlKwZXDvpq1aqV73VGRkbSv3///XciIiJYs2YNKSkpKuVSU1O/YWv/j4/dk27fvo0QAgcHh3zLfzjQ/xp0dHQoUqSIyjFjY2NKlCghDao/PJ6f9uLjNhkYGGBpacndu3cBuHfvHpA7WfkQLS0tSpYsKZ1XUrx4cZWJwJfIyclh5syZzJ07l6SkJLKzs6VzZmZmecpbW1urfC9UqBCAZFtiYiLw+ehkd+7cQQjB6NGjGT16dL5lUlJSKF68OGPHjqVJkyY4OjpSpkwZ6tWrR4cOHShXrlyBbZT5Z5EnGjIyMjIyMjIFJicnB8jVaVhYWOQ5r6Hxf0OLwMBAjh8/zpAhQyhfvjwGBgbk5ORQr149qZ7P8fGAXcmHA+KP+XAXRdlehULBrl27UFdXz1PewMDgi+3Ij/zq+txx8f/1In8lH9v+JSZOnMjo0aPp3Lkz48aNw9TUFDU1NQYMGJDv8/kWtinrDQ0Nxd/fP98y9vb2ANSoUYPExES2bNnC3r17WbhwIVFRUcybN09lN0nm+0WeaMjIyMjIyMgUmFKlSgFgbm6On5/fJ8u9ePGCAwcOEBERwZgxY6Tj+bnBfGpCoVwx/zjC0scr+V9qrxACOzs7HB0dC3zd38Ht27epWbOm9D09PZ3Hjx/ToEEDAGxsbAC4efMmJUuWlMplZGSQlJT02f7/kE/17/r166lZsyaLFi1SOf7y5UtJlP81KN+NK1eufLJtSjs0NTUL1H5TU1OCg4MJDg4mPT2dGjVqEB4eLk80/iXIGg0ZGRkZGRmZAuPv74+RkRETJ04kMzMzz3llpCjl6vfHq93R0dF5rlHmuvh4QmFkZEThwoU5cuSIyvG5c+cWuL3NmzdHXV2diIiIPG0RQqiE2v27+emnn1T6MDY2lqysLOrXrw+An58fWlpazJo1S6XtixYtIjU1lYYNGxboPvr6+vlmXVdXV8/TJ+vWrZM0El+Lh4cHdnZ2REdH57mf8j7m5ub4+voyf/58Hj9+nKeODyONffxsDAwMsLe35/3793+ofTJ/P/KOhoyMjIyMjEyBMTIyIjY2lg4dOuDh4UGbNm0oUqQIycnJ7Nixg6pVqzJ79myMjIyk0K+ZmZkUL16cvXv3kpSUlKfOChUqADBy5EjatGmDpqYmjRo1Ql9fn65duzJ58mS6du1KxYoVOXLkCLdu3Spwe0uVKsX48eMZMWIEd+/epWnTphgaGpKUlMSmTZvo3r07oaGh36x/voaMjAxq165NYGAgN2/eZO7cuVSrVo3GjRsDuSF+R4wYQUREBPXq1aNx48ZSOU9PT3744YcC3adChQrExsYyfvx47O3tMTc3p1atWgQEBDB27FiCg4Px9vbm8uXLrFy5UmX35GtQU1MjNjaWRo0aUb58eYKDg7G0tOTGjRtcvXqVPXv2ALmBBqpVq0bZsmXp1q0bJUuW5LfffuPEiRM8ePBAyuNRunRpfH19qVChAqamppw9e5b169cTEhLyh9on8w/wD0W7kpGRkZGRkfkOyS+ca34cOnRI+Pv7C2NjY6GjoyNKlSolgoKCxNmzZ6UyDx48EM2aNRMmJibC2NhYtGrVSjx69ChPuFchhBg3bpwoXry4UFNTUwl1++bNG9GlSxdhbGwsDA0NRWBgoEhJSflkeNunT5/m294NGzaIatWqCX19faGvry+cnZ1Fnz59xM2bN7+6Pzp16iT09fXzlPXx8RGurq55jtvY2KiEaVXWefjwYdG9e3dRqFAhYWBgINq3by+eP3+e5/rZs2cLZ2dnoampKYoWLSp69eqVJ3zsp+4tRG7o4YYNGwpDQ0MBSKFu3717JwYPHiwsLS2Frq6uqFq1qjhx4oTw8fFRCYerDG+7bt06lXo/FX746NGjok6dOsLQ0FDo6+uLcuXKiZiYGJUyiYmJomPHjsLCwkJoamqK4sWLi4CAALF+/XqpzPjx40WlSpWEiYmJ0NXVFc7OzmLChAkqIYFlvm8UQvwN6iQZGRkZGRkZGRkgNzN4cHAwZ86cyTeyl4zMfwVZoyEjIyMjIyMjIyMj882RJxoyMjIyMjIyMjIyMt8ceaIhIyMjIyMjIyMjI/PNkTUaMjIyMjIyMjIyMjLfHHlHQ0ZGRkZGRkZGRkbmmyNPNGRkZCR8fX0ZMGDAP92MfLlx4wZVqlRBR0eH8uXLf7bs3bt3USgUJCQkABAfH49Cocg3YVVB+Z775lOEh4dTtGhRFAoFmzdv/mzZoKAgmjZt+re0S0ZGRkbmfwM5YZ+MjMy/grCwMPT19bl58yYGBgZfda23tzePHz/G2Nj4i2Xj4+OpWbMmL168wMTERDq+ceNGNDU1v7bZ/xjXr18nIiKCTZs2UaVKFQoVKvSPtudT/folcnJyePToEYaGhigUir+ugTIyMjIy+SKEIC0tjWLFiqGm9nV7FPJEQ0ZG5i8lOzsbhULx1X+cPiYxMZGGDRtiY2Pz1ddqaWlhYWHxp+5vamr6p67/u0lMTASgSZMm/+oB+qNHj7CysvqnmyEjIyPzP8/9+/cpUaLEV10ji8FlZL5DfH19KVeuHDo6OixcuBAtLS169uxJeHg4d+/exc7OjgsXLkguRC9fvqRQoUIcOnQIX19fafV49+7dDB8+nBs3buDl5cWaNWs4d+4cgwYN4uHDhwQEBLBw4UL09PSk+5YpUwaA5cuXo6mpSa9evRg7dqw0WH3//j0jR45k9erVvHz5kjJlyjBlyhR8fX2B3ERUAwYMYNmyZQwfPpxbt25x584dbG1tP2lvTk4O48eP56effuLp06e4uLgwefJk6tWrB5BnoBwWFkZ4ePgn6/u4jz5eTb937x4hISEcPXqUjIwMbG1tmTZtGqVLl8bOzk6lrk6dOrFkyRJ8fX0pX7480dHRANja2tK9e3fu3LnDunXrKFSoEKNGjaJ79+7StcePH6d3797cuHGDMmXKMGrUKJo1aya168WLF4SEhLB3717S09MpUaIEP/74I8HBwZ99PwAuX75M//79OXHiBHp6erRo0YIZM2ZgYGBAeHg4ERERKuW/9Kc+KCiIly9fUq1aNSIjI8nIyKBNmzZER0dLOzkvXrygf//+bNu2jffv3+Pj48OsWbNwcHAA+EP9+iVSU1MxMTEhKSnpXzfZU5KZmcnevXupW7fuv2pX7ENkG74PZBu+D/7XbHj16hVWVla8fPmyQJ4BHyLvaMjIfKcsXbqUQYMGcerUKU6cOEFQUBBVq1aVBnUFITw8nNmzZ6Onp0dgYCCBgYFoa2uzatUq0tPTadasGTExMQwbNkzlvl26dOH06dOcPXuW7t27Y21tTbdu3QAICQnh2rVrrFmzhmLFirFp0ybq1avH5cuXpba9efOGKVOmsHDhQszMzDA3N/9sO2fOnElkZCTz58/H3d2dxYsX07hxY65evYqDgwOPHz/Gz8+PevXqERoa+tWuUx/Tp08fMjIyOHLkCPr6+ly7dg0DAwOsrKzYsGEDLVq04ObNmxgZGaGrq/vJeiIjIxk3bhw//vgj69evp1evXvj4+ODk5MSrV69o1KgRDRo0YNWqVdy7dy+PxmP06NFcu3aNXbt2UbhwYe7cucPbt2+/2P7Xr1/j7++Pl5cXZ86cISUlha5duxISEsKSJUsIDQ3F1taW4OBgHj9+XOB+OXToEJaWlhw6dIg7d+7QunVrypcvLz37oKAgbt++zdatWzEyMmLYsGE0aNCAa9euoamp+U369f3797x//176npaWBsCye5lovcgosC3fE2o5WTjp6bHobiY5av/OtT3Zhu8D2Ybvg3+bDcPdC+c5lpmZiZ6eHkZGRgWeLP2R3XF5oiEj8zfw4Wq4ra0tAwYM+KKwuFy5coSFhQHg4ODA7NmzOXDgABcvXizwfcePH0/VqlUB6NKlCyNGjCAxMZGSJUsC0LJlSw4dOqQy0bCysiIqKgqFQoGTkxOXL18mKiqKbt26kZycTFxcHMnJyRQrVgyA0NBQdu/eTVxcHBMnTgRy/4DNnTsXNze3ArVz+vTpDBs2jDZt2gAwZcoUDh06RHR0NDt27GDAgAFoaGhgYGDwp12gAJKTk2nRogVly5YFkPoD/s9Fytzc/ItaAk9PT2JjY+nfvz8NGjSgcOHCHDp0CCcnJ1atWoVCoWDBggXo6OiQkpLCrVu38rTD3d2dihUrAnx21+dDVq1axbt371i2bBn6+vrY2tpSt25dFi1axJQpUyhatKjU9q/pr0KFCjF79mzU1dVxdnamYcOGHDhwgG7dukkTjGPHjuHt7Q3AypUrsbKyYvPmzbRq1eqb9OukSZPy7MbIyMjIyPw7kScaMjJ/M2fOnEFfX/+L5cqVK6cyKbG0tCQlJYWgoCCGDBlSoHuVK1dO+nfRokXR09NTGfwVLVqU06dPq1xTpUoVlVULLy8vIiMjyc7O5vLly2RnZ+Po6Khyzfv37zEzM5O+a2lpqdz7c7x69YpHjx5JEyIlVatW/apJ1dfQr18/evXqxd69e/Hz86NFixYFbu+HXLt2DR8fH3bt2oWBgQE+Pj6kpKQAcPPmTcn97VP06tWLFi1acP78eerWrUvTpk2lQfznuH79Om5ubirvkZ2dHTk5Ody8eZOiRYt+tS0Arq6uqKurS98tLS25fPmydE8NDQ0qV64snTczM8PJyYnr168D36ZfR4wYwaBBg6Tvyi37PmVMVd6xfxOZmZnsfAADy5n9q90sZBv+eWQbvg/+Czb8XcjhbWVk/maKFCkiaSI+x8d/vBQKBTk5OdK1H/rcZ2ZmfrEOhULxyToLSnp6Ourq6pw7d46EhATpc/36dWbOnCmV09XV/a4FyB07duTXX3+lQ4cOXL58mYoVKxITE/PV9Tx//pxatWpRokQJTExMvro/69evz7179xg4cCCPHj2idu3ahIaGfnU7vsSn3o+P+bPvR9euXf90v2pra2NkZKTykZGRkZH5dyJPNGRk/mZsbW0lQbEQgvDwcKytrdHW1qZYsWL069cPgPXr10uDUIVCwZYtWwDYvXs3gOR7Hx4eTpUqVQBo06YNxsbGjB07VuWeaWlpzJ8/n9TUVCwtLYmKisLX11eq60NOnTql8v3kyZMoFAqmTJnC2rVryc7OpkaNGhw8eBB7e3vs7e158OABlpaWKnkqEhISUCgU3L17F8gViZuYmLB9+3acnJzQ09OjZcuWaGhoYGJiQtOmTSlUqBD9+vUjOzubY8eOUbp0aan99+7dY8KECRQvXpw5c+aotPHly5d07dqVIkWKYGRkRNu2bVXOK0XHy5Ytw87ODh0dHaysrOjZsycbN25k8ODBLFiwAMjdjYFcnUm/fv0wNzdHR0eHCxcu8NtvvwG5YvN79+7x5s0bOnfujEKhyCNsVrqdfag3UNKqVSt0dHSoUqUKv/32G506dWLFihVER0cTGxtL9erV0dXVxcrKin79+vH69Wvp2pSUFPbv3098fDw2NjasXLkSgKSkJNTU1HByckKhULBr1y4A9PX1mTBhAgCxsbGUKlUKLS0tnJycWL58uUq73r59S5MmTTAwMMDIyIidO3eSkZGri3BxcSErKwtnZ2cWL16MtbU1+vr6XLlyBWdnZ6ZOnYqFhQUVKlTg+fPnKv0aHh5O69atAXB2dpbecRkZGRmZ/zay65SMzD/Ihg0biIqKYs2aNbi6uvLkyRMuXrzIpUuXCAgIYMeOHXTv3p1u3boRFBQE5A6E1dXVmTx5MnZ2dty9e1cazE+aNAl7e3uaNGmicp9BgwZx+/Zt9PX12bdvH2PGjOH8+fPSQP5DkpOTGTRoED169OD8+fPExMRgaGgoCZ+zsrL45Zdf6NmzJ6VKlcLQ0FAa7H6JN2/eMGvWLNasWUNaWhrNmzenWbNm2NracufOHXr37k1UVBT37t0jISGBlStXsn37dqZNm4aBgQE//PADjo6O9O/fH0dHR+rUqQPkDtx1dXXZtWsXxsbGTJ06lZMnT5Kamqpy/61bt7Jx40YiIyPZs2cPjo6OvHjxgkOHDuHi4gKAjY0NCoWCoKAgLl26xLx583B2dqZWrVps2rSJ33//HSsrK0qUKMHTp0+ZMmUKrVu3xtjYWJpAArRr146RI0fSvXt3hg8fruKiNnjwYKpWrUqLFi2oXbs28fHx5OTk8PPPP/Pu3TtatGjB4sWLefr0KSEhIYSEhBAXFwcgvQeFCxfG3t6eadOm8fjxYzZu3EiHDh0kt6mff/4ZyI1OpaGhwaZNm+jfvz/R0dH4+fmxfft2goODKVGiBDVr1kQIwcmTJylXrhyHDx8mKyuLxo0bS65gDg4OODk5cfv2bZYvX050dDQTJkzg/PnzLFy4EGdnZ/z9/SlcuDCjRo2iRIkSHDp0CAMDA6Kiopg9ezadOnWiR48eGBsbk56enq+o/2Mx+KtXrwCYc+V3tIy+f9FlfqjlZOEERF16To7av/N/u7IN3weyDd8H/4QN+Qm6/w3IOxoyMt+YDzNIf7h7kR/JyclYWFjg5+eHtbU1lSpVkiL86Ojo8PbtWyZOnIiFhYWKr7+uri5ZWVlUqFCBPXv2SC4vdnZ2VK9enbp160pl09LSWLp0Ka1bt0ZDQ4MyZcoQFxdHdnZ2vm3q2LEjb9++pVKlSvTp04f+/ftjYGBAgwYN6N27N+vXryckJASFQoG/vz9Nmzbl5s2bBeqbzMxMYmNjcXd3p0aNGrRs2ZKjR49y+PBhQkNDiYyMJDMzk2PHjrF161YpilXVqlUxNzfHzMyMvn370rJlS6KiogA4evQop0+fZt26dVSsWBEHBwdGjhwJwP79+1XuP2/ePNzd3SlUqBB9+vTBxcWFevXq4ejoyNy5cwEoXrw4I0eOZN++faSkpLB161ZKly6NhYUFGRkZFClShBYtWqCuro5CocDY2BgLCwuVKErx8fEYGxuzatUqEhISKF++PIsWLZLO16xZk7Jly9KyZUuePn1K+fLlqVGjBomJiQQGBjJgwAAcHBzw9vZm1qxZLFu2jHfv3nHr1i127drF5cuX2bx5M0IIbty4QUZGhhQwQEn16tWBXEG2tbU106dPJygoiN69e+Po6MigQYNo3rw506dPB3J3yF69esWqVauoUKEClStXpm7duqSmpnLmzBng/3JyXLhwgR9++IEiRYpQrVo1bt++TXR0NEZGRmzZsgWFQkGfPn1wdHSkfv36WFhY0KZNGyIiIvjpp58IDQ0lJCQk33dk0qRJGBsbSx85h4aMjIzMvxghIyPzTfHx8RH9+/cXQgiRkpIiXr9+rXLMxsZGREVFCSGESE5OFlZWVqJEiRLCwMBABAcHi8zMTKkua2trMXbsWJX64+LihLGxsfQ9LCxMlC5dWqXMjBkzhJ2dnRBCiISEBAGIe/fuqZRxd3eX2vQlbGxsxNSpU1WOlStXTkRERAghhDh06JAAxIsXL6TzFy5cEIBISkqS2q2np6dSx5gxY1TabmNjIypWrCiaNWumckx5HyXR0dHC1tZWCCHE7NmzhZqamtDX11f5qKmpiaFDhwohcvvI3t6+QLYKIcTFixcFIO7evSsdq1SpkrCyshKBgYGSncbGxiIuLi7P9fn1h/KYpqamePPmjXS8fPnyIjw8XAghRMWKFYWWlpaKDRoaGgIQ165dE5s3bxbq6up56jYxMZHeKSGEAMSKFStU2lSoUCGxZMmSPP2ofE9mzpwp9emHmJiYiKVLlwoh8n/XOnbsKBo0aKByrEaNGmLgwIFCCNV3vGvXrmLjxo0q7/jHvHv3TqSmpkqf+/fvC0A8e/bsk9d872RkZIjNmzeLjIyMf7opfxjZhu8D2Ybvg/81G1JTUwUgUlNTv/o+8o6GjMxfyJeE31ZWVty8eZO5c+eiUChYv349NWrUkMS7CoUCQ0PDL97nz4p4C8Ln7qHM+i2+IFDPr45vIVC3tLRUEacnJCRw8+ZNhgwZImkMChLp63MkJiZSuHBh9PX1vxj2VsmaNWs4evQoSUlJHD16FICGDRt+ModEeno6PXr0kGyoWLEi7du35/bt25QqVeqr2vuhvco++BZ87TP88B3X1dWld+/eKu/4x8hicBkZGZn/DvJEQ0bmLyQ/4feDBw8IDQ2VhN+6urpERkaSlpZGWloaJ06ckATJ7969Y8SIEVJ94eHhjBkzhszMTGxtbTE2Nmb9+vUqA/O0tDSWL19OcnIylpaW7Ny5E4VCQa9evaQyqampeXI6fNjmiRMn0rlzZwwNDbG2tiY9PV06Hx8fj0KhUHG9evbsGQBnz54FcsXXPj4+ANSqVQuFQkGXLl1ITU1FR0cHNTU1FAoF48aNU6kbcicoZ8+eRV9fn+LFi5OWlsbJkyel8y9fviQiIoK7d++iUCj48ccfefjwIW5ubpQvX5769evTsmVL4uPj8fT0/Gx4WSXv379XEX736NEDTU1Njh07Jt3n+fPnXLhwgbi4uAJltIZcYX2tWrUoWbKkJNBv3rw5kBuxqkWLFly8eJEJEyZQtmxZTE1NuXbtGmvXrsXFxYXTp0+zdOlSHBwc0NbWpk2bNlK/nzt3jooVK6Kjo8PLly8lLYWSgQMHsnDhQkn8npqaSteuXdHQ0EChUKBQKBg4cCDJycn88ssvuLi4cP/+fSZMmCAJxm1tbXn58qWKlufixYvMnz+fgIAA9PT0JN3KnTt38PX1RV9fnwsXLqjoY27dusWMGTOIi4uT3nGlhkRGRkZG5r/Lv1OFIyPzL+TOnTscPXoUMzMzevbsScOGDYmNjWXRokVMmDCBli1b4uTkxKlTpzh37hyQK/h9/vw5Dx8+RFtbG8iNOpSTk8P27dt58eIF9evXV1m9HjRoEElJSZibm0vCbw0NDY4ePcqhQ4cwNzcnLCxMGuznx8cZr0eMGJFnIPshSj96ZULCixcvShmuY2JipEFuRkYGtWrVom/fvty/f5+ePXvmWW2/cuUKjo6OHDx4kD179tCvXz8OHz7M1KlTadq0KY0bN+bFixeMHj2aGjVqsGrVKpYtW0bx4sUZMWIEx44dY+XKlUyaNInx48dTtmxZNm7c+NlnM3ToUDZs2MDSpUuxsbFh6tSpXLhwgcGDB7Nw4ULi4+OpU6cOmpqanDt3Dhsbmy887VxOnTrFjh07sLCwoHv37pw8eZLJkydLyQ5v3LhB0aJFOXToEPv27WPAgAFoampia2vLsmXLGDduHKamplhYWDB48GBMTU1p06YNCQkJ9O/fn379+jF//nwSEhJYvXq1lDARcjUXGzZsYOPGjairq/PLL78QEhKCtbU1w4YN49SpUyxbtgwHBwdpwmJtbc3o0aMZOnQoFStWZODAgcD/ZedWMm7cOGbMmMGMGTPw8/Pj7Nmz9OjRgxEjRmBtbU3lypU5dOgQkDvpHDlyJB4eHmzcuJHNmzezcOHCT2ovZDH494lsw/eBbMP3wbey4d8q8P4a/p1PWEbmX0haWhoWFha8f/+eQoUKUalSJR49esTkyZO5fv06aWlpaGtrs337dmkFuVmzZkycOJFSpUrx/v17wsLCEEKgp6dHmTJlAHBzcyMhIUG6x9KlS2nfvj2HDh2ShN+WlpZYWloSEBBAVlYWlStXxsXF5ZOr/UrhN8CwYcMYOXIkt2/f/qRtSteZxMREypUrh7W1tXTO1dUVW1tbFixYQHx8PGvXrpWiDU2dOlUlJC7kZo52cHDA0dERR0dHhg8fTrFixTh79ixhYWG8f/+eyMhIKambn58f8fHxlChRglGjRvHkyRNycnIkwbmVldVnJxqvX78mNjaWJUuWUL9+fYKCgvj9998xNTWlZMmSBAUFkZaWRk5ODoMHD8bZ2fmTdX1MWFiYFBlrxIgRNGnShICAAPr378/t27cpX748q1evxtnZGWdnZ/bs2YOJiQnJycl07tyZd+/eUbhwYRo0aICXlxcAo0ePpkWLFty6dYsJEyaQnJyMsbExd+/e5d27d9IzzcrKYtmyZRQpUgSA3377TZpYDhgwADs7OyZNmsSIESO4cuUKnp6emJqakpOTw+zZs1FTU6NevXq8e/eO6dOnU7NmTcmu4OBgAgMDAShbtiw7d+6kffv2+Pv7A1CiRAlpx8zExIQnT55w4MABDh06xOvXr4mIiJB2vD5GzgwuIyMj8x/iq1UdMjIyn6Ugwu/8RLEfllXyVwi/fXx8RO/evYWxsbFYuHBhnvb/GeH3tGnTJIH0l4TfQuQKif8p4XdSUpIAxM8//6wi/O7UqZNo0qSJaNq0qQgODpbKf0r4nR/KPvr4OXwo/M7KyhJjx44VZcqUEYUKFRL6+vpCQ0NDtGrVSgghxJs3b4S3t7f03MLCwoSbm5tUd0pKihAiV/gdGRmpcr/8+iA/sbeyrtjYWCHElwXjyvutXbtW+v7rr78KQJw+fVo6dvDgQRXhYFhYmNDQ0BC1a9cWP/74o7h69eon+04Wg3+fyDZ8H8g2fB/8r9kgi8FlZP4FfK0o9lP8EfH0mzdvuHnzJomJiaSlpUmJ+j7Ot1GQe3zPwm8lf1b4/Xcwbdo0Zs6cybBhwzh06BAJCQn4+/tLrmS6urp5+utDPs76Dqj05bfsgw+f9afu/bn2hIeHc/XqVRo2bMiZM2dwd3dn06ZN+d5LFoPLyMjI/HeQJxoyMn8jurq6NGrUiFmzZhEfH8+JEye4fPkykJuI71O5LQpKyZIl0dTUlPIeQK7w+969e5w/fx43NzcuXbpEZmYmzZo1w9HREVNTU7S0tDAwMMDAwIDk5GQGDx4sCYYDAwPJysqS6nv+/DmQ6x5jZGREhQoV2Lx5MwBDhgwhNTWV4OBgUlNTCQ8P/2Kb9+7dy/jx4+nYsSPJyclMmjSJrVu38vTpU5o0acLgwYN59uwZZ8+excPDgydPnqChocHFixdp0qQJrq6u+Pn5sXTpUpV68xO1//TTT0Bu/hI7OzsAKWO1nZ0dBgYGrFy5kvT0dA4dOsT69esxMzOjT58+KnXPnTsXBwcHdHR0KFq0KC1btqRnz55SH9avXx8AR0dHDAwM6NmzJ2vWrCEhIQEnJycAdu3axfPnz7ly5Qpubm6ULFmSX375RdLnLFmyhGPHjpGdnc2SJUuIiIjg4sWLkgvTqlWrpPa8ePECyM267eDgkG9eE6XY+/79+0BudnNlXb169UKhUKChocGxY8fw9fUlJCSEAQMGMHToUF69eiWJ4j/k5cuXUj/m5ORQokQJYmNjVcpcuHABNTU1tLW1GThwIPv27aNSpUpSAkIZGRkZmf8uskZDRuZvYsmSJWRnZ1O5cmX09PRYsWIFurq6krDY1taWI0eO0KZNG7S1tSlc+OtFYoaGhnTq1IkhQ4ZgamoqCb81NTVp164dUVFR+Pr6cuHCBWxtbTl16hSHDx+mW7du/PTTT3h7e+Pq6oqFhQUxMTFkZWUxefJkKfM4wKhRo9DT06NGjRoMGjSIgwcPSoPe0aNHM3PmTMaOHcuYMWMIDQ0tULujoqKYOHEiBw8e5OnTpwQGBlKpUiUpYV/ZsmXp2LEjV65cwcvLC39/f27fvs2AAQMYPXo0K1euZOTIkZiZmanU+7GovVevXvj4+FCqVCk2bNhAixYtWLp0Kdu3b+fQoUNMmTKFVatWcfjwYdTV1Tl8+DBPnz6ldevW0qr+2bNn6devH8uXL8fb25vff/+dX375hTZt2kj2njp1ih9++AErKytGjx6NjY0NU6ZMAZCet0KhQE1NjW3bttGpUydmzJhBeno6JUuWlNqvUCg4deoUffr0oVevXhw+fJhx48bRokULmjVrJpWbP38+ALt372bTpk3ExsZKExolfn5+lC1blvbt2xMdHc379+8pVaoUiYmJ3Lx5EyMjIw4cOEBwcDC2tracOXOGSpUqkZ2dLSVH/Bxqamq0bduWVatWMW7cOOn4kiVLsLCwICkpSTp2584dOnbsmG89shj8+0S24fvg32zD/4LwWSYvX7Wj8WHGYxkZma/DxMSEBQsWULVqVcqVK8f+/fvZtm2bNDgeO3Ysd+/epVSpUpKA948wY8YMvLy8CAgIwM/Pj6pVq+YRfpcrV46wsDAcHBzo2rUrnp6e3Lhxg3v37pGVlUXnzp1p2rQpLVu2ZNmyZbx+/ZqHDx8CcP/+fQYOHMjDhw9p3Lgxx44dY9q0aQAYGRlJ2bIVCoUk+v4SDRo0oEePHmhoaNC/f3/ev3/PyZMn2blzpxTd6Pr166SkpLBz504gdwdo9uzZDB06FGNjY4KCgqR2fFhv7969sbe3Z9iwYRQuXJhDhw6hoaGBh4eH1BfLli2jbdu2khuTuro68fHxVK5cmYCAABo2bCjt6iQnJ6Ovr09AQAA2Nja4u7tLoXHt7e2xt7enePHiQO4EaurUqdStW5fnz5/j7OzMsWPHgFzXJicnJ65du4aPjw/6+vrk5OSoTJa0tbVRV1fHw8OD2NhYhBCYmpoCqOTiaNy4MfB/uziZmZm8efNGpS8UCgVbtmyhUKFC1KhRA39/f0qUKAHkCvAtLCxo3749M2fO5P79+7x9+5ZHjx4RFxf3yUnBx7Rv355jx47x22+/Abm7HOvXr6d48eJ07NgRR0dHADw8PD4p+JYzg8vIyMj8h/gaQceHIte/go+Fr/9LAGLTpk0FLq8Uhn5vKMWlyo+5ublo3ry5SExMlMrY2NgIQKxevTrP9aVLlxZAHtHt+fPnRcuWLYW5ubnQ1tYW9vb2omvXruLmzZt/qr1hYWFSW9XV1YWNjY0YMGCASEtL+1P1/pV87e8kPT1dRfitFIMrxdBqamqibt26Ijg4WBIMP3r0SMpAnZSUlCc7tFLYO2nSJHHnzp0/3DYh8orPc3JyPik4vnjxohAiV9yuFFUr2bx5s9DU1BRZWVn51iuEqqhdaf+FCxdUynTq1ClPput+/fqJmjVrCiGEePXqlShbtqwoXLiw+OGHH8SKFSvE69evpbKfqlcIIQYOHCgaNmwocnJyhJmZmbh+/bqwtbUVZcuWFbq6ukKhUIiyZcuKiIgIERMTkycQQH6/+Y/7SgghjIyMpOf1OfIT9guR+4507dpV5Vh+dr148UIA4tChQ9Kx0qVLi0mTJgkhckXhmpqaKkLuL/2tk8Xg3yeyDd8Hsg3fB/9rNshicJnvjps3b/Lo0SPWrVvH1atXadSokYr+wMrKKo+P9smTJ3ny5EkeEev27dupUqUK79+/Z+XKlVy/fp0VK1ZgbGzM6NGj/3RbXV1defz4MXfv3mXKlCn89NNPDB48ON+y3zLD8h+hIMLxCxcusHr1ahITEzl//jzt27cHVIXfHwp3ixcvzv3791WExEuXLpVW5T/mQ2HvwYMHKV269CeFvQXla8XFf6ReZT0FqeNz1xkaGnL+/HlWr16NpaUlY8aMwc3NLU+Y3vzw9fXl6NGjXLx4EU1NTZYvX869e/fQ1dWlbt26NGrUiMjISC5evMjx48f/cjs/x8e/w4IGAWjfvr3kSrdq1Srq1auXx6Xtc8hicBkZGZn/EF8zK/Hx8RF9+/YVQ4YMEYUKFRJFixYVYWFhKmXu3bsnGjduLPT19YWhoaFo1aqVePLkiXQ+ISFB+Pr6CgMDA2FoaCg8PDzEmTNn8qyEA3nqzo9ly5aJChUqCAMDA1G0aFHRtm1b8dtvv6mUuXLlimjYsKEwNDQUBgYGolq1aiqrsIsWLRKlS5cWWlpawsLCQvTp06fA9ihDYX5I//79hY+PT4H7TbnCr/zY2Nh81ua4uLg8fRUXFyeCg4NFw4YNVcpmZGSIIkWKqKxm9+nTR/Tp00cYGRkJMzMzMWrUKJGTkyNd8+7dOzF48GBRrFgxoaenJypVqqSyYvk58lshXblypQDEjRs3JHuHDx8utLW1RXJyslSuW7duom/fviphRF+/fi0KFy4smjZtmu/9Pl6J/VryWyXu1q2bsLCwUDm/YMECYWtrKxQKhRDiy++F8rp58+aJEiVKCF1dXdGqVSvx8uVLlXstWLBAODs7C21tbeHk5CTmzJkjnVOuIK9Zs0bUqFFDaGtr5/vsw8LCREREhHB1dRVC5O7+eHh4CH19faGuri7s7OzEpUuXhBBCHDlyRKipqQlNTU2hp6cnAKGpqSkAoaGhIfbu3StdM3r0aAGIvXv3CkCcPHlSdO7cWdja2godHR3h6OgooqOjRZs2bUSjRo2EEEJUr15dqKuri2nTpgkLCwthamoqevfurbJi8vFvVl9fX4wdO1alXwBhYWEhtLW1ha+vr5g2bZoAxJEjR4QQQrRr1054enqKatWqCR0dHVGiRAnh4eEhXFxcpDrU1dVF/fr1RfPmzQUgFAqFUCgUQlNTU9qtAcSMGTNU7l2vXj1hamoq1du3b1/Ru3dv6TdtY2MjPD09hYaGhlQvIHR0dIS+vn6e5/Ph34Lff/9dqKmpiY4dOwo/Pz8BiM6dO4vKlSsLR0dHMX/+fKnsnDlzpB2NuXPnikKFCglAODo6imXLlqn0FSDmzZsnGjZsKHR1dYWampoYOXKkuH37tvDx8RF6enrCy8tL5e+eMgQuICwtLVXeUeXu9enTp4Wfn58wMzMThoaGAhAzZ86U6lC+G6GhoaJp06ZCV1dX2NjYCIVCIc6ePStMTExE0aJFxbRp01TaO2PGDAGI27dviy+hXEmTdzT+WWQbvg9kG74P/tds+DM7Gl+tJFq6dCmDBg3i1KlTnDhxgqCgIKpWrUqdOnXIycmhSZMmGBgYcPjwYbKysujTpw+tW7cmPj4eyF3tcnd3JzY2FnV1dRISEtDU1MTb25vo6GjGjBkjRUwpiH93ZmYm48aNw8nJiZSUFAYNGkRQUJDkx/3w4UNq1KiBr68vBw8exMjIiGPHjkn+1rGxsQwaNIjJkydTv359UlNTJR/qgtjzLfrtzJkzmJubExcXR7169VBXV/9sXa1bt+bKlSvs3r2b/fv3A2BsbIyjoyM1atTg8ePHWFpaArm7AW/evJEi6yjb0qVLF06fPs3Zs2fp3r071tbWdOvWDYCQkBCuXbvGmjVrKFasGJs2baJevXpcvnxZEud+DUpf8g93A4oWLYq/vz9Lly5l1KhRvHnzhp9//pnDhw+zbNkyqdyePXt49uwZQ4cOzbduExOTr25PQdr7YVvv3LmjkmG5oO/FnTt3WLt2Ldu2bePVq1d06dKF3r17s3LlSgBWrlzJmDFjmD17Nu7u7ly4cIFu3bqhr69Pp06dpHqGDx9OZGQk7u7uqKmp5fs7efnyJREREZw5cwZPT0/OnTvHhQsXqFChAvv375cExhUrVqRixYq4uLgQFBREzZo1WbNmDW3atKFKlSr4+flRsmRJ7t69Kz3rwYMH4+Pjg4eHB0WLFsXT05NmzZqRkpLCsGHDMDExkdprYGBAdnY2hw8fZuPGjTx8+JBOnTpRvnx56f36+Dfr6+vLqlWrpN0ppWi4cuXKTJkyhQsXLuTRhgUGBtK0aVPq16/Pli1bOHLkCBMnTsTb21ul3OHDh5k2bRq9evUiLi5O2oUIDQ3F3t6egIAAJk6cSNu2bdHV1eXZs2fs378fZ2dnNm7cyNOnTwkJCeHdu3eYm5sDuaGCr1y5QpcuXahevTpxcXEcOHCAmTNnUqtWLRITE6lXrx779+/H1dUVLS0tqT2FChWiXLlyrFy5kho1amBgYMDEiROxsrIiMzNTJYmdnp4eAJs2baJ///60b9+etWvXEhAQQFBQEObm5lKCPFDN1u3q6sq8efM4ceKElK27c+fOhISEsGvXLukape6mZ8+elC9fnoEDB0qJGiE3AWSnTp2IiYlBCIGPjw+hoaF4e3vz+vVrRo0aBeQKvmfNmsW0adOIiYlh9uzZBAUFkZ2dLfX9h4EBDhw4QI0aNbC3t+djZDH494lsw9cji59lZP5A1CmliBTAwcGB2bNnc+DAAerUqcOBAwe4fPkySUlJkoBv2bJluLq6SgOg5ORkhgwZImXX/XDgqhSQWlhYFLg9nTt3lv5dsmRJZs2ahaenJ+np6RgYGDBnzhyMjY1Zs2aN5F6gFCQCjB8/nsGDB9O/f3/pmKenJ0CB7PkW/aYU/pqYmBTIdl1dXQwMDNDQ0FAp7+3tjZOTE8uXL5cG5nFxcbRq1Upl0mZlZUVUVBQKhQInJycuX75MVFQU3bp1Izk5mbi4OJKTkylWrBgAoaGh7N69m7i4OCZOnFhgmwEeP37M9OnTKV68eJ4oOJ07d2bw4MGMHDmS9evXU6pUKcqXL69SRpmN+muyMf8Zzp07x6pVq6hVq5Z0LCMjQyXD8r59+1TeC19fX1xcXFixYoXKe/Hu3TuWLVsmuSDFxMTQsGFDIiMjsbCwICwsjMjISJo3bw7khle9du0a8+fPV5loDBgwQCoD+f9ODAwM8Pf3Jy4uTrp/XFwcPj4+KlGMdHV10dXVxcTEBFtbWyD3d2NlZcXjx49RKBSUL1+e7OxsevToAeS+L4sXL0ZTU5Pw8HA6derEsGHD+O2339DU1MTAwEAS9pqbm2NgYMCJEyfw9vYmLCyMhg0bcuDAAWmi8fFv1tTUlBs3bki/WWUEpaCgIJycnHBycuLo0aPMmTNHum7btm34+flx7949AgICsLS0pFevXsybN08lO7aLi4s0cC5TpgyrVq3C1taWvn37ArlZzydNmkTx4sWpXr26ysDXwcEBBwcHZs2aRfXq1aUoYGpqahgaGrJ27VqWLVuGg4MDRkZG5OTkYG9vj4ZG7p9VMzOzPL9nhUJBQEAACQkJZGVlUbJkSYoWLUrp0qX57bff8vxGAKZPn05QUBAxMTGkpaUxa9YscnJyGDp0qMpE48Ns3To6Ojx//lwlW3f//v0JDg5WqTsjI4PQ0FBiY2P57bffqF27NmvWrKFy5co8ePCA2rVr8+LFC2lCf+jQIcqVK0fVqlUpXbq0JHSvV68ebdu2BWDixInMmjWLK1eu0LFjR7p168a4ceM4ffo0lSpVAuDIkSPExMTksRXkzOAyMjIy/yX+0ETjQywtLUlJSQHg+vXrWFlZqUQJKV26NCYmJly/fh1PT08GDRpE165dWb58OX5+frRq1YpSpUr9YQPOnTtHeHg4Fy9e5MWLF5JfcnJyMqVLlyYhIYHq1avnm/gqJSWFR48eUbt27XzrLog9BeVz/fYt6dq1Kz/99BNDhw7lt99+Y9euXRw8eFClTJUqVVTi4Xt5eREZGUl2djaXL18mOztbZTIGuauMX+NnXaJECYQQvHnzBjc3NzZs2KCysgvQsGFDevTowZEjR1i8eLHKAFSJEH9sBXPixIkqk6Jr165hbW2db9nLly9LK/EZGRk0bNiQ2bNnS+dtbGxUokDl916YmZnleS+sra1VdA5eXl7k5ORw8+ZNDA0NSUxMpEuXLtIAHCArKwtjY2OV9qWkpGBiYvJFDUC3bt3o3LkzM2bMQE1NjVWrVuUbllS56/JhyNrNmzfj7e3NkydP2LVrFydOnCArKwt3d3fmzJlD0aJFAViwYAG3bt3i7du3aGpqkpGRgampqUpEqxo1arBjxw7i4+OpWbMmPXr04NatW9L5L/1mb968SXBwME2bNpWuqVu3LnPmzKFs2bIAXLx4kUuXLqGpqYmWlhYPHjzgp59+Iicnh6SkJFxcXChRogSlSpWS+k5pQ0hIiEqfTZo0iQsXLlCuXDk8PT1RU1MjKSlJmpy/fv0a+L8Qsjo6OvTp00clQaCbm1uBf89dunRh27Zt0g4qQEJCApA7uXr58iWbN28mKCiIoKAgDAwMOH36NE5OTqxfv57ff/+dBQsWSO0RQqBQKFT+xly6dImSJUtK/QW5u4jv3r3j1atXku7B2tqaadOmSdG6UlNTMTExYdKkSQgh2LBhA/379+f48eOkpKSQnZ2NEIKoqCiVnQ9l1CvI1XYYGRkRExMjRatq2LAhixcvplKlSmzYsIGgoCBatWqVb/+MGDGCQYMGSd9fvXqFlZUVfcqYftXfoO+JzMxMdj6AgeXMPpuE8XtGtkFGRuaP8NUTjT8rOgwPD6ddu3bs2LGDXbt2ERYWxpo1a1RiwheU169f4+/vj7+/PytXrqRIkSIkJyfnya77KT53rqCoqanlGQwXNEvynxVr5kfHjh0ZPnw4J06c4Pjx49jZ2VG9evUCX5+eno66ujrnzp3L48JV0FClAL/88gtGRkaYm5tjaGiYbxkNDQ06dOhAWFgYp06dyldQrJzw3LhxAy8vrwLfv2fPntLqLiDtzuSHk5MTW7duRUNDg2LFiuWZEP0VWabT09OB3IF75cqVVc593O/a2toFqrNRo0Zoa2uzadMmtLS0yMzMpGXLlgW6tmzZsjg7O9O2bVtcXFwoU6aMNPhVsmbNGkJDQ4mMjMTLywtDQ0OmTZvGqVOnVMp97l3P7zebmJhIQEDAVwnt09PT6dGjB/369QNyXTJdXFwYNWqUyoTyw74siMj843ohd2dj7ty5Kgsi3+L37OjoyNGjR8nMzPzkoGfhwoW8fv2aLl26SAEKPp7Y5dembymov3z5MjNnzsTGxgZtbW28vLzyPKsv9UfXrl3p0KEDUVFRxMXF0bp1a8k17GO0tbUL/M7LyMjIyHzffNOoUx9nnoXcleSXL19SunRp6ZijoyMDBw5k7969NG/eXIo+9LWZkW/cuMHz58+ZPHky1atXx9nZOc+qYrly5fjll1/yHfwbGhpia2vLgQMH/rA9RYoU4fHjxyrXfTxAKwiamppfZfun+srMzIymTZsSFxfHkiVL8rhKAHkGhidPnsTBwQF1dXXc3d3Jzs4mJSVFygmg/HyNS5udnR2lSpX65CRDSefOnTl8+DBNmjShUKFCec7XrVuXwoULM3Xq1Hyv/9Qqv6mpqUrble4s+aGlpYW9vT22trZ5Jhn5kd978ezZM16+fElISAgWFhbEx8eTnJzMo0ePgNzV+nr16gG5q7t9+/bFwsKCX3/9FXt7e16/fk23bt1wd3fHzc2NChUqcOnSJQDCwsJITU2VMnVv27Yt32evoaFBp06diIuLY9GiRdjZ2eHo6Ii2tjb29vYsWrRIKqvsc8hN5DZ8+HA6depEfHw8nTt3xtbWVtKSKAkJCcHS0pLevXvj7u6Og4MDv/zyC0lJSejp6eHg4JBv1ul58+Zx+PBhNDU1KVKkCM+fP2ft2rXUrl2batWqSb77SncmJycnzp49S2ZmJubm5ixatEgl0znk5mG4du2a9HyV7mD29vZffIaTJk1i+vTpWFpaSq56yr8PHh4eLFiwgO3bt2Nvb4+fnx8AvXv3RltbW3I3A9iyZQseHh7o6Ohw/fp1du/ejYGBAa6urkDuDpa6urqUmO/j/mzXrh3p6enMnTs333ZGRETQt29fnJycpIhPkBu5as6cOdLfIGWbYmJipAzoyqhP48ePx8DAAD09Pckd0MzMDF1dXSIiIlTe0Z07d0p1jhgxQtrx6t69Ow0aNMDV1ZUDBw7w7NkzQkNDsbW1JTIyUqXNtra2jB8/njdv3tCjRw9sbGzYunUrnp6evH//HhMTE7Zv3/5ViwYyMjIyMv9evqka6uPMs1lZWfTu3RsfHx8qVqzI27dvGTJkCC1btsTOzo4HDx5w5swZWrRoAeT+Tyo9PZ0DBw7g5uaGnp7eJ1e9IHfbX0tLi5iYGHr27MmVK1dUMtJC7uAoJiaGNm3aMGLECIyNjTl58iSVKlXCycmJ8PBwevbsibm5OfXr1yctLY1jx47Rt2/fL9oDUKtWLaZNm8ayZcvw8vJixYoVXLlyBXd396/qO+WEp2rVqmhra+c76P64fFJSEgkJCZQoUQJDQ0NpFbBr164EBASQnZ2t4uuvJDk5mUGDBtGjRw/Onz9PTEyMNGBwdHSkffv2dOzYURIgP336lAMHDlCuXDkaNmz4VXZ9CRcXF549e/bJ56yvr8/ChQtp1aoVjRs3pl+/ftjb2/Ps2TPWrl1LcnIya9as+aZt+hIfvxevXr1i9erV2NjYsG/fPk6cOEGnTp3Q0dGhU6dOTJ06lcDAQB4+fEjdunUZO3Ysffr0wcjISEpOFhMTg5OTEyNGjCAtLQ0PDw9pchQaGspPP/0kib+vXLnCxo0b8/2ddO3aFRcXF3JycihSpAjz5s3Dzc2NpKQknj17BuQKgBs0aEDz5s25dOkSI0eOZOLEifTq1YunT59iYmLC5MmT89itra3No0eP2LNnD3Z2dkDuZN/a2pr9+/cTExPD3LlzqVOnDlZWVlLm7aZNm3L37l0WL15MRkYGVapUAaBZs2b4+vpKk8jjx4/z+PFjevTowYwZMwgMDCQ9PR1NTU2WLFkC/N+q/LBhw6hSpQohISF07dqVN2/ekJiYSEhIiIrbW35cvnwZDw8PDh06xLFjx+jatSvbtm3D09OTYcOGsXr1ajZs2ICvry8///wzVapUoVatWqxcuRJ1dXU8PT1JTEwkLCxM0m/UqVOH69ev07lzZ3r37k358uXR09PD1dWV0NBQcnJy8iQTrFy5MkOHDmXw4ME8fPiQZs2akZ6eztOnT3F2diYpKYmdO3eSlpZGYGAg7u7u+Pn5cf/+fZKSkvjpp59U6rO3t2f+/PmsX7+eH3/8EcidII0cOZKaNWvi7u7O8ePHiY6OZsaMGdy9exctLS06depEaGgoTZs2xcDAgAYNGtCuXTtpB2Xt2rX4+Phw+vRpevbsiaamJqGhoTg6Oqq4TymJiopCQ0ODsLAw7t27R4cOHfD29qZ+/fps374dQ0NDpk+fTnBwsIoLpxJZDP59IttQcGQRuIzM//FNdzQ+zjyrjGDz888/A7luDM+fP5cyxAYGBlK/fn1J+Oft7U3Pnj1p3bo1RYoU+eQqtpIiRYqwZMkS1q1bR+nSpZk8eTLTp09XKWNmZsbBgwdJT0/Hx8eHChUqsGDBAmmrv1OnTkRHRzN37lxcXV0JCAiQBMhfsgfA39+f0aNHM3ToUDw9PUlLSytwFt0PiYyMZN++fVhZWRVoktKiRQvq1atHzZo1KVKkCKtXr5bO+fn5YWlpib+/f74uQx07duTt27dUqlSJPn360L9/f7p37y6dV2YCHjx4ME5OTjRt2pQzZ858UuPwZ1GusH6KJk2acPz4cTQ1NWnXrp3k4pOamsr48eP/kjZ9jo/fi0uXLmFqasqpU6dwcHCgY8eOFCtWDCMjI5o3b06dOnW4c+eOFOGpcuXKLFu2jFu3bjFixAji4uK4c+cO8fHx7Nmzh0qVKtGqVStpddnQ0FASf1tYWODn5/fJ34mDgwPu7u4IIVi5ciXNmjWjZMmS1K5dW4o8NnfuXKysrBg7diwANWvWJCIigqioKExNTT+5+2NmZoaLiwutW7eW3L28vLyknYSJEyeSlZXFy5cvUVdXlzJYW1hYYGxsjLu7O5UrV8bFxQU1NTW2bNnC8uXLmTVrFpA7eV6+fDl2dnasX7+effv28f79e+Li4hg5ciTwf25k5cqV4/Dhw9y6dYvq1atz7tw5Tp48+VkXOSUGBgbMnj0bZ2dnSZ+l3OXr168furq6pKSkUL16dem8paUlFhYWklZnz5490i5QyZIlMTQ0pHbt2qxfvx5nZ2d69erF77//zoULF5g3bx7t2rVj0qRJedoyZcoUVq1axalTp/D392fLli2cOHGCmzdvsm7dOmrXrk3Tpk2ZOXMmkyZNwsnJiV9//RV9fX18fX1V6qpfv76UAV3Z98r3UjnwB+jQoYPUn+/fv6d58+a0bNmSrKwsateuzYoVK2jfvj1BQUFA7q6hh4cHffv2xcTEBA0NDczNzQkKClLRuyhp0KABWlpaFC1alDFjxvDq1Ss8PT2ZPn06mZmZdOzYkevXr0vZwz9GzgwuIyMj8x/iqwPiynz3pKWlCSMjI7Fhw4Y85/7q7O7/iygzbX+Io6OjMDU1FUIIKdv2x/wV2bZzcnJE0aJFhUKh+GRs7GbNmomgoCCVYwkJCQIQ9+7dE0Lk5oqIiopSKePm5qaS/4UvZKT+mqzTQggxY8YM4ezsLIQQ4smTJ0JDQ0PKmzF+/HhRokSJT9r9qff64777UtZvHx8fYWhoqGI7+WSyLly4sJQ3Q/nR0dERgHj9+rWIjo4WdnZ2Kte8fPnyi1mxO3XqJCpWrChsbW1FtWrVVDLUBwYGilq1aonKlSuLHj16SMe/lAF9wIABkn1KLl68KABRqlQpIYQQTZs2FcHBwSplNm/erPL83N3dhZubm0reoPyysZuYmEj992GW9yNHjghNTU1x6tQplSzvHyNnBv8+kW34PpBt+D74X7NBzgwuA+SKPFNSUhg3bhwmJiYqkWBk/lryE8OKr4iY9S2ybT99+pTZs2dLeo4/w18d5CA/gX3Hjh359ddfOXHiBL169cLS0pLixYuzfPlypk2blq8boBIjIyMpgtOHvHz5Mk8Ur28h5E5PTyciIoKEhATpc/nyZW7fvp1HqJ2dnf1V9RcvXpz4+HgePnxIvXr1SEtLAyAxMZFq1aqho6OT5x5/1KYv5ez5I3z47in/nZqaSnh4OK1atZLykXyqfXJmcBkZGZn/Dt/1ROOXX37BwMDgk5//Mq6urp+0+2NRqZLk5GSKFi3KqlWrWLx48WcF0H+U+vXrf7JdX5tj43+FvytIgrm5OWPHjmXy5MkIITh8+PAn23PixAmVicSxY8cwNDSkRIkSQN4gB69evZIS6RUUpSi7oEEOPgxksG3bNp48eYKjoyNBQUFkZWVJgui7d++iUChUgi7Y2NiwZMkSKXRvfHw8CoWC7du38/vvv6Orq0utWrV49+4dv/32Gy4uLhgZGdGuXbt8J1AbNmzA2NiYwoULo6amJiX4hFx3I1NTUyIiInBzc6N9+/Y8ePBAEqYvW7aMH3/8keTkZBwcHNDW1iY5OZmTJ09+0vacnBzGjh3LunXr2Lp1K02aNCEiIoInT55Qr149FAoF586dY+zYsRw+fPizdUFufoyIiAg2btzIjh07OHToEGXLluXEiRMAkrj+zp07QO47cfr0acaPHy9FihszZgyAFLXOxcVFCrahFNO3adMGQ0NDadLw5MkTXrx4wcCBA6XgBZArKD937hzbt2/HxcUFyP37LiMjIyPz3+a7VnRVrFjxD0Vw+i+wc+fOfAdAgJQP4GNsbW2/uIr+tRnNP2bhwoW8ffs233NKv3CZ3ASDStHz3xUk4cNnn5CQQOfOnZk1axZubm7cu3ePlJQUAgMD6d27N9HR0fTt25eQkBBu3rxJWFgYgwYNkgbztWrVYsmSJTRq1AgTExPGjBnz1avfNjY20mC/QYMGUqLJz6EMZJCVlYWBgQGhoaG0a9eOEydOEBQURPXq1fPNTt+lSxdmz57NrFmzMDU1JTk5GYCDBw8ybdo0atWqRWBgINeuXSMnJ4c9e/aQnp5Os2bNcHZ2VpmUp6eno6amxunTpzl79iwdOnRg9uzZVKtWDW1tbYYOHYqxsTG//fYbffr0QVNTk7p16zJlyhSeP3+Ovb09GRkZaGlpUahQIaZPn87t27clXUR+zJw5k8jISCpWrIimpiYVKlSgS5cuHDhwgM6dO1OxYkXS09Np2LAhx48fL3CwiZEjRzJhwgS6d+9OWloaLVu2ZMGCBZKWTfke9ezZk2nTphEeHs7YsWPR1tYmPDxcpa7BgwezevVqdu/eja6uLv379ycsLIz09HSWLFlCt27dMDc359WrVwwePFjKD2NpaYmHhwempqZERkby4sULfHx8PhkAQhaDf5/INqgiC75lZArGd72joaurmyfE6oef/zI2NjaftPtLIWP/SooXL/7JdskTjfz5u4MkAMTGxtKyZUt69+6Ns7Mz3bp1kxLPFS9enJ07d3L69Gnc3Nzo2bMnXbp0YdSoUdL1I0aMwMfHh4CAABo2bEjTpk2/OrFm8eLFiYiIYPjw4RQtWjRf4fDHKAMZmJqaUr58ecLCwiSBfcWKFT8ZiloZ4vX+/fv4+flJ0ZDCw8MZPHgw7u7udOnShd9++w03Nzfc3d2pXr06LVu2VNlpgtwwwU2bNsXJyYn27dvTvHlzjh8/jpWVFeXKlSMuLo79+/ezY8cOzp49y9y5c6WoUjY2NkBu4sU1a9agra1NYGAgISEhTJgw4ZN2T58+nWHDhmFnZ4eBgQFTpkyhfPnyrFmzhvj4eFJTU0lOTpYSFBY02VhoaCitWrVix44dUtSwoUOHSrsVSqytrSlZsiQGBgaMHTuWLVu2SCJ9JR4eHvj4+JCTk8OGDRuIjY1lwoQJNGnSRHouampqUuZ0ZfACyHXrq1q1KmXLlpWCSlSoUCHfNsticBkZGZn/EF+t6pCRkZH5i1AGMihdunQegX3jxo1FcHCwSEpKEoC4cOGCdO7FixcCEIcOHRJC/J8QPSUlRSqzePFioaenp1LnmDFjhLu7u/Tdx8cnX1G0hoaGyMrKEtu3bxeAighcX19faGhoiMDAQCFErgBdS0tL5OTkFMhmpcguPj5e5fjHIu6PxfifQ9lHp0+flo4NHTpUAOLw4cNixYoVQl1dXRgZGUnnPwxOoGTgwIHCzc1N+v4lMb0Q+QcSWLBggdDQ0BDe3t5izJgxnxSCCyGLwb9XZBu+D2Qbvg/+12z4M2Lwf+f+p4yMzH+KnJwcnj17RmRkJCYmJhQuXPiTAmele5f4wFXsU26GH2fG/rNC8PT0dNTV1Tl37lweV7IP3cJ0dXX/tCD/W6C0d9myZTx8+BCAI0eOMG/ePDw9Pbl+/fofrlNJQfqwa9eu+Pv7s2PHDvbu3cukSZOIjIyUkjR+iJwZXEZGRua/w3ftOiUjI5OX/2KQhI8DGXw4SE9OTsbAwIDt27ezcuVKSUDv7e2NgYEBycnJ31TLpcypoeTkyZM4ODigrq6Ou7s72dnZpKSk5HEdVLoJfYq0tDTat2+Pvr4+lpaWREVF4evry5gxYyhWrBi+vr5s3rxZKn/s2DGOHTsmJSuE3OhNgYGBmJiYYGpqSpMmTaQM3pCrwapUqZIkuA4KCuLevXtS3wGMHj2ahw8f4uTkpNI+JyenPBnYN2/ezM2bN9HX18fKyoqTJ0+qCOMhN4HkiRMn0NPTo1mzZrx+/ZoRI0aolNmyZQtNmjRhwIABJCQkULly5TwJB2VkZGRk/nvIOxoyMv8y/otBEj4OZDBu3Djp38WKFSMhIYGePXtiZGTE1KlTadWqFRoaGowbN47bt2+r6Ev+LMnJyQwaNIgePXpw/vx5YmJiiIyMBHIjg7Vv356OHTsSGRmJu7s7T58+5cCBA5QrV46GDRt+st5BgwZx7Ngxtm7dKiWzO3/+POXLl2fIkCEMHDiQo0eP4uLiQlxcHAkJCSor+0IIVqxYQePGjfnll1/Q0NBg/Pjx1KtXj0uXLqGmpkbTpk3p1q0b06ZNw9fXl+bNm6NQKFi6dCnm5ubMmTOHDRs24O3tzdatW1UmNn379qVbt25UrFgRb29vfv75Zx4/fkyJEiXYt28fv/76K82aNVMRah87dowDBw5QsmRJdu3axf79+9m+fTuQm4FeW1ub69evExgYSN++fYmKiuLq1asMHDgwX1E/yGLw75X/ZRtk4beMzB/n3/nXQkbmfxhlkIT/FTQ0NLC3t8fAwAAjIyPs7e1ZtWoVXbp0oXnz5jg5OTF16lTq1q37Te7XsWNH3r59S6VKlVBXV6d///50795dOh8XF8f48eMZPHgwDx8+pHDhwlSpUoWAgIBP1pmWlsbSpUtZtWqVlG08Li5OymTer18/Bg4cyJw5c5g1axalS5dm69attGnTRqrj5cuXCCFYuHChtOMTFxeHiYkJ8fHxVKxYkdTUVAICAiRReuPGjSXxtXK3y9TUFAsLCyn8sJL27dvz66+/Ehoayrt37wgMDKR79+6cPn0aW1tbbG1tcXd35/jx49I1MTEx2NraYmVlhaOjI46OjmzdupV9+/ZRqlQp3r9/T+3atfHw8GDz5s3Mnj0bIyMjPD09pdC6HzNp0iQpEIKMjIyMzL8bhRBfkVVMRkZGRuaruXjxIuXLl+fevXvSwB9yIznVqFGD6OhoFAoFAQEBbNu2TTpvYmJCdHQ0QUFBDBkyhKioqDzJ+t68ecOcOXPo1asXwcHBrF69mjp16uDn50dgYCCWlpYsWbKEnj174uzs/FW7YRUqVODhw4eoq6vz6tUrsrKyePfuHa9fv0ZPTw93d3eaNWumEsVq1qxZjBkzhpcvXwK5OVmU2hYl2dnZKvV8SH47GlZWVkTE30LLqFCB2/49oZaThdODU9wsUfnfvRvwP2rD97SjkZmZyc6dO2nQoEGBo899b8g2fB98jQ2vXr3C2NiY1NTUr06i+u/8ayEjIyPzH+TjdZ8PRe7p6elUqFAh34SdRYoUAXJ3OPr168fu3bv5+eefGTVqFPv27SvQvd+8ecO8efPw9/dHXV2d2NhYzp8/T/PmzRkyZAimpqYcPXqULl26kJGR8ck8GB+jzKLevHnzPOc+njTBp8XgfcqYYmZmVqB7fm9kZmay8wEMLGf27x6UyDbIyMh8JfJEQ0ZGRuYvpmrVqkCu4PrDlf3Xr19L+Uk0NTVJT09n6NChLFy4EDU1Nd68eSOVtbW1ZdGiRbi5uZGVlUV2djba2tqSG1VOTg7v379HoVCgp6eHg4MDdnZ2TJ06lU2bNgG5OysKhYKwsLA8CfkUCgU7d+5kwoQJvHv3Dn19fQD27NnDsWPHqFWrlspuDCDl/Jg4cSJeXl4EBQXRv39/lRUve3t7ZsyYQVhYGIULF6ZZs2ZMmjRJql9GRkZG5r+LPNGQkZGR+YtJSEjgxx9/5MSJE0yaNAkzMzNmzpzJ0aNHpWhVJiYm/PLLLzg7O7Nw4UJGjx7N8+fPuXr1Kjk5OaxatQp1dXVcXFxo164d8+bNQ11dHU9PT7p160aHDh3Q1NRkwIABuLq6sn//fubMmUO3bt3w8fFhxIgRUvJIe3t73r9/r7JzoKury/79+6XvERERhIeHM3DgQMqXL8/w4cPZuHGjdD4pKYkTJ06Qk5PD0KFDKVq0KAMGDACQJj+JiYncvn2bzMxM+vTpQ6VKlZg4cSIXL16kevXqjB8/Pk9fyWLw75P/og3fk0uUjMx/FTm8rYzM34ivr680GPuvcvfuXRQKxX8uMtbXoFAopIhOd+/excHBgf79+1OjRg169OhB586d8ff3x9XVVRJplypVCiMjI1asWMHw4cOZPn066urqXLt2jQMHDnD16lWOHj2Kq6srkyZN4t69e9y4cYO0tDTc3Nx49uwZRkZGTJgwAX9/f1asWEG/fv3o06cPxsbGaGpqUr9+fVq1aoWdnR2rV6/+rA1hYWHMmDGDRYsW0aFDBwoXLqwyAZg/fz729vYIIYiLi2PkyJGYm5sDue5Smpqa1KpVi06dOrFz507OnTtH9+7dSU5O5siRI5IQ/mPkzOAyMjIy/x3kiYaMzH+EJUuWYGJi8rfeMygoiKZNm6ocs7Ky4vHjx5QpU+Zvbcv3irI/KleuzMqVK3n9+jWPHz+me/fu3Lx5U4ogpq2tTUBAAK9fv2bt2rXUr1+fhg0bUrRoUa5fv46VlRUVKlRg6dKlPH36lPfv30vPu0aNGoSGhnLp0iVKly5NREQES5cuZezYsVy6dAnInfysX7+eFy9eIIQgKCjos+0+d+4cBw8eRENDA3V1dc6ePQvA1atXMTEx4ebNm3h5efH48WMePnzImzdvmDZtGgCFChUiKSkJMzMzlixZQosWLbh48SJqamqSDqVmzZr53nfEiBGkpqZKn/v37//ZRyAjIyMj8w/x79z/lJGR+W5RV1f/YvK6/yWU/XHhwgVu3LhBpUqVSE1NZezYsQA0adJEKvtnMpeHh4fTrl07duzYwa5duwgLC/vDbX79+jX+/v74+/uzcuVKihQpQt++fdm/fz8ZGRkq7VuxYgV16tRBX19fyqFRt25dSpQowdu3b+nRowf9+vXLc4+P9R5KZDH494lsg4yMzB9B3tGQkfmbUfq0K/MZfCjKTU5OpkmTJlLOiMDAQH777Tfp/MWLF6lZsyaGhoYYGRlRoUIFzp49S3x8PMHBwaSmpqJQKFAoFHnEvvmxfPlyKlasiKGhIRYWFrRr146UlBSVMlevXiUgIAAjIyMMDQ2pXr06iYmJhIeHs3TpUrZs2SLdMz4+XsV1KicnhxIlShAbG6tS54ULF1BTU+PevXtAbo6Irl27UqRIEYyMjKhVqxYXL14sUH+Gh4dTvnx55s+fj5WVFXp6egQGBpKamiqVUe68TJw4kaJFi2JiYsLYsWPJysqSIiqVKFGCuLg46ZqMjAxCQkKwtLRER0cHGxsbJk2aVKA2fYiyP27evMn06dNxc3PDy8uLnTt38vbtW7y8vKT7Kv/r7u6OQqHg6NGjALi4uHD//n2V1f1r167x8uVLKeIU5CYUHDhwIHv37sXf3186rqWlRXZ2NocPH6ZSpUpoa2tjYmKClpaWSlZ5HR0d1NXVMTQ05Pnz59y7dw8PDw/WrFkj6TeUbdPV1eX48eMMGTKEmjVrUqZMGRYsWADAqlWrUCgUmJiYEBMTw8uXL1WyqG/fvh0HB4cCT6JkZGRkZP6dyDsaMjJ/M0uXLmXQoEGcOnWKEydOEBQURNWqValdu7Y0yTh8+DBZWVn06dOH1q1bEx8fD+QmVXN3dyc2NhZ1dXUSEhLQ1NTE29ub6OhoxowZw82bN4H/S9D2OTIzMxk3bhxOTk6kpKQwaNAggoKC2LlzJ5Cb3blGjRr4+vpy8OBBjIyMOHbsGFlZWYSGhnL9+nVevXolDZBNTU159OiRVL+amhpt27Zl1apV9OrVSzq+cuVKqlatKiWWa9WqFbq6uuzatQtjY2Pmz59P7dq1uXXrFqampl+0486dO6xdu5Zt27bx6tUrunTpQu/evVVCwR48eJASJUpw5MgRjh07RpcuXTh+/Dg1atTg1KlT/Pzzz/To0YM6depQokQJZs2axdatW1m7di3W1tZ5Bvpfi7OzM+fOnSMkJIRjx46xYMECChcuzJ07d3j79i0Abdq0kQb1rq6udO7cGQA/Pz/Kli1L+/btiY6OJisri969e+Pj40OxYsXIyckhJCSEli1bYmdnx4MHDySXKciNWJWeno6/vz/t2rVj/vz53Lhxgz59+vDDDz/Qr18/UlJSqFGjBsOGDcPb25vmzZujq6vLr7/+iouLC4aGhqSlpbFv3z7KlClDamoqZcuWBXInSG/fvmXw4ME8evSISZMmERQURHJyMl5eXgQHB7N8+XL09fW5du0a48ePp0+fPqip5V3rksXg3yf/NRuGVpB3XWVk/g7+nX8tZP42fH19KV++PNHR0f9oO968eUOHDh3Yt28faWlpvHjx4m/XI3yKJUuWMGDAAClB2ZcoV66c5Nbi4ODA7NmzOXDgAACXL18mKSlJEsAuW7YMV1dXzpw5w44dO7h+/TpDhgzB2dlZul7J5cuXefXq1Ve5LSkHsgAlS5Zk1qxZeHp6kp6ejoGBAXPmzMHY2Jg1a9ZIrgaOjo7SNbq6urx///6z92zfvj2RkZEkJydjbW1NTk4Oa9asYdSoUQAcPXqU06dPk5KSIrnMTJ8+nc2bN7N+/XqVrNyf4t27d0yYMAF3d3cuXLhATEwMDRs2JDIyUmqbqakps2bNQk1NTcom/ubNG3788UcgVxswefJkjh49Sps2bUhOTsbBwYFq1aqhUCikSdGfJTk5GXd3dypWrAjkTgIAIiMj0dXVBcDMzEwle7cyWlSTJk2oUKEChoaG1KtXj5iYGGJjY7ly5QrXrl1j7ty5CCFQKBQqYXS9vb1xd3fn0qVLxMXFYW1tTXh4OC9evGDYsGFER0fz6tUrsrOzefPmDaNGjWLp0qX8+OOPeHp64uHhgaenJwcPHqRw4cJYWFhgYWHBnDlz6N69O4GBgXh7e+Pn58eyZcuk9ltYWDBu3DjCwsKoXr06QgiKFSvG8+fPCQ4Ozrd/5MzgMjIyMv8dZNcpmX8FS5cu5ZdffuH48eM8fvwYY2Pjf7pJf5hy5cqpfLe0tCQlJUUS/H4YZad06dKYmJhw/fp1IDcxW9euXfHz82Py5MkkJiZKZStVqvTVGTvPnTtHo0aNsLa2xtDQEB8fHyB3MAy5YVmrV6/+p/yZy5cvj4uLC6tWrQLg8OHDpKSk0KpVKyDXHSw9PR0zMzMVN56kpCQV+z7kYxG6tbU1np6ekgjdy8uLnJwcaXcHwNXVVWUFvWjRotKKPORqKczMzCTXsaCgIBISEnBycqJfv37s3bs3Tzs+jC5VUHr16sWaNWsoX748Q4cO5fjx4wDEx8erZNgG2Lx5M0uWLJFs7N+/P8bGxrx69Yq1a9dStGhRIHe35MaNG9y6dYvbt29z69YtlVC1kDuh6dChA0IIya2uatWqpKen8+DBA9zc3KhduzaxsbHcvXuX9PR0zp8/z7t37zh+/DhWVlY0adKE8uXLS3XWqVMHgFOnTnHo0CHs7OxQKBQq70toaCgmJiYsWLCA9PR06tWrR61ataQJ1sfIYnAZGRmZ/w7yjobMv4LExERcXFw+G8koIyNDWgH+nvkzgl8LCwuOHDmiIvhds2YNzZo1Q0tLS8pfUBDyE/wmJyfj7+8vCX6VK+x/lvbt27Nq1SpCQ0NZtWoV9erVk4S96enpWFpaSu5hH/I1u1ZfEqHn1++fexYeHh4kJSWxa9cu9u/fT2BgIH5+fqxfv77AbcqP+vXrc+/ePXbu3Mm+ffuoXbs2ffr0Yfr06X+4Ti0tLSl6lRINja/7866urs6+ffvo0qULO3fuJCYmhpEjR3Lq1Cns7OzyvWb58uUAPHjwgMuXLxMdHZ3nN6ilpUXHjh2Ji4ujefPmrFq1ipkzZ36yHbIY/Pvkv2aDjIzM34O8oyEj8fr1azp27IiBgQGWlpZERkaqnP+ccFgIgb29fZ7BUkJCAgqFgjt37kgrqdbW1mhra1OsWLF8o9F8jK+vL5GRkRw5cgSFQoGvry+Qu0I7btw4OnbsiJGRkeRis2HDBlxdXdHW1sbW1jaPHba2towfP16y1cbGhq1bt/L06VNJI1GuXDkpnGdB2bx5Mw4ODujo6ODv759nJTY2NpZTp04RExODk5OTNEhTYmZmxr1799DT05OE4EeOHOHly5eULl1aKqcU/MbGxqKpqcmgQYMQQnDixAkVAbRSJL18+XJsbW0xNjamTZs2pKWlAXDjxg2eP3/O69evqVevHjVr1mTp0qUAUpjScuXK8csvv5CZmZmvzerq6ly5cgUrKyu0tbWxt7fn559/BuDs2bMoFAp27drFqlWruHz5MosWLWL9+vXo6+tjZ2eHrq4u8+fP5/Hjx2hoaGBvb4+dnR2TJk2iTp06WFlZ4eTkpDIw/ViEHhERwb179zh16pQkQj958iRqamo8f/6cSpUqsXz5cnbv3s3w4cPJysqS6lq/fj39+vWTxPn3799n9+7d0nkjIyNat27NggUL+Pnnn9mwYQO///478H8uT82aNUOhUORZoe/ZsydaWlrUqlUrT78VKVKETp06sWLFCqKjo/npp58ApEH62LFjKVq0KDo6OpQpU0aK5qRkz549uLi4YGBgwIoVK/I8n4ULF1K7dm0AmjZtyty5c3FxceHEiRMIIdiwYQOamprS7oSdnR16enoYGhqyYsUKKUqWlpYWCxYsoGTJkpw5c4bs7GyV+9y9exeAFi1aMG7cOGrVqqWir1C+g0WKFGHv3r0YGRnx6tUraSdERkZGRua/jbyjISMxZMgQDh8+zJYtWzA3N+fHH3/k/Pnz0mDkc8JhhUJB586diYuLIzQ0VKozLi6OGjVqYG9vz/r164mKimLNmjW4urry5MmTAkUW2rhxI8OHD+fKlSts3LhRZcV0+vTpjBkzRtI8nDt3jsDAQMLDw2ndujXHjx+nd+/emJmZqeQNiIqKYuLEiYwePZqoqCg6dOiAt7c3nTt3Ztq0aQwbNoyOHTty9erVAu0SvHnzhgkTJrBs2TK0tLTo3bs3bdq04dixYwBs2rSJ/v37Y2tri5eXF25ubgQHB1OiRAkgd6I2bdo09PT0cHR0pH///kyePJmGDRvi4+NDxYoV2bRpEw8ePCA+Pp53797Rvn17tLS0CAwMRKFQULhwbpbbAwcO4ObmRmZmJomJiWzevJnt27fz4sULAgMDmTx5MhMmTMDa2ho1NTUOHTrEvHnzePnypaRXUBISEkJMTAxt2rRhxIgRGBsbc/LkSSpVqoSTkxOnT5/m7t27REdHU6VKFZ4/f86tW7dU6hg+fDhRUVGMGDGC2bNn8/btW86fP8+8efNwcHDg8OHDdOnSBT8/P+bOnYudnR1CCGrWrEmTJk1IT0+ne/fuWFpaEhgYmEeEPn36dObNm8fgwYMBOH/+PFOmTKFRo0Z06NCBoKAgihcvzqNHj1i0aBE6OjoqEbk+FOd7e3uzZ88e9u3bx+XLl7G0tMTd3R01NTXWrVuHhYWFtMty5swZzM3NiYuLo169epImYtOmTUBu2NrBgwezbNkyJkyYwJkzZyhfvjxjxoyhQoUKuLq68v79e7Zv346LiwsAhQsXRk1NjWPHjkkT0vv376voLd68ecP06dNZvnw5ampq+Pv7q0yeVq5cyZgxYxgzZgy9evWib9++jB49mtGjR3P//n169uzJjh07sLW15cmTJzRr1oyKFSuSnp7O8+fPpd2JjRs3kpKSwrx58+jduzd6enrMnz+fmzdvYmZmhrGxMaNHj2bx4sWcOnWK8uXLs2TJEsl+JYmJiZLtV69eRUNDg5kzZzJhwoR8f0uyGPz75N9mg5z1W0bm+0De0ZABct1XFi1axPTp06lduzZly5Zl6dKlKgOYzp07U79+fUqWLEmVKlWYNWsWu3btIj09Hcj1ab958yanT58Gcicmq1atkgTHycnJWFhY4Ofnh7W1NZUqVaJbt25fbJupqSl6enpoaWlhYWGhEoWoVq1aDB48mFKlSlGqVClmzJhB7dq1GT16NI6OjgQFBRESEiKt0Ctp0KABPXr0wMHBgTFjxvDq1Ss8PT1p1aoVjo6ODBs2jOvXr6uElv0cmZmZzJ49Gy8vLymp2vHjx6W+mD59OkFBQRQrVoxChQoxaNAgmjdvLu0APX78mCtXrrB//36srKzo06cP9+/fJz09neHDh+Pr68u+ffvIzs6mTZs21K9fn6ysLNq3by8JZx0cHNDS0qJ169YUKVKEY8eOkZOTw5IlSyhTpgzVq1enQ4cOkvBcR0cHhUKBtrY23bp1Y8iQITRr1kzFLjMzMw4ePEh6ejqVK1eWQphqampy69Ytrly5gpubGyNGjMDT0xNtbW0aNWqkUsfYsWOpU6cOXbp04cqVK2RlZbFkyRL8/f0pWbIkwcHB/PDDD6irqxMcHIyrq6uUr8HDw4P27dsTHBzM2rVriY+Px9DQEHV1dbS1tbGwsMDAwAB7e3vq1asHQO/evSlXrhwlS5bEysqK2bNnY2xsjKWlJREREURGRqq4qinF+Q4ODujr62NlZcWBAwcwNDRk6tSpVKxYEU9PT+7evcvOnTslnYcyrKyJiQkWFhbSd+UzrV+/Po6OjnTt2hXIFfZD7q7FiBEjKFeuHDVq1EBdXZ01a9YAuToNIQTq6uq0bduW/v37ExAQQP369QGYPHkymZmZzJs3j4oVK+Lh4UGlSpWk3yDkZvSOjIyU+qN27doMHDiQtWvXsnPnTvbu3cvDhw9JS0ujT58+LF68mH79+tGsWTOuXr3KunXruH79OoMHD0ZDQ4ORI0cyfvx4unXrhpOTExUrVpTer4+ZPHlynmPKd7Bv375kZmbSokUL6R3MDzkzuIyMjMx/B3miIQPkrjpmZGRQuXJl6ZipqSlOTk7S9y8Jh4sVK0bDhg1ZvHgxANu2beP9+/eS6LdVq1a8ffuWkiVL0q1bNzZt2qQykfkjKCP3KLl+/TpVq1ZVOVa1alVu376t4vbxoSBbKaj9UBisPPZxTolPoaGhgaenp/Td2dlZRcStbFd8fLwUwatq1apcv36dzZs3ExAQgJWVFVWqVGHLli2kp6eTnp6OiYmJ1AY1NTUUCgVpaWlERUWRmppKTEwMOjo60n11dXV59uwZQgh8fX2xtbXF0NBQOq8UngP8+uuvZGdnc/bsWd69e4eFhQUeHh64u7ur5GYoV64ce/bs4enTpzx79owjR45QsmRJEhISUFdX5+TJk6SlpancU+lK9+Ez6tWrF1euXCE7O5s6deqoCL/XrFmDiYkJDx8+JCMjQ5roeXh4YGBgwE8//SS9Z5/ihx9+AODkyZOsW7eOu3fv4uXlhUKhYMmSJWzevFlF/BwfH4+9vb3Ku3D37l3c3d1JSUmhW7duXLhwgfT0dFJTU9m/fz/u7u5SWaVI+2OuX7/OkiVLJLG6ra0t0dHRPHz4EIBRo0Zx7do13rx5w/Pnz9m8ebOkgUhISMDKyopHjx6RnZ2dr25FQ0ODUqVKSd+7du0qvduvX78mMTGRLl26UKZMGfT19alWrRrjx48nMTERHx8f6tevT40aNXjy5AmTJ0+WtBwuLi7s3r0bIyMj9PT0eP78ORMnTpR2ipTuT/k9a+WuZ0hICMbGxiq7h8p38OHDh5QtWxYPD4/P/q5kMbiMjIzMf4fvf/9T5rugIMJhyB30dOjQgaioKOLi4mjdujV6enoAWFlZcfPmTfbv38++ffvo3bs306ZN4/Dhw39YXKivr/+HrvvwfkrXqPyOfW8JxYoUKUKxYsVYvXo1nTt3/mKUqT8jPP+Yj/NZFFQo/uEzUq6879ixg+LFi6uUUwqA16xZQ2hoKJGRkXh5eWFoaMi0adM4derUH2r3l/iWffRnKUiffpx7QqFQIESuS5GyfxcsWKCyaABI7lcFuYe+vj6urq4Ffs+U5Je7RU1NjStXrjB79mzGjx/P69evP9u/shj8++S/YIOMjMzfj7yjIQNAqVKl0NTUVBnMvXjxQvK3VwqHJ0+eTPXq1XF2ds53VbJBgwbo6+sTGxvL7t27VfI0QO4gp1GjRsyaNYv4+HhOnDjB5cuXv5kdLi4ueVw6jh07hqOjo4qf+7cmKytLRTx+8+ZNXr58Kfnef6pdSpH35zI/K8vk5OTw/Plzzp07x/nz5yldurTkv/7ixQsWLFhAamoqenp61K9fn8uXL3P58mVp10BXV5dBgwZx79491NTU2L59O5qampw5c0a659u3b6VnvnDhQkxMTCQ3F19fXwYMGCCV7dWrFzk5OTRq1AhDQ0Osra0lUfOHVK9eHR0dHSpWrMivv/4KwC+//KKSKdre3l5ykTl27Bje3t707t2bx48f4+rqyk8//cTFixcld6B169axfft25s2bx/r167l69aqUW2TXrl1Sn+7ZswdTU1PJ5//YsWMYGhrSt29fOnToAMDTp09Vsq3Hx8fz7NmzTz7rlStXoqurK+WBUIrBtbS0cHV1xcHBgfHjx1OoUCHpWezZs0dF0P8pypUrx4MHD6hUqRJ6enoUKlQIDQ0N6RneunVLiq6mUCgwNTWV3K4gdyfO0tKSGTNm4OXlhYeHB927d+f169fSroky0IG7uzs6OjoULlw4j8ucpqYm27dvR0dHB3d3d4yNjT/r7qRk8uTJUvJBgOjoaO7cuYObmxu///47Y8eOlcL5ysjIyMj895F3NGSA3JXILl26MGTIEMzMzDA3N2fkyJHS6qm1tTVaWlrExMTQs2dPrly5wrhx4/LUo66uTlBQECNGjMDBwQEvLy/p3JIlS8jOzqZy5cro6emxYsUKdHV1v1kiNIDBgwfj6enJuHHjaN26NSdOnGD27NnMnTv3m90jPzQ1Nenbty+zZs1CQ0ODkJAQqlSpQqVKlYBcoX1gYCDu7u74+fmxbds2Nm7cKOU6+FzmZ6XrUUJCAsbGxpw5c4ajR4/SvXt3PDw8SEhIICgoiKSkJAwMDDh69CjDhg3j4MGDODg4sH37dq5cuULz5s2pVq0at27dYuDAgURERODl5cWQIUMwNTUlIyODNWvWoKamxrlz51ixYgV79+6VbPgYDQ0NNDU1OX36NFOnTiUpKYmePXvy5s0bBgwYwOvXr4HcXCA///wz9+7dkyYqkZGRWFlZUa1aNVJTUzl27BhGRkZ06tQJBwcHli1bxooVK+jcuTOurq7cunULY2NjMjIyeP/+Pd27d2fTpk3Y2trSqlUrGjRowNu3b/Hx8WHUqFHUrl2b3r17S30ZGxuLnZ0dYWFh9OjRg+joaPbu3UtERAS7d++mQYMGUrb1du3a5ZuxWknjxo05d+4cq1atYuLEiTRt2pTOnTtjbGyMtbU1rVq14s6dOwwaNAgfHx+GDh3KzZs32bdv3xffI2NjY4QQJCYmMmPGDOzs7Fi6dCmVK1emYcOG1K1bV+rnxo0bc/fu3Tw6JxMTExISEhg4cCB169aVsrAPHz6cUaNGYWxszJs3b/j9999ZtGgRJiYmrFq1ihMnTqj8XvX19fHz82Ps2LGULl06zw5JQcnMzCQmJoa6deuyfv16fvzxRywtLT9ZXhaDf598bzbIYm8ZmX8H8o6GjMS0adOoXr06jRo1ws/Pj2rVqlGhQgUg12VnyZIlrFu3jtKlSzN58uRPxv3v0qULGRkZeTL/KpN2Va1alXLlyrF//362bdv2Td0hPDw8WLt2LWvWrKFMmTKMGTOGsWPHqviM/xk+ThSnRE9Pj2HDhtGuXTuqVq2KgYGBFOYVckOMzpw5k+nTp+Pq6sr8+fOJi4uTQvUqMz8XKlSIGjVq4OfnR8mSJVXqMDY2pnjx4jg5OUlRmhITE6lVqxZbt24lODgYdXV13NzcWLlyJenp6bx79w57e3vWrVuHn58fzZs3R0dHh2HDhhESEsJvv/2Gl5cXAQEBpKSkYGdnh4GBARcuXODw4cNUqlRJClGaHy1atMDT05M+ffowc+ZM1NTUOH/+PIC0Aj5z5kxKly5N/fr1GTJkCADdunVj0qRJuLi4UK9ePXbs2CGtuPfo0YPmzZtL2gMvLy/69euHubm5JKweOHAgZcqUoVWrVoSHh/P69Wusra2B3Elzr169KF68ODt37sTExIRBgwbRs2dPunTpgrm5OdbW1lLfp6Wl4efnh7OzMw4ODhQvXlxyE7t7964UMhdyxdpGRkYUK1YMe3t7dHV1uXz5Ms2aNaNDhw5kZGRw5swZQkND2bx5My1btiQrKwtNTU1evHgB5N0Z+pCpU6fi6elJkyZNGDVqFE2bNuXy5cvSro+Wlhbq6urMmjULPz8/unbtqpI/4+jRozx8+JDFixdz4MABGjVqxLZt28jOzpY0IlOnTqVJkyZ4enrSu3dvAgMDuXXrVp4dv2HDhhEbG8vx48cxMDCgYcOG0uTxazAyMqJ3797Y29szbNgw9PX1effu3SfLy2JwGRkZmf8O//yyhMx3g4GBAcuXL1fJ76AcGAK0bduWtm3bqlyj9A3/kIcPH6KpqUnHjh1Vjjdt2jTfQXpBUAqoP0QZw/9jWrRoQYsWLT5ZV37XfWyHUuT6MTNnzsxzPCgoSJrING/e/JP37dWrF7169frkeWtra7Zs2fLJ840aNZKE9gBOTk7s3buXkSNH0rJlS8aOHSuFDDUzM6NMmTKSS8z169dp0qQJAwYMkAa5VatWJTo6mqtXr6Kuro6trS1nzpzhyZMnTJw4EVdX10+2RYm7uzshISGkpaVhbm6Om5ubNPBVhqj9MImecnekXbt2TJ06Nd86tbW1iYuL4+XLlxQqVEjajZo0aZLUP4ULF2bv3r1kZ2czceJE+vbty8OHD9HX1+fNmzfSLpmPjw+7d+/G09OTs2fPUrx4ccqVK0dQUBAKhYL4+HjCw8Pp2rUry5cvx8/Pj8jISBWx9Yd4e3urZKbX1NTk9u3b0vmtW7eioaEhhSauWbMmZ8+epWbNmlJggI0bN37Sxz0hIYFWrVpJkcQ+xsLCQsqPoaR06dJUr14d+L8s63369JHal5GRQUZGhqSzSEhIYM6cOXkWApSYmJiQnZ3NggULOHv2LCVLlsw3wtSn2qd0b1PWpWxLUFAQL1++pGTJkp/9fY4YMYJBgwZJ31+9eiVPNmRkZGT+pcgTDZlvxvv373n69Cnh4eG0atVKitz0PfCtsoYrB5j/FYQQrFmzhipVqvD+/XvU1dURQhR45VpTUxNdXV1JYPx3C6mnTZvGzJkziY6OpmzZsujr6zNgwACVNri7u+Pm5sayZcuoW7cuV69eZceOHdL58PBw2rVrl2+29Y9Rhlj+M3wsqv+Qggi1PydeL0iW9YLco3r16uzYsYO1a9cyfPjwL5b/o+3ND1kM/n3yX7BBRkbmH0DIyHwj4uLihJqamvDw8BAPHjwo8HVHjhwR+vr6n/zkh4+Pj+jTp4/o06ePMDIyEmZmZmLUqFEiJydHCCGEjY2NGDt2rOjQoYMwNDQUnTp1EkII8csvv4hq1aoJHR0dUaJECdG3b1+Rnp4uhBBixIgRolKlSnnuZWhoKLS0tIS+vr7Q0NAQ6urqUtsiIiJE3759RZEiRYS2traoWrWqOH36tEqfGBsbq9S3adMm8eFPLyEhQfj6+goDAwNhaGgoPDw8xJkzZ/LYW7p0aZVjDRo0EGpqamLOnDkCEJqamqJu3boiOTlZPHv2TOjq6op169aJuXPnCgMDA6FQKISjo6NYtmyZEEKIIUOGiJIlS4oyZcoIdXV1AQiFQiE8PT2FgYGB6NWrl9DX1xeamppCTU1NqKmpCU1NTaGnpycUCoUwNDQUM2bMULHRzc1N+Pj4CDc3NxEUFCTU1NSEoaGhaN26tXj16pVYuHChAMTRo0dFu3bthJ6enrCwsBAzZswQPj4+on///pJ9devWFVpaWkJbW1uYm5uLFi1aiOHDhwtAvHjxQgghREBAgOjcubN0TXZ2ttDV1RUlS5aUjtnY2IjGjRsLIyMjoampKXR0dMT8+fPzfa+EEKJNmzaiUaNGYsWKFUJPT08AQldXV+jr6wsdHR0BCGdnZ7Fy5Uqhr68vAgIChImJidDT0xOlSpUSgFi/fr0AVD4+Pj5ixYoVUj8q3yGFQiG0tLSEiYmJ0NDQEFpaWnnad+zYMeHm5iYUCoUwNzeX3qELFy6IJk2aSO/33r17hbq6ukhKSlK5/sqVK6Jhw4bC0NBQqKuriyJFiog7d+5IfRYRESGKFy8utLS0hKampujevbs4duyYMDQ0FD179pT6vF69ekJfX1/o6uoKQOjp6Ql9fX2hra0ttLW1RdmyZUWhQoWEvr6+8Pf3FyVKlBBRUVEiLCwsT38cOnTok8/gQ1JTUwUgnj17VqDy3yMZGRli8+bNIiMj459uyh9GtuH7QLbh++B/zQbl3+HU1NSvvo+8oyHzzfjQhehrqFixouQD/zUsXbqULl26cPr0ac6ePUv37t2xtraWxLEfZw1PTEykXr16jB8/nsWLF/P06VNCQkIICQkhLi6O9u3bM2nSJBITEyXXmatXr5KWlsb+/fuxsbFh6NChvHr1innz5gG5K+rbt29n6dKl2NjYMHXqVPz9/blz585nV64/pH379ri7u0ti5ISEhHxXDJOTkxk0aBA9evTg/PnzkgYiLi6O6tWr8/DhQ+7fv0+jRo2wtLSkePHiCCHo378/gwYNYtq0aZQsWZKgoCCuXr3K7NmzmT17NjExMXh5eZGYmEjr1q2liFDLli2jf//+pKWlsW/fPoyMjLCwsOD48eN06tRJygifH4mJiVK+lSpVqnDgwAG6d+8uPefIyEjOnz/P1q1bKVq0KGPGjFHJQn/27Fn279+PmpoanTt3pl69emzatClP7goHBwfWr1/P8ePHKVSoEDNmzFAJt6zkyJEjki6gWbNm9OrVCx8fH6ytrRkyZAgtW7bEzs6OBw8ecObMGVq0aEHjxo0pXrw4NWvWZM2aNZQuXZpTp07xww8/8PPPP5Oens7r16959OgRW7ZswczMjKSkJKZMmcKYMWMYP348o0aNonr16jx48ID169ejra1NxYoVcXFxYdSoUUCue9fr168ZNGgQVapUoX79+vTo0QMLCwscHR3ZuXMn48aNIyAgAC0tLYoVK8awYcPy7Xc/Pz+8vLxo2rQpU6dOxdHRkYsXL9KmTRu8vLw4ePAg169fp1OnTsyYMYOQkBAWL15MTEwMS5Yswd3dnUqVKrFw4UJCQ0PZuXMndevWlepfuHAhb9++5dq1azRp0oQdO3ZQokQJNmzYwKhRo7h//z716tVjyJAh/PDDD5Iu5cNs7soy3t7en/hF5I8sBv9n+bttkMXeMjL/DWQxuMw/jq6ubp5Qpx9+PoWVlRVRUVE4OTnRvn17+vbtS1RUlHT+46zhkyZNon379gwYMAAHBwe8vb2ZNWsWy5Yt4927d7i6uuLm5oafn5+kY1i5ciVaWlqSINfIyEjKRG1paUlcXBzTpk2jfv36lC5dmgULFqCrq8uiRYukdmRkZEhuK/mRnJysIkZu1aoVbm5uecp17NiRt2/fUqlSJfr06UOdOnXIyclh9uzZbNmyhapVq/LgwQMuXrzIy5cv2blzJ9HR0QQFBTF58mTWrl1LcnIyQghmzpzJ2LFjsbKy4vLly6xatQotLS1sbGxYtmwZCQkJREZGMnPmTG7fvo22tjaZmZns2bOH4cOHfzGKV05ODitXrmTnzp08fvyYFy9esG3bNsaMGQPkJnNUZqEvU6YMcXFxKgkVk5OTMTAwYOXKlRw8eJC2bdty9+5dJk6cqHKfUaNG4eHhgb+/P76+vlhYWFC4cN4BSkBAAK1bt8bQ0JDFixdTuHBhDh06hLq6Os+fP6djx444OjoSGBhISkoKhQsXxtDQEFtbWyBXP2Nvby/l/rC2tsbb2xtTU1OuX7+Oj48P69atIyAggK1bt1KhQgUmTZoE5Lpb7dmzh8KFC2NkZMTr168xMTGR3m9NTU0aNWrE6NGjqVOnDvv370dTU5MWLVrg5eXFokWLUCgULFiwAD09Pc6ePftJzYJCoWDnzp3UqFGD4OBgHB0d6dixI+rq6ixcuJCKFSvSoUMHaXJWvnx5ZsyYgb29PW3atMHJyYlChQpRvHhxhgwZQvXq1aVn9tNPP1G8eHHs7e0l4b2trS329vYULVqUrKwsHB0dKVq0KB4eHoSEhEihbpXhlbW1taVwvZ9yZXz//j2vXr1S+cjIyMjI/DuRJxoy/1qqVKmisqLu5eWlkgH846zhFy9eZMmSJSoZqf39/cnJySEpKQnI3V1Q5gcRQrB69WrCw8Pp3r17nvsnJiaSmZmpkoncwcEBMzMzSfgLuQNNZW6K/Bg0aBBdu3bFz8+PyZMnk5iYmKdMfHw8c+bMITY2ltTUVH7//XdatGghZSQvVKgQy5Yt49WrV5iYmNCzZ08cHBxUMqW3aNGCq1evEhUVhaWlpbTKbGVlhZWVFXfv3mXAgAGULl0aExMTdHV1SU9Pp3LlyiQnJ3Pz5k0mT54sZYpWlv+QhIQEKWP0uXPnqFq1KocPH2batGmYm5uTk5ODhoYGWVlZKmFzjY2NVbLQ16lTBxsbG/r06UOVKlVYtGgRu3fvJjg4GCGENHEzNTVl8+bNVKhQgbZt2zJu3DicnZ1p1KgRkBtSOTk5mXLlyvHw4UPat2+Pjo4OFhYWpKSkoKWlxerVq0lOTub9+/c8fPiQxMREScCs5NChQ/k+uylTppCZmYm3tzdCCC5duiQ9i+3btwOwfv16HBwcPvn84f8y1QcFBREdHY2LiwujR4/mxYsX2NnZ8fLlS+bMmUN8fDyXLl1SCS29efNmlZ0eQ0NDZs2aJWVZr1q1Ki1atKBkyZJSmebNm3PhwgWePn1KTk4Oc+bMkc7dvXuXFi1aSJnYy5QpA5Dvb+BD9PT0OHXqlBS4wdLSEiFEvu9IeHj4J+uRo07JyMjI/Hf4d+7hysgUgI+zhqenp9OjRw/69euXp6xyhbZt27YMHTqUlJQUjh8/zv379+nSpYuU3fxrUVNTQwiBubm5dCwzM1OlzNeIkf8p/kxG8hMnTvD777+Tnp7OsGHDqFu3Ljt37pTO5yfUNzQ05Pz588THx7N3717GjBlDeHg4Z86c+ezuUH4IIbh+/Trx8fHSTsznBMlFihQpcN1du3bF39+fHTt2sHfvXib9P/bOOyqKZH/7n2GAIYsiAoqCShCUZM6gomCOiwEVFLOYdTEDillUDLiGFROKOYc1hzW7imKOgDkrggIC9f7BO/1jBFz33r337t3bn3P6HGa6u7qquobT1fV9vs+0aURGRjJo0KA/VMfCBNPLly9n3759ODo6ShO8YsWK5Rvb3+J7HdwLQz2ZF3myrX09hqHgNogCMrf9HoVlnZLF4P9Z/g5tkJGR+fcjr2jI/NeS18Uc4OzZs9jb2xfqAF65cmVu3LhRYHiW+kHX2tqaIkWKcOvWLWJjY2ncuDHVq1fXSK9769YtypQpI62YqN/0enl5kZSUREJCAjExMSgUCszNzfn48aNGtqr58+cDsGbNGmxtbSlSpAgTJ06kV69eHDhwgHbt2rFs2TL8/f0xNDTEysqKuXPnFui/UJgjefny5QkJCSEtLY2ePXtiZ2cnhXOdOnUKCwsLqlevzogRI0hMTGTAgAFkZWUB/+dInlc3o6+vz+vXr3nx4gU+Pj58/PgRhULB8uXLmT9/Ph8+fMDe3p6dO3cCuZOHBg0aALlu8REREbx+/ZoffviBt2/foqWlRd26dVEoFOjr66Ojo8Ply5eJjo7GyMiIfv36IYSgS5cuODo6cvXqVRITEzly5MjvD4wCWL9+PTNmzGDatGm0adOGly9fMnv2bMzMzBg4cKDGg7OtrS3z5s2jadOm0irA8OHDUSgUNGzYEMjVmOzYsYPKlStjb2/PzJkzcXNzY9iwYSxbtgyAFy9eALlu3c7OzpJh382bN6V2GhkZkZycTEhISL6wsFOnTjFo0CB69+7N69evJRM7Ly8vjQdxW1tbpk6dSs+ePQt0aFd71ri5uUkO7du3b0ehUPDgwQNKlizJqVOn2Lt3Lw4ODlLoX9GiRQGkULTffvsNfX19tLS0pNUoBwcH6X7l5ORga2tLREQE3bt3p1OnTkBuyt9Xr15x7Ngxdu/eLTmTF4ZKpcLExERjk5GRkZH570Re0ZD5r+VrcfSCBQuIjIws9PiQkBBq1qxJcHAwvXr1wtDQkBs3bnDw4EEWLlwoHWdhYcGdO3d49OgRc+fOlUS7kBtWcv/+fXbu3EnFihX58ccf+eWXX9i/fz9Tp06lcePGCCG4dOkSpqam6OrqoqurS3p6Ovfv3+fcuXNcuXIFyA152bx5M1OnTuXAgQOMGTOGzp07c+HCBaluhYml1RTmSL5gwQLOnDnDsGHDmDNnDs2bN+fjx4/MmTOHrVu3oq2tTVBQEKtWraJ58+YsW7aM7OxsgoKCGDBgACqVSlrlUaN2zT558iRNmzYFIDw8nObNm3Pv3j2aNWuGv78/AwYMQFdXly1bttC+fXtu375NXFwcy5cvlyZMWlpavH//nhkzZmBqasrPP//M+fPnadu2LVOmTOHs2bP079+fjx8/UqtWLVavXk1OTo5GeNX3olAomDZtGkOHDiUwMJCjR4+io6NDYGAgvr6+dOzYEXd393wO28uXL+fChQu0bduWwYMH06lTJ+Lj4xkwYACVKlWie/fu1KhRg59++gktLS1Gjx6NlpYWderUIScnR0pCMH78eNzc3Bg5ciQA5cqVo06dOhpi8MDAQPr16ydNIJ49e8aNGzfYt28f1apVY9OmTfTp04fRo0fz9u1bHj9+LLUNcic+kydPZuzYsWzevFkSuzs6OhIQEEB4eDhKpVIKr8vr5zJq1CgmTpzI58+f6dq1Kzo6OqxYsUIap+XKlaN06dJMmzaN9PR0WrVqxaVLl3j8+DEKhYIJEyYASBOluXPnMnXqVGrWrMnAgQPp1q0btWvXplatWpw4cYISJUrQpUsXrl279odSTsti8P8s/4o2yIJvGZm/P/KKhsx/LV+Lo4cMGfLNOHJXV1eOHz/OnTt3qFevHh4eHkycOJGSJUtqHGdubk56ejqfPn3KZzCYlpaGSqXC29ubMmXKsHLlSrp160a3bt1o2LAh2dnZFCtWjJ9++glLS0uKFStGnz59yMrKwsXFhfXr1+Pp6Qnk6gdcXV1RqVRkZWURHR2Nn58fjRo14saNG98US6spyJF82rRpbNy4kRUrVjB9+nSioqLYvXs3P/74I0uWLKFZs2bY2tqycOFCnJycOHbsGE5OTixdulRyJC8sfEhXV5d9+/ZJITFdunShZs2aaGlpMXXqVFJTUyUHanXWrRIlSmBiYoKW1v/9u3F2dqZly5aEh4cTGhpKp06d0NPT4+XLl9jZ2WFra8v27dvJycmhatWq/PTTT6xfv75QE8Hnz5+zePHiQu99XooWLYq1tTXFixenRYsWNG/eXMrglZdSpUpJEztbW1tq1aqFk5MTANHR0YwePRpHR0ciIiLo06cPqampvH37lujoaA4dOsT9+/cZOXIk0dHRtGnTRgqfU6lU+cTg5ubmUn/t27ePly9f0rlzZxo1aoSJiQlt2rRh48aNuLu78/DhQ2rUqAHkJjxISkrCxcWF8+fPM3LkSEJCQiSxO8D+/fsxMTHB0dGRHj16MHz4cIyNjaV2Dh48WEo+EBsby/nz59m9e7fkwq6jo8P69eu5dOkSWlpa7Ny5UzLuDAwMZPXq1VhYWEiTnmbNmtG3b1/pd5WSkkK1atWYP38+FStW5MyZM9y9e1fSsHyNLAaXkZGR+fsgTzRk/mvR0dHREEdPmTJFetgpSKgMUK1aNQ4cOMDHjx9JTU3lypUrjB07VuMY9cpAWloaRkZGGvu2bt1KsWLFKFeuHL1792bfvn3MmTOHV69ekZ6ejqWlJXp6ehrnVK5cGWNjYz59+sSuXbuoUqUKzs7OGBsbS2Lk8PBwbG1tefLkiRTG9C2xNPyf03K7du24f/8+6enpHDx4kJcvX6JUKgkKCmLevHn079+f+/fvk5mZye3bt9HW1qZWrVpSX5UpU0Zyg7927RobN27UCD8LCwvTCKMyMjKSnKKrVq0q1cPQ0BATExOaNGmSL13x0KFDNRzZq1evTmxsLGlpaTx79kyaIN66dQvIFdV/+PCBQ4cO8enTJ65cuYKfn1+++1kQx44d0wh1MzEx0RgLFStWJD4+nvDwcLZv346VlZWUAOBr1FmnypYtC+SGLQkhuHHjBpMmTSImJobnz5+jra3Nly9f+Pz5M/r6+pLIftasWTx79oycnBw2b94MQEREhEb9vh6rrq6u2Nra8uDBA1JTU4FcR/rHjx+TkZFBlSpV+PjxI5A74bG2tsbHx4eoqChWrlyJQqGQxO6QG05XuXJlDh48SFpaGikpKVJdIFdHVLx4cbp160ZmZibx8fH4+vpq3K86depQtmxZJk6cyLNnz5g8eTJCCJo1a8bdu3fp1q0b79+/l+oP0KZNG0kH4+Ligrm5OQcOHODatWsAhWaUk8XgMjIyMn8f/jvXcGVk/kOULl2a27dvc+jQIQ4ePMiAAQOYNWsWx48f/0MCyT/qlvxH+GfFv/B/Iva8fK8A+HvakZaWxvr166levTofPnxg0qRJ6Orq8ubNG86cOcPp06cpW7Ys9erV+6766uvrFyg8fv/+fT439z+j71NTUwkPD6ddu3b59n090fyjlCpVis2bN9OgQQN8fX3ZtWsXu3btoly5cpQqVYrXr19Lmcn8/PwICQlBX19fo53/Sof233NGz9u/6slsQd8VVj9ZDP7X5O/QBhkZmX8/8oqGjMwfRF9fn5YtWzJ//nz27t3LmTNnMDExwcrKirS0NI0H3jVr1hAWFsaHDx+wtLSkS5cupKWlAblZfOzs7Jg9e7ZG+eq32L6+vpLfgJaWFpcvXyYqKgpdXd18wuG8uLi4kJ2dTXJyMsOGDUOhUGikAVYoFJJvhq2tLZGRkZw6dQpjY2Osra2B3PCxZ8+eSeekpKTw8OFDsrKyCAkJkd4y9+/fX8MzJCsri0mTJqFSqWjfvj2AJGKG3BWBu3fv8ttvv9GtWzfs7e2pV68eKSkpNGjQACEEPj4+LFiwgB49egC5KxQKhYI9e/ZQoUIFFAoFSqUSAwMDSVCdkJDAly9fpJSsADt27GDSpEk8evSIcuXKER4eLj3cqlcq2rZtS1RUFMePH5fKSkpKYvjw4WhpaVGuXDm0tLTymQBWrlyZ27dvayQUmDhxIuPGjUNLSwsnJycePXpEcnIyxYsXZ/Xq1Zw9exaALVu2ULZsWfT19XFzc9NYXXj+/Dk7duzgxo0bGBoacurUKerVq0dMTAwNGzbEycmJW7duSeaDWlpaJCUlERISgo6OjuRRkZCQIOkk1q5dy9GjRyldujRTpkwB4MKFCwC0bt0aAwMDjh49yu7du6XJ5MqVK9mwYQOQG2qmUChQqVScOnUKhULB9u3bgVzBepkyZWjcuDH6+vo8evRIMjPMy7Rp05g9ezZWVlZSOFpBE1eQxeAyMjIyfyfkFQ2Z/0qOHTv2H7nuypUryc7OpkaNGhgYGNC7d28UCgWxsbHY29vTsGFDkpOTSU1N5fXr13z58oV27dqxfPlytm/fzvDhwyWxt0KhoGfPnsTExGgIkTdu3IilpSWpqan07NmT5cuX4+Liwq1bt2jQoAG1atWiX79+hdbR1taWzp07s3HjRvz8/Bg6dCiPHz9m48aNlC9fnm3btqGtrY2fnx8VK1Zk7Nix6OrqMmLECElH0bBhQ1auXEnLli0xNTVl4sSJKJVKtm3bxsePH5k/fz7t2rWjf//+UnjZkydPSEtLo2zZsuzdu5dTp07Rq1cv+vbtKxkZQm42JhsbG3bv3s2GDRsICwtDT0+P5s2b06ZNG4KCgvj48WO+UKlRo0Yxb948srOziYyM5M6dOxw8eBAdHR2WLl3KrFmzmDlzJn369CEhIYGgoCCysrL4+eefsba2pk+fPhQpUgRbW1suXLhAiRIlWLBgASdOnODevXts3LiRCxcu0KVLF5o3b86YMWNIS0ujWbNmzJo1i/r166NSqShatCgTJ06kRYsWlClThg4dOqClpYW1tTVz584lNTUVb29vHBwcaN26NampqVhYWDBu3Dgg15Pj559/xt7enhMnTtC1a1fMzc0l7Q7A6NGjmTNnDvr6+gQEBHDv3j0cHR1JSEigXr166Ovrc/DgQZ49e0blypXp0aOH5Lz9008/0bJlS/T19bl16xbTp09nzJgxVKpUiZycHH755Rdpcjtp0iQ8PT05cuQIQUFBeHt7SxmrDA0NSUtL49atWxQpUoQHDx5IK0xPnjxh1apVLFy4EF1dXdzc3Lhw4QLe3t7cuXOH4OBgDW+PhIQEKleuzNGjR6VxsWvXLqpVq/bdvz1ZDP6f5c9sgywCl5H530Fe0ZCR+QOYmpqybNky6tSpg6urK5cuXWL8+PG0a9cOFxcX1q5dS3Z2NitXrsTc3JyePXvi6uoqZSWysbHh3r170pv1wMBAbt++TVJSEpD7lnfdunWEhoZSr149lixZQmZmJp07d6ZSpUq4uLgwbtw4SThcGCtWrMDAwIA9e/ZQr149KdXtnDlz8Pb25uDBg9y5c4ewsDB0dHRQqVQa2bXGjBmDp6enJJZu06YN1tbW3LhxgxUrVkgeH66urnTs2BHI1QtoaWlx5MgR0tPTCQoKkpyyLSwsCA4OBnIfYKtXr469vT1jxoxBT0+P4sWL07t3bwICAiQR8atXrzTaFBoaiq+vL82bN2fz5s28fftWcmx3dnbG0NCQO3fu4O3tTWBgICVKlGDz5s306NGDxo0bM3nyZMk4US12t7a2pmTJkpiYmEgpgE1NTWnUqBG1a9emcePGDBo0iMuXL1O6dGk8PDwA8PHxYffu3Rw4cIBq1apRs2ZNjh07hp6eHsbGxuzcuZNt27ZJRoB9+/aVTOqCg4Px8fGhXLlyBAYG0rVrV5YsWaLR1kmTJtG4cWPq1q3LiRMn+PTpEw8ePCAlJQWlUolKpQJyw5h0dXUxNzfXcK3X0dHh6tWrzJ49m379+rFnzx6ePn1KREQE48aNk9y+a9asia2tLT179qRHjx6cO3cONzc3VqxYQaNGjYDcLGyWlpbUrl2bjRs3Armam4kTJ9K8eXO0tLRYvXo1lSpVQk9Pj/bt27NmzRopvS/k6noWLlxIhQoVpHK/Tk+tRhaDy8jIyPx9kCcaMjJf8bWYOK9Yt02bNpw9e5YPHz5w6tQphBBSdh7IfQB1c3MjODgYIQS//fYbW7ZswcTEhF9//VUKk4mLiwOgZMmSNG/enM+fP5OYmMiuXbvIyMige/fuxMbGcu/ePUqWLMncuXOJj48nJSVF8rvIy8qVKzWM7PT09ChWrBjh4eFkZGRw9+5d6a13nTp18PT05Pz582RkZBAbG0tKSopGeJWJiQlxcXF8+PCB5ORkjRSp6jfvAQEBGm+tb968Sbdu3Xj27JnkJh0REYEQgsTEROnYrl27Sv2rVCoxMzPDxcUFQBIrA/kE2rVq1ZL+LlasGI6OjhoO7Nra2hw4cICXL19iamrKq1ev6Nq1qxQS1bt3bz5//sy6des0yp03b560QnblyhXS09MZP368dN7ixYvJzs7mw4cPGgJpHx8fTp06xadPn/jw4QPnz5+ne/fu0v5SpUqRnp7OqlWruHfvniQoj4iI0HCnX716Nffv3ycxMZFffvkF0HS1L1WqFIMGDcLe3h4TExOOHTtGUFCQtP/q1au8efOG7du3s2vXLszMzPjy5QvZ2dlSObVr1+bKlStkZGRw8eJFcnJyUCqVBAQEYGlpiZGREevWrcPExIT09HROnDiBh4cHbm5uGuNKHQ63adMmkpKSKF26NG5ubhgaGhIWFoapqSmzZs0iJyeH27dvS+OkWrVqUoIBW1tbBg8eXGjolCwGl5GRkfn78N+5hisj819AWloaPj4++Pj4EBsby4gRIyhVqhTbt2/XiPnv1asX3bp1Y+7cucTExNCxY0du377NrVu3qF69OnFxcQwfPpzXr1+zefNmLl++/IfF538G3yMyV2c8+hYFibGVSiUvX74kMjISU1NTUlJS/ikx8z8q1v5nRd7+/v5ER0fz/v17tm/fjr6+Pp07d0ZbW1vSLezZs4dSpUppnKdSqTTSF3+v8/fbt2+pW7cuKSkpVKpUCV1dXWJiYti/fz/9+vVjx44duLu7s3r1aklMfuXKFYYNG0ZOTg4tW7bEx8eHIkWKEBcX900fmn+GPyLAl8Xgf03+Dm2QkZH59yNPNGRk/kHKly+Pjo4O586dk8zt3r17x507d/D09OTWrVu8efOG6dOnU7p0aQwMDCQheP369TEwMKBfv35MmDABQ0NDpk6dyp49e1CpVJJYOzMzE5VKRZUqVYiNjWXWrFmcOXNGEoirVCqEEJI4WL0qERoaiq6ubj7vDScnJyk17Zo1a4iKiuLq1avk5OTQrVs35s2bJ/k9AFy/fp2QkBBOnDhBdnY22dnZrF+/ngcPHrBq1SqNa/r7+3PixAkUCgWXL1/G1dUVT09P9PT0JJE55K5UaGlp8fDhQ2xsbMjJyWHNmjWMGDEChUKBq6urhqhbHYLj4OCAtvb//ctKS0sjISGBDRs2UK1aNVJSUjAwMKBFixa4ublJYm11+t3q1asTFRVFRkYGw4cPR0dHh5iYGHr27ImBgQGTJ0+WRN5lypRh+PDhbNmyhXfv3mFhYUG/fv0YM2bMN8dE7dq1gVyR9JMnT/D19UVXV5fLly/j7OyMSqVizJgx3L17l9TUVKytrRk7diw9evTQWFEqWrQonp6ev6tFGjt2LMnJydy5c4exY8fy/v17bGxsCAgIYNiwYVIY2vPnzwkICEBHR4dSpUpRoUIFHj16xKxZsyhVqhSBgYEkJSUhhMDPz48DBw6QkZGBjo4OiYmJknheXZ+OHTuir69P8eLFef36NUuWLCE8PBxAWgG5fPkyK1eu5PDhw1SpUkWq85cvX1i6dGmhKxUqlUoKDZORkZGR+e9GnmjIyPyDGBkZERQUxKhRozAzM6NEiRJS1iHI9afQ1dVlwYIF9OvXj9evX0uhPmvWrOHDhw8EBgZSp04dAgICmDJlCnp6epw8eZKsrCwGDhxIamoqo0aNokaNGrRr1056CIuNjeXp06fY2tpSvnx51q1bR1RUFAcOHKBs2bIYGRlx+vRpTpw4QadOnVCpVBQvXpwRI0ZQrVo1Jk+eLIVBqScThw8fJjAwkL179wK5gt/69evj5eXFkSNHMDExoWfPnowePZrIyEiaNWvGq1ev6NWrF61ateLz58+Sod7Dhw9JSkoiMzMTc3NzDbO+27dvU6dOHWxsbIBcLYaJiQkXLlygSJEiLFmyhCtXrkheEcWL5wpHS5cuzYQJEyhevDiRkZHcvHmTtm3bSiFZhoaG7Nmzh6CgIKytrVm9ejVlypTh3bt3HDp0iM+fP9OuXTuqVatGUFAQBgYGPH/+nN27d7Nnzx769u3LihUr6NGjB48ePSIhIYGZM2fy/v17Ll68KD1sfw+//PILz549Y926dcTGxgJgbGxMpUqVOH/+POPHj6dBgwbcuHGDs2fPoqWlxfnz5yXvlFu3bhVqmpiXDRs20LVr13ymk3p6eoSEhBASEiJlAAsJCaFPnz4sXLiQnTt30r59e3R0dHj58iXz589n27ZtpKamYmxszMmTJ9m/fz9jx47Fy8uL06dPU6RIEcnAMioqCk9PT06ePMmECRPYv38/AQEBHD9+HCEENWrUoE+fPtJkI6/Rojq7Vd4J7fcgi8H/s/xZbZCF4DIy/1v8d/7Hk5EpBC8vL9zd3TU0Fv9KZs2aRWpqKi1btsTY2JgRI0bw4cMHIFdwvHLlSsaOHcv8+fPR1tZGpVLx+fNnfvzxR27fvs3ChQs5fPgwzs7OCCEYNmyY9PZ39erVVKxYkXnz5pGcnExKSgrly5dnz549kqBWjZ2dHUqlUkPHMGnSJPr27Uv58uXJyMhACEHlypXZuHEjEydO5O7du1hZWTF58mRGjhxJ69atqVatmvSw2b59eymkRh0qcejQIcaOHcuIESN48eIF+vr66OjoSOFSK1asoHPnznTs2BEzMzM6duzIypUrSU5OllZ9bt++LWU9+vXXX8nIyCAwMFDSE8yePZvIyEjOnDlDt27dGDFiBABz585l9OjR3L17F3d3d/bv38/WrVvJyMigd+/ehIeHU79+fRYsWEDz5s1Zu3YtCxcu5Ny5c+Tk5PD+/XsqV65McnIyKpUKW1tb3r59i6enJ6VKlUJXVxdtbW12795N27Zt+fz5M8HBwVSoUIFevXpJbtjfw6NHj7CxsdHQWgBYWVmhVCqJi4tj6tSpmJqaUrlyZfz9/TUmFhYWFhraiMJ4//59PiPHKlWqcPv2bYQQmJubS9m3AGlstmrVimHDhjF79mxCQ0Np3bo1Dg4OnD17luXLl6NQKHBwcODMmTNs27aNUqVKsWDBAul8S0tLnJyccHJyolatWgwZMoTdu3cjhKBnz55SxqzatWtjYmLCo0ePpPrFxMRgb2+vYQqZl4yMDI2UyLIYXEZGRua/F1kMLiPzT2BkZMSaNWtIS0vj+fPnjBo1SkNM3rlzZx4+fEh6ejoGBgYUK1aMxMRETp8+DSC5Uv/2228ADB48WCrb2dkZU1NTRo0axYcPHwgNDSUpKYlp06Yxffp0ybStMGrWrCmJm/N6e7Rv357r169z5swZXF1dmT9/PsbGxpLIOzk5mWfPnpGamkq9evU04rH19PSYM2cOT58+pVu3bnh7e0t+F+prApw/f55nz54RExODs7OzJMAODQ0lMzOTH374AcgVXysUCsLCwjQE0lpaWhgbGwO5EyaAunXrcu3aNTIyMjh37pzkQF2mTBmGDRsmOVPXqlWLnJwcSpYsyalTp+jatStNmzbl3Llz9O7dm5EjR1K5cmXJ0+PLly8kJiZiZmbGy5cv8fHxoVGjRujo6GBhYUGNGjWk1ZfvZdu2bSQmJmqEQ4WFhXH9+nUSEhLQ09Nj6NChbN++nf3791O/fn3puMuXL+ebZHztzt6mTRueP3+ucczKlSvZvn0727Ztk9y9nz17xogRI3jy5Anwf2JugJkzZ2JiYsLixYuJi4uTrmlsbIyRkRFmZmYcOHAAhUJBdHQ0wcHBBAYGolKp+Pnnn4mKiuLZs2e4uLhw5MgRxo0bR6VKlVi6dKmU8lh9z9V6DIVCwd69e1myZEmhYWGyGFxGRkbm74O8oiEj8ztkZ2ejUCg0wn/+ET5//ky5cuU0HlpzcnL4+PEjv/76K4aGhlhYWBR6flhYGF26dGHPnj3s27eP0NBQ4uLipFSzkGuYl1fHUBhfC9XNzc1JTk7Gx8eHzMxMLC0tv1uQ/Hv4+/uzbt06Ro8ezbp16/D19ZVEvampqVhZWRX40Kl+8P0zDNvyTpbUJojfEiibmZnRuHFjunfvzqFDh/Dz88Pb21vDXO8fwcTEhHPnzrF3714OHjxIo0aNGDhwYD7Txu/B3NwcU1NTKbuTGvXKkZ6eHpmZmfj4+FCyZEkUCsU33d4zMjJQKpUaE5q814Lc1YjBgwezf/9+NmzYwPjx4zl48KA0wSyI7t27M3r0aM6cOQNAiRIlvun4LovB/5r8HdogIyPzH0DIyPwL8PT0FIMGDRKjRo0SRYsWFRYWFiI0NFQIIcTDhw8FIC5fviwd/+7dOwGIo0ePCiGEOHr0qADE/v37hbu7u9DT0xMNGjQQL168EHv37hUVKlQQxsbGonPnziItLU3jugMHDhQDBw4UJiYmwszMTIwfP17k5ORIx6Snp4sRI0aIkiVLCgMDA1G9enXpukIIERMTI4oUKSJ27NghnJychFKpFA8fPvxme7Ozs0V4eLgoVaqU0NXVFW5ubmLfvn3SfkBjU/eFh4eHUCgUws7OTmhpaYnk5GSNPgKEi4uLUKlUomLFiuLYsWNCCCFOnDghlEqlAISenp5QKBTS34aGhmLq1KnC1tZW6OnpCVdXV7Fp0yapnqVKlRKjR48WgHS9S5cuSdfT19cXgNDW1hYKhUIYGhoKfX190aBBA6GnpyeKFSsmevfuLQIDA0WLFi2kfh8yZIjGvW3durUICAgQDx8+FAqFQoSEhAgtLS2hra0tSpQoIdq3by8OHDjwu/3r5uYmAPHu3TshhBA2NjZiypQpokePHkJHR0cAYsaMGdLx+/fvF1paWqJ169aiaNGiQqlUiiJFioizZ88KIYQIDQ0VhoaGYsiQIUIIIbKyssSwYcOEQqEQBgYGYtSoUaJ79+6idevWUpl79+4VgNTPWlpaQqVSCUNDQ2FoaChsbGwEIA4dOiQAoaurK2rVqiV9Dg8PzzcGYmJixOLFi4Wurq4oXbq01JaOHTt+c6ypefv2rbC3t5fuu6+vr7hz544Q4v9+P3m3okWLikWLFknn37lzR6qHEEIEBgYKhUIhtmzZIipUqCAMDQ2Fj4+PePr0qXTO1+PcwMBAtGrVSgghxJQpU0TFihXFwIEDhaWlpVCpVKJMmTJi6tSpws/PTxgZGWnUx8bG5rva+eHDBwGI169ff9fxf0UyMzPF9u3bRWZm5n+6Kv8wchv+Gsht+Gvwv9YG9f/hDx8+/OHryCsaMv8yVq1axfDhwzl37hxnzpyRhM/29vbfXUZYWBgLFy7EwMAAPz8//Pz8pKxMqamptG3blgULFhASEqJx3aCgIM6fP8/Fixfp06cPZcqUkdy3g4ODuXHjBnFxcZQsWZJt27bh6+tLQkKCVLdPnz4xY8YMli9fLgm9v0VUVBSRkZEsWbIEDw8PVqxYQatWrbh+/Tr29vY8e/aM8uXLU6FCBfbs2SOFlpQpUwZXV1diYmKkWH21JgNAV1eX0NBQypUrJ4UAnT59mi9fvkihPjY2NrRv356pU6cSGRnJ1atXWblyJT/99FOB7tOdO3fm6NGjGkL18PBw9PT0SE9PJy4ujtatWzN16lSmTp1K5cqVuXTpEjo6OkycOJGSJUsSHh6Oqakpb9684fbt25JvQ0HY2tri6urKjBkz0NfX5/Lly3z69ImTJ0/i7e1NrVq1aNOmDTNnzsTBwYGnT5+yZ88e2rZtS9WqVTE1NWXIkCEa4USRkZFMnjwZIyMjlixZQkhICI6OjhQrVozg4GD09fV5+/YtO3fuZM6cOTx69KjQdKqRkZGsXLmS4sWLExQUxKtXr9iwYQOVKlXi1q1baGlpMWHCBLS0tFi6dClly5blwoULTJw4kSVLllCjRg0uXrxI586dJffv2bNns2nTJn788UcAmjRpQkpKCqtXr2bmzJk4Ojqiq6tL3759ycrKYsmSJTg6OuLs7Ex6ejovXrxAT0+PIkWKFDrmAgMDgVyRfEZGBo8ePaJRo0YcOHCAV69eYWtrS2JiIlu2bKF27doMGTKEhQsXUqtWLbKzswkJCdF4M12zZk1WrlxJr169mDFjBpaWlgQHB+Pl5cXhw4f58uULvXr14uzZs0yfPh0DAwMGDRrE7t27uXv3Lra2tty9e5fXr1+zbNkyHB0defnyJY8ePaJq1aps374dgDlz5tC5c+dCNRqFIYvB/7P8o22Qxd8yMv/b/Hf+x5P5Xf7douiCcHV1JTQ0FAB7e3tJ+PxHJhoRERHUqVMHgKCgIMaMGcP9+/cpV64cAB06dODo0aMaE43SpUszd+5cFAoFjo6OJCQkMHfuXHr37k1ycjIxMTEkJydLmXpGjhzJ/v37iYmJYerUqUBumEB0dDRubm7fVc/Zs2cTEhJCp06dAJgxYwZHjx5l3rx5LFq0CEtLSxQKhYZwWs29e/coWrQoV69eZdCgQdSvX1+K7R81ahTt27cnMzMTFxcXbt++TdWqVbGwsKBOnTps27aNGTNm0Lp1a96+fcvEiRN58+YNPXv2xMfHB4By5crx66+/smTJEjw9PWnQoAGzZ8/mxx9/ZOPGjcyfPx8hBEFBQSxevFgKvbG3t+f48eN07tyZ9+/fc+bMGT5//szKlStZuHAhLVq0oH79+lSoUAHI1ZsURvXq1bly5Qpt2rSRxMtql+29e/cybtw4evTowatXr7C0tKR+/foaYWRqQ8HLly8D0KxZMwYMGEBYWBhOTk7cv3+fgIAAMjIycHZ25vnz52zfvp1ixYqxfPlySpUqpSGUV6NQKChatChjxoxh0aJFWFhYMHnyZLZs2cK9e/eoWrUqSqWS1NRUfv75Z+nhvmHDhty9e5c9e/bg7+/P48ePAZgyZQre3t6ULl2a0aNH07x5cyA3jMnIyAilUsnMmTNJTExEX18fKysrbGxs8Pb2RkdHh4ULFzJp0iRKlixJvXr1CtUx3L17l507d3Lq1CkqVqzIjBkz2Lx5M48ePcLNzY0KFSrg5OREYmIixYoVw9LSEmtra/bu3Uu9evUoWbIkUVFRkjYIkFLKenl5MXbsWD5+/IixsbGUFezz588cOXIEfX19Ro4ciZWVFaNGjWLv3r3MmzePOXPmMHHiRJKSkmjVqhUxMTFSfwkhsLKyIikpibJly37Ta0UWg8vIyMj8fZDF4DL/MtRiXTVq4fM/WoaFhQUGBgbSJEP93ddl1qxZEy0tLekNaq1atbh79y7Z2dkkJCSQnZ2Ng4ODhvj4+PHjGuJqXV3dfPUvjJSUFJ4+fSpNiNTUqVNHw7nazs4OX19fjWO2b9/OwYMHuXPnDmXKlGHHjh2kpqaSkJAA5L4JV9cnLi6Oli1b0q1bN548eSIJx9WZjRYvXszx48eB3LSnBblPQ67IHHI1Iw8fPmTfvn0IIZg8eTJCCNzd3aX6ubq64uPjg5eXFykpKZw4cYJy5cpRp04dhBCSULtixYpYW1tja2ubrwzIXTVwcXHh4MGDdOvWjdjYWD59+gTkio/nz5/PkydPyMzMJDk5mbVr135TBPz1vSlXrhzDhw/n8+fP1KhRg8qVK1OsWDHg/0TSebGzs5Mm4e/evaNGjRqSA7y2tjZeXl54eXmRmprK6dOnycnJITg4uNA+zVsvIQRt2rSRJl5JSUlSf1hYWHDjxg0+ffrEmzdv2LdvH1lZWZQrV47evXtjZmbGgwcPyM7O/qaHxs2bN9HW1qZGjRoUKVKEqVOncufOHdzd3Rk3bhxXrlyhRYsWGueEh4eTmJhIamoqd+7coWnTprx//16aDAAYGBiwdetWBg4cSIUKFVi6dCnp6emYmJhIho07duwgIyODxMREwsPDqVu3Ljdv3kSlUrFx40ZMTEywt7fn0qVLHDhwAMjVBL17967Q9uRFFoPLyMjI/H2QVzRk/mUUJrZVi6pFHmFqXlFqYWWoVwQKKvN7SU1NRalU8ttvv+UL3cibKUdfX18jY1BBZGZmoqur+93XLgx9ff3vct0ujLyi7d9zn87L/v37AfIJtP8Rfk9obGxszKVLlzh27BgHDhxg4sSJhIWFceHChe9K4/o13xoH/0xfFsQf6dOvxyvwzfFZunRpbt++zaFDhzh48CADBgxg1qxZ/xLnd/UE6VsU1K9f39dvjfnKlStLk9dDhw7xww8/UK9ePSpWrCg5vv8eshj8r8nfoQ0yMjL/Af6wqkPmv4JvibGFECIyMlJUqlRJGBgYCGtra9G/f3/x8eNHaX9iYqJo0aKFMDU1FQYGBsLZ2Vns2bPnu669Y8cOoaenJ5RKpfDy8hIrV64UgGjWrJkICAgQY8eOFYBGef369StQDG5vby9UKpVwdHQUXbt2FUWKFBFCCJGRkSEGDhwoDA0NhUKhkESnnp6ekqhWvZmYmAgnJychhBC3b98WgDhx4oRGnUNDQ4Wbm5v46aefRNGiRQUgfvjhB/H+/XvpmICAANG6dWsREREhrKyshK2trRBCiOTkZKGnpydUKpUoWrSoaNWqlXj48KGoVq2aaNmypVCpVOLdu3fCzc1NugeDBw8WDRo0EEL8n/g8L5MnT5ZExw4ODmL16tXiy5cvonTp0iIkJEQAYtmyZZJIWi2m37Nnj1CpVGL48OFCW1tb6gOFQiGJlw0MDKTvLly4ILS0tIS/v7/G9dXn3b17VyxdulQULVpUpKamSvv37NkjtLS0xPPnzwUgKleuLCwtLYWenp4oW7asiIuLE2XKlBEBAQFCCCGuXr2qISYPDAwU2traYsuWLUKIwsX0zs7OkoCc/y9UVygUQldXV9SvX1+YmZkJZ2dn4ebmJjp27Cg8PDwkEfuPP/4ovnz5ItX5zp07ol69ekKpVAqVSiUOHDggiaRnzpwpHafuZ7UYPCUlRahUKuHt7S2KFCki9Z2urq4kBs9bP/Xv6dSpUwIQDx8+FDExMUKlUgkbGxvh4OAg9PX1Rfv27UVaWppYuXKlsLGxEaampqJr164CEL/99psQQghDQ0Oho6OjIULX09OT7uGpU6eker9+/Vro6+tLwv9FixZp/KbUY1zN0aNHRbVq1YSBgYEoUqSIsLOzE8bGxiImJqZA4bp6XKjHilr4b2dnJ0qWLCn09fWFq6urOH36tHQN9W9fS0tL6OrqCoVCIQICAvKN928hi8H/Gsht+Gsgt+Gvwf9aG/4ZMbgcOvU3ZtWqVRgaGnLu3DlmzpzJpEmTOHjwIABaWlrMnz+f69evs2rVKo4cOSIJVwEGDhxIRkYGJ06cICEhgRkzZvzu21DIdYTu0KEDxYsXx9/fn759+0oCWTU6OjoYGBgwffp0bt68yfHjxyU3ajXqek6YMIGbN28ydepUtm3bRmZmJgDz589n586d/PDDD1SoUIHY2FjJuVn9xnXq1KlER0eTlZXFkCFDAHBwcMDf35/u3buzdetWHj58yPnz5zl58iS3bt1i48aNDB06FCMjIy5fvsyAAQM06nX48GFu377NwYMHJYdjHx8f3Nzc0NHRYfz48eTk5FClShXi4+OZOXMmpqambNmyRSojOzubDRs24O/vX2Afbtu2jfDwcCDXGK127doEBgbStm1b3r17h5+fX6H9b2BgwMiRI1m0aBHm5uZER0ezZMkSunTpQqdOnYiPj2fPnj0AuLm50atXL3R0dDRi9dU4OztjZ2eHv78/enp6BAQEcO3aNY4ePcqgQYPo1q2bpKO4ffs2b9++JSoqCh8fHzp37szbt2+B3LAZT09P3rx5w5o1a1i4cCG7du0iOztb0muoxfSzZ8/m6tWr+Pj40KpVKxYtWkTVqlVp3bo1AHFxcVhaWmJra8v79++5efMm169fJy0tjW3btjFkyBASEhIoVaoUUVFR9O3blwcPHrBp0yZ8fX3R1dWlV69elC5dWtL1tGjRgunTp7N9+3Zu3brFgAEDJE8OyF2NqVu3LkeOHCEoKIjY2FgiIiJo3rw5EydOJD4+no4dOwJw9uxZ6ff0tT4qKyuLx48fEx4eTlxcHEePHqV69eosXLiQqKgoZs2axbp169DV1ZVSIDdr1oxKlSoRGxvLoUOHGDVqFDk5OezYsYMWLVrQu3dvfv31V65cuULXrl0pVaqU1FffIisrizZt2uDp6cnVq1c5c+YMnp6eKBQKOnbsyIgRI6hYsSIrVqwAkNqnHp8bNmyQwsbu3btHaGiolBa3VatWXLt2jTt37kjpgKdNm0ZCQgLm5ubExcWRk5Pz3aFUMjIyMjL/vcihU39jChNjN27cmKFDh0rH2draEhERQb9+/YiOjgZyTdvat2+Pi4sLgIYu4luos+eYmZlRtGhROnXqxLVr15gyZYrGcaVLlyYrK4sqVarg6OhIs2bN+Omnn6T9K1euBKBly5aYmppStmxZ1q5dy86dO6X62dvbU6ZMGS5fvkzdunWl6wcEBBAdHU1ERAQqlYqhQ4fSp08fqeyYmBgiIiIkI7PixYtTpEgRvnz5wurVqzl48CBKpVJymI6MjJTEq4aGhixfvlyazKxdu5acnBxOnTpFREQEc+bM4eXLl2RlZTF58mQqVKhAp06dJMM6yJ2svH//XsM8LS+zZ8+mQ4cOxMXF4erqyo0bNwA4duwYO3fulLQHhTF58mS2b9/O48ePpWxNlStXZuzYsdjZ2Uk+G02bNmXatGm4ublx7do1zp8/T/Xq1aWQp0aNGklJBX755ReGDBlCtWrVMDAwoH379syZM0e6ZpcuXdDW1mbMmDFoa2tjbW0thaatW7eOrKwsTExM6NOnD+np6VhaWvL27VuKFy8utbkgMf2mTZvQ19eXvDSKFSvGu3fv0NPT4/z581JWpufPn1O3bl0CAgKAXMfxH374gZiYGOLi4rC2tiYpKYmTJ0+ydOlSDA0NmTp1Kk2bNqV169YUK1aMrl27kpaWxsCBA2nbtq3kgg3g5OREcnIye/bsYcGCBVKf1qxZEzs7O3r16kVsbKyURSwiIoJevXpp3Jfs7Gx8fHzo378/79+/x8vLi9OnT+Pq6kr37t3Jzs6WJjVmZmYkJyezdetWKXFBWFgYMTExZGZm8tNPP7F69WqGDBlCixYtyMzMpH79+uzdu/e7wlpSUlL48OEDnz9/pnz58kCuIeLmzZvR19fHyMgIbW1tihYtCuSGoyUmJgJQr149RowYIWmj8v6+2rVrR1hYGDVq1EBbWxt9fX3q1q0rvcRYvnw5/v7+fPz4EQ8PD6nMvBQmBpezTv1n+VYb5MxSMjIyhfHf+R9P5rv4lhj70KFDTJs2jVu3bpGSkkJWVhbp6el8+vQJAwMDBg8eTP/+/Tlw4ADe3t60b9/+u8TRt2/fplq1atKbUMjNOAQQGxuLqakpYWFh6OnpSe7YAPPmzcPGxgYvLy/S0tJ4+vQp+vr6WFtbS8dkZWVJMdqBgYE0btyYR48e4evry4EDB2jSpIkkoI2OjiY2NpY2bdrkq6OOjg7h4eHSqgHkptFdvXo1pUqVIjAwkMDAQD58+EBOTg63b9+WJhouLi4aMepXrlzh3r17GmlIdXV1ycrKkiYE/v7+1KxZk0ePHlGyZEkCAgJo3rx5odqEmzdv0rZtW+Li4ihWrBj79u0jKiqKqKgoGjRoID2cVa1aVYqfz/sGXqFQMGvWLNq3b4+zszNNmjShTZs21K5dW+M6fn5+rFu3jsDAQI4ePcqKFSuoXr06u3btwtjYmOnTp5Oeno6Ojg7GxsYcOXKkwPpC7kNq9+7dpYnqsGHDiI+PZ+XKlQwfPpwqVapw9OhR6fgPHz5IZnP6+vqFiumvXLnCsWPHSExMJCYmhs6dO+Pu7i5lP1KjHk95V92ys7MRQvDq1SuWLVtGVFSU9MAeFhYmTSSUSiXz5s2jTZs2NGjQgIiIiHz3pkePHqxbtw4zMzP69etHixYtJKE+5I7Nhg0bUrFiRY3fU1paGgYGBkDuapNaFwO5jtkvX77kwoUL0ncBAQF8/PgRQCNxQU5ODp8/f0ZPTw9tbW0pW9bq1asLvScGBgYUKVIELy+vfPuKFStGp06dWL58OUlJSXh7e+Pn56cxjiDXgVx8pdHw8fFh//79JCYmUrZsWbp06SLtU08c9+3bR/369fHw8KBx48bS/pYtWxIREcHEiRMLnGRA7upH3t+mjIyMjMx/L/JE429MYYLZxMREWrRoQf/+/ZkyZQrFihXj119/JSgoiMzMTAwMDOjVqxc+Pj7s2bOHAwcOMG3aNCIjIxk0aNA/XS8tLa1vCofV4ttly5ZRo0YNjePUb8m/Fp3+Wc7Nv8fXbtmpqalUqVKF2NjYfMeq3ZSrVatG+fLliYuLo3///mzbtk1asflH+B4xfdOmTUlKSvpuB+pevXrRrVs35s6dS0xMDB07dsTAwEB6SP6r0KxZM9auXcuZM2do2LCh9H1qairh4eG0a9cu3zl6enr/9HW/Nd5+7/ekXkEq6Pf4LVF73sQFx48fp2/fvly9ehWFQvFdYYy/x/r167l8+fIfcvkuiD8qgP89ZDH4X5O/QxtkZGT+/cgTjf9BfvvtN3JycoiMjJQeWjdu3JjvuNKlS9OvXz/69evHmDFjWLZs2e9ONBwdHfPpLfK+sYXcB/Dnz58jhJAeTNTx3ZCbArRkyZI8ePCgUB0DgImJCR07dqRjx4506NABX19f3r59S7FixdDR0SnUQK4wkpOTefr0qeSvcfbsWbS0tHB0dMTIyIiMjAyEEBoPeVlZWejo6FCiRAkpvKcg/P39iY2NxdraGi0tLa5du0b37t2lMjIyMqRy82omsrKyCA4OZsmSJSgUCiZMmMCYMWOAXC+FuXPnsmvXLilVrNrPAXL7Wa01+fLlC3PmzMHKyqrAkK1mzZphaGhIQEAAu3fvZv78+UB+PxZbW1v69OnDvXv32LRpkxRac/bsWak9p0+fltKiVq1alerVq3Ps2DHOnDkjeVmcOnUKLS0tDA0NKVmyJAqFgiZNmqClpUV6erpkHqilpUXt2rWZPHkyAP379yc+Pp4mTZpw+PBhPD09AShatChz586VQnS8vLxwcXFBqVSyatUqhBB8/PiR+/fvExERwebNmzE2Ni7wXp06dYoxY8ZI6WKXL19OpUqVpPFWqlQpzpw5w5YtWyhVqhRubm4avydbW1spHKl06dK0b9++wFWFvCQkJDBkyBCOHz+OUqmkZcuWHD58mOzsbCpVqkRWVhaQqzEC8k3UvyYwMJCrV6+SkZGBlZUVmZmZZGVlkZqaKo2zT58+oaOjg46ODmPHjuXTp0+0a9eOt2/fYmJigqGhIQqFgm3btmmsDD5//pwGDRpw5swZIHdVz93dnWPHjjFw4EAAGjRoAOSmPb5w4QLR0dHMnTuXR48eAd+eiKhUqnzZvGRkZGRk/juRxeD/g9jZ2fHlyxcWLFjAgwcPWLNmjYY+AnLjrn/55RcePnzIpUuXOHr0KE5OTr9bdt++fbl16xYhISHcuXOHjRs3Sm/v1ZMKLy8vXr16xcyZM7l//z6LFi1i3759GuWEh4czbdo05s+fz507d0hISCAmJkbSBcyZM4f169dz69Yt7ty5w6ZNm7C0tJRCXmxtbTl8+DDPnz//btGpWvB85coVTp48yeDBg/Hz88PS0pL4+HhatmyJl5cX8fHx0nbhwgUsLCxo3bo1J0+e5OHDhxw7dozBgwdrPPT7+/tz6dIlpkyZQocOHQgODpbKCA8Px8jISPo8e/ZstmzZgr29Pbt37+bq1asIIRg1ahRz5swhNjaWmjVr0r9/f06dOsWkSZOkB9CQkBC+fPnCxIkTiYyM5IcffqBhw4bUr1+fsmXLMmHChAJXfZRKJY6OjmzatAlbW9tvTigjIyOpWrWqhlg+Li6OFStWcOnSJRo1asTnz5/Ztm0bkydP1hD2fy0md3NzIz4+njFjxqCrq0tQUBCQK8BWKpXs2LEDbW1tjUQFTk5OODk50aJFC3799VcAatSowYsXLwgPD5fE4cuXLyc+Pp7z588zfPhwcnJyqFGjBqVLl2bJkiXSw3tePQDkmiRGRkZy4cIFzM3NadmyJbNmzWL9+vVSiJ6RkRHm5uZs2LCBBw8eaPyeUlNTpTCxEydOMGHChG+Ou7S0NHx8fChatCgtWrSgWrVqJCQk4OvrS6tWrShRooQ04V6+fDl9+/aVBP3f4ubNm+Tk5HD06FFWrVpFWloaJUqUID4+nl27dmFoaEjnzp3Zs2cPdnZ2XLt2jSJFinDu3Dn69+8vudOnpKRo9FFsbCwjR46UXiiMGTOGrKwsateuLRlebtmyhWfPnjF37lz27t1LcHAw/fv3Z+LEiejr60urPDIyMjIyf2/k//b/g7i5uTFnzhxmzJjBmDFjqF+/PtOmTZPeSENufPvAgQN5/PgxJiYm+Pr6Mnfu3N8tu2zZsmzevJkRI0YQFRVFrVq1GDduHP3795feUjo5OREdHc3UqVOZPHky7du3Z+TIkSxdulQqp1evXhgYGDBr1ixGjRqFoaEhLi4ukojd2NiYmTNncvfuXZRKJdWqVWPv3r3SCk1kZCTDhw9n2bJllCpVqtB48LzY2dnRrl07mjVrxtu3b2nRooWkObCzs8PExIScnBzs7Ow0zvv1118JCQmhXbt2fPz4kVKlStGoUSONFQ47OzuqV6/O+fPnmTdvHsWKFZM0HBYWFiiVSqlcOzs7MjMzGT58OOnp6bx48YKYmBi6detGdnY2c+fOJTIykmbNmpGWlsaKFSuYM2cOTZo04fXr12zfvh1dXV0mTZqEQqFg3bp11KtXj0OHDrF48WKWLFmSr+0hISFcu3YNIF+mra9Ru3KrzxszZgw+Pj7ExcXRt29fcnJyWL16Na1atZKO6d27NykpKfnE5Nra2tjZ2TF58mR0dXVZuHAhkLtatXr1anx9fdHS0pIcttWUL1+eHj160KxZM/bv34+NjQ2VKlXiwIEDzJgxg8zMTPT19fH398fe3p5x48Yxffp0lEolM2bMwNbWlqioKLp06ZJvbISGhkq6glWrVmFtbc29e/dYt24d165dk0KXfvnlFzw8PFi+fDn169dn+vTpjBkzBiEEHh4eXLp0ibJly2JqasrJkycL7c9169aRnp7O6tWrGThwIAqFgnHjxtGyZUuSkpJYtmyZ9CJgwoQJ1KxZU3Jv/xaGhoZkZWVRoUIFKlSogKOjI0+fPsXOzg5jY2Oys7PZtm0b69evx9TUlJycHA4fPkzJkiWpUKECR48e5eTJkwQEBJCTkyOtyrRp04bmzZtL/fbs2TPu3btHhQoVJK2S2o3c0tKSPn36sGTJEsaPH4+Pjw8jR46U7nNByGLwvxay0FtGRuaf4b/rP57Md1OQq3Bed+Rhw4YxbNgwjf3dunWT/l6wYME/fO1WrVpJD5kAU6ZMwdraWiNWXh2SlZexY8dqfO7SpYuG0DQvvXv3pnfv3oXWoWXLlrRs2fIP171///7079+/wH2F6SosLS1ZtWrV75Z97ty5Ar9Xi8+/rseGDRsoV66chrC+Vq1aREZGSrH/aWlpkm5F/YB78+ZNJk6cyNatW2ndurWUeczLywtjY2OSkpLIysqSzouMjCQtLY3FixfTrVs3jQlnQeRNCqBQKHB1dcXJyYmJEycybNgwKdWqGnUygKVLl+ZzDFdz584d9u3bJwm0z5w5I2lc8jps533AHj58uBTLv3HjRooVKyaNey8vLypWrCiNEaVSibm5OcHBwYwaNUrqry5duuRbqVOHd0FuFiUjIyNKlizJ5cuXUalUZGdnc/bsWerVqyeVI4TgyJEjODk5YWtrS7t27TRSBue9x2FhYWzfvp34+HjCwsIYPnw4bm5uGBoaSmNMnYjgwYMHhIeH4+HhQdu2bXn69Om3bo0GNWrU0Fj58Pb2lhznLSwsKFGiBEOHDmXo0KFSsgF12KCenh6xsbGcPHlSCp1STyzUmb1sbW2lUMWXL19SoUKFAgXoM2fO5NSpUzx79gwjIyMOHTr0zSx2shhcRkZG5u+DPNGQ+dOJjo6mWrVqmJmZcerUKWbNmkVwcPB/uloyhVC7dm327t3LuHHj+OGHHyRvjML4Z93ZCyI0NBRDQ0NWr15N586dvykw/r1kAt+q5z8rXLaxscHb21tDrKwm7yTo66QB/wn+mfv07NkzaSL6rXK/pw+XLFlCTEwM165dY82aNRw7dgxzc3Pev39fYOY1WQwuIyMj8/dB1mjI/CH69euHkZFRgZt6heLu3bu0bt0aZ2dnJk+ezIgRIwgLC/uP1rtixYqF1rugjFF/Fb5eBTl79iz29vY4OzuTlZWlsf/Nmzfcvn0bZ2dnIDdE7dSpUxrnP3v2DAcHB42HSKVSyadPn3j48GG+N80vXrwgOjpa6qvk5GRCQkIwMjKiYsWK+QT3jo6OJCQkaIS+fJ0MoCDu379P3bp1pTTC38Lc3Jxnz55pfJc3mcA/gtpTA3IF1+r2njx5ktevX0urHtWqVePOnTvY2dnl2/KmPf4jODk5ceXKFdLS0qTv1GJ5taFhQTRt2rTQMX316tUCzylMRO7o6MijR4948eIFkLtKV1gZ30JXVzffmDh//jxNmzalX79+PHv2jHnz5vHu3btC0yWrVCpMTEw0NhkZGRmZ/1L+sJe4zP80L168EHfv3i1we/HixX+6eoWSmJhYaL1TUlL+rXXx9PQUgwYNEqNGjRJFixYVFhYWIjQ0VAghxMOHDwUgLl++LDw9PYWRkZEYMGCAAMT48eOFoaGhGDZsmABErVq1hJ6entDV1RXVqlUTDRs2FCVLlhSOjo7C2NhY+Pj4CC0tLTFp0iRx+/Zt4ejoKLS1tUXDhg2FiYmJMDMzE0WKFBFz5swRQghx8uRJYWRkJLy8vETJkiWFgYGBMDIyEj4+PlJfmZqaCl1dXfHTTz8JOzs7oVQqhZOTk1T/Dx8+iGLFionu3buLGzduiP3794sKFSoIQJQoUULo6uoKNzc3sW/fPqk/gHzbu3fvpP2XL18WgHj48KEQQoj9+/cLQFhYWAiVSiVMTU2FSqUS9evXl86xsbERxYsXFz/99JOwtrYW+vr6wsDAQEydOlU6JiAgQACiY8eOolixYkKlUglA2NnZiVWrVok9e/YIU1NTYWhoKDIyMoQQQlhZWQkdHR0xcOBAcfnyZXHx4kXh7e0t9PT0hLGxsWjQoIGwsrISc+fOla4zbdo0UaJECWFkZCR69uwpQkJChJubm7Q/LS1NWFlZifbt24uEhARx5MgRUa5cOREQECCOHj0qqlWrJnR1dQUgateuLRITE4UQQjx+/FgsXrxYODs7C11dXWFtbS0GDRokbt68KTp16iRat24tABEdHS1atmwptLW1hY2NjShVqpSIjo4WNjY2Uj0vXLggAFG/fn1x5coVAQgHBwcBiO3bt4tHjx6JFi1aCEDo6emJKlWqiLNnz4p3794JQEyePFl4eHgIHR0dAYju3buLZ8+eibS0NLFz507h6+srLCwshI6OjjAxMREKhUJcu3btu34vHz58EIB4/fr1dx3/VyQzM1Ns375dZGZm/qer8g8jt+GvgdyGvwb/a21Q/x/+8OHDH76OHDol84coUaIEJUqU+E9X4w9jY2Pzn66CBqtWrWL48OGcO3eOM2fOEBgYSJ06dbC3t9c4rnv37nz+/BmAqKgohgwZgre3N3PnzuXLly94enpy6tQpLl68iKmpKc7OzixYsIDU1FTatm1L586diYuLY/LkyWhpaaGlpYWLiwvR0dFcvHiRbt26cfbsWSDXdM/T05N9+/YxaNAgBg0aRJMmTTh06BBCCOzt7VEqlWRlZbF69WpWrVqFmZkZP/zwg1RfExMTdu3aRf/+/XF3d8fFxYWqVatKmciaN2/OihUraNWqFdevX8fe3p5nz57h7e2Nr68vtWvXLtQxXY2Pjw9eXl5cvXoVXV1dPD09OXDggEaWL8g1Mdy4cSO7du0iJSWFRo0asXnzZik9sJrHjx9z4sQJdu7cydixY/Hw8JASDahUKlq3bi2tVujq6hIcHMy1a9eoV68enz9/xtDQkJ49ezJ06FCWLFnC8ePHpXTDGzduJCwsjEWLFlG3bl3WrFnD/PnzNVaODAwMCnRenzlzJra2tvTu3ZuePXvSv39/+vTpI4UrPXjwgJCQEObPn0+9evW4f/8+ffr0wczMDJVKJY2bsLAwpk+fjpmZGbdu3aJu3boaTvWQmzWscuXKZGdnU61aNQA6dOjA1KlTEULg6ekphS1t2LCB9PR0jXCpadOmER0dTb169RgyZAhr165l9erVhIaGolQqOXjwIPr6+iiVSkqUKEGnTp2oWLFigfdXFoP/55EF4DIyMn8Wf/3/eDIy/5+vPR3+Sty6dYvAwEDi4+OpUKHC74byuLq6SiJte3t7Fi5cyOHDhzUmGmph8/v374mJiWHnzp14eXlJ30+fPp1GjRpJf48ZM4bVq1dLD7EdOnQgMTGR69evA7n99/LlS6KiovDy8sLf35+EhAR27twJ5PqI7N+/X3Iwh9yQJm9vb2JiYpg6dSqzZ8+mR48eREdH4+bmBpAvxKZ27dpcuXJF+ly0aFGUSiX9+/dHX1+fGTNmcPToUebNm8f169dxd3dHW1sbIyMj2rVrly+8x93dPd93eV3GAWbPnk1cXJz0OTAwkIiICMnt3dbWlp49e7J8+XKeP38uhWgVK1aMAwcO0KxZM9zd3Vm8eDGjRo3iw4cPaGlp4eXlJYnS1ZQpU4Y5c+bw66+/0rx5c16+fCllVJs9ezbbt2+XHLLnzZtHUFCQlLY3IiKCQ4cOkZ6erlGmi4tLvlCit2/f8uHDB1q0aIGnp2e+5AkBAQFkZ2cTGBgoCbYnT57Mjz/+KInGFQoFXbp0oUePHvTo0QPIDTOLjIwkMTGRMmXKkJOTQ1xcHOPHj5eukdcU8Pr167x69YoLFy5ImdLy0qhRIxo1aiSJxHft2sXatWv58ccfCQsLY86cOZQvX55r1659lz5BFoPLyMjI/H2QJxoyMn8CajHz7du3v8u1OW/mJsjNrPTy5cs/dM28ZVhYWGBgYKDxptzCwoLz589rnFOzZk2OHDkiGe2ps1hlZ2eTkJBAdna25MmhJiMjQ0OEq6urm6/+eVFPdtTGdu/fv8fb2xt9fX3pmDp16mhMRv4oGzZsYP78+dy/f5/U1FSysrLyxfKXKVOGUqVKSZ9tbW3Jycnh9u3b0kTDzc0NAwMDtm7dio6OjuSD8ejRo99dBbty5Qqpqan5BMqfP3/m/v37QK6XxdcThFq1auWbKBVEsWLFCAwMxMfHh8aNG+Pt7Y2fnx9WVlbcvHmThw8foquri4GBgZTlKzs7m/T0dD59+iS5uletWlWjXHd3d5ycnFi3bh2jR4/m+PHjvHz5EgMDAw4ePChNdhcvXkydOnV48uQJHh4eBU4y1P1w6tQppkyZIn2Xtx4//PAD8+bNw8LCgtTUVDZs2EDLli0L9dKQxeAyMjIyfx/kiYbM/zTZ2dkoFArJf+Mf5f79+zRv3vy7Q7QKywikrkfeN/jqjEpfi2y/zv7zvVmGChNcp6amolQq+e233/JlHMo7edLX15fCdwri+fPnTJw4kefPn0sZrEaOHAnkJhNYu3YtmZmZ5OTkIITg9OnTZGdno62t/V1JA86cOYO/vz/h4eH4+PhQpEgR4uLiiIyM/N1zC6Owh+hvkZqaipWVVYGppPNmU9q1a5eGN0lmZibZ2dkYGRlRr169fGaVeYmJiWHw4MHs37+fDRs2MH78eA4ePCg5b6tRjxctLS3WrVunkUq6oAxY/v7+0kRj3bp1+Pr6AjBw4EDJqM/Ozo5NmzZJJnzf6ofw8HDatWuXb5+enh6lS5fm9u3bjBkzhsWLFzNgwABmzZrF8ePHC3zolp3BZWRkZP4+yFmnZP4wXl5eDB48mB9//FEy5lI/ICYmJqJQKDRCh96/f49CoZAeyI4dO4ZCoZAMz/T19WnYsCEvX75k3759ODk5YWJiQpcuXaRYdzVZWVkEBwdTpEgRihcvzoQJEzQeyjMyMhg5ciSlSpXC0NCQGjVqaDwIrly5ElNTU3bu3ImzszMqlUp6sCqMnJwcJk2ahLW1NSqVCnd3d/bv3y/tVygU/Pbbb5JB3u89LKenpxMVFUVcXBy1a9dGT0+PI0eO8Pz5cylM55dffkGhULBv3z5q164NQEJCAjk5OVKWLEtLS9zc3DScvq2trVm8eLHG9S5fvoyWlhbp6emcO3cOhUIheaqcPXuWMmXK0LhxY7p37052djYjR47E0tJSyqbUq1cvpk+frlFmmzZtNLw/oqOjsbe3R09PT3IOT09PJykpiZIlS0qeEpMmTZLCyzp16kTVqlXx8/PDxMSEq1evFnhP3717R/fu3SlatCgGBgb06NGDkiVLMm7cOKpWrYq9vT3Hjx/n48ePqFQqbG1tOX36NMnJyRq+E0lJSVImp+XLl7Nu3TouXrzI58+f8fLyYujQoZw9exYjIyPq16/P1KlTuX37NtHR0ZQpU0bDUBJyH4ifPHlCxYoV6dSpE9euXcPe3p7U1FSKFy/Ou3fv0NbWZteuXXz58gUzMzPGjx9PxYoVcXBwID4+nuXLlxc4RhISEmjYsCH6+vp4e3vz8OFDDhw4QKVKlRgyZIgUepWZmcmnT5+4cuWKtLVp0ybfxDkrK4vBgwdjamqKmZkZycnJJCQk4OXlxebNm/H392fixIkMGDBAKnvw4ME0atSI+/fvEx8fz9u3b3n//j29evXC3NwcExMTGjZsiKOjI7dv38bOzo60tDR69+6Nh4cHlStXplq1aly8eJFz584RFRVFZmYmz58/58yZM3LKaxkZGZn/AeQVDZl/iO8VM3+LsLAwFi5ciIGBAX5+fvj5+aFSqVi3bp0kZl6wYAEhISEa1w0KCuL8+fNcvHiRPn36UKZMGcmYLTg4mBs3bhAXF0fJkiXZtm0bvr6+JCQkSHX79OkTM2bMYPny5ZiZmf2uuD0qKorIyEiWLFmCh4fHN8XMI0eO/K7QKYBRo0Yxb948nJ2dadq0KYcPH+bTp0/UrFmT9evXS+1Rv/UtV64c06ZN45dffgFyJwnx8fF07dpVckzv3Lkz69at0zAdjI2NpU6dOiiVSkmv8eTJE9avX8+CBQtQKpW4u7vz22+/MXToUPbv30/Lli1ZsWIFr169Ijk5WXJ8LoiLFy8yePBg1qxZQ+3atXn79q2GE/aoUaMIDQ2lfPnyuLu7ExMTw61bt9iyZQu9e/dmx44d6Onp0adPH2rVqpXvngYGBnL37l127tyJiYkJPXr04Pbt26xdu5ZatWrx008/cfjwYfT09Lhy5QqnT5+md+/eaGtrExAQwOzZs0lPT2fr1q34+fmxevVqZs6cSZMmTTh+/DhBQUGkpaXx8OFD4uLiCA4OZv369URGRmJmZoaPjw8VKlSgf//+0mpQSkoKkyZNwtzcnGLFitG2bVsp3GfhwoX069ePlStXYmhoyMePH4mIiMDc3JxffvmF+/fvU65cuXwO82rS0tLw8fHB1dUVf39/3NzcmDlzJg8fPuTu3buMHz+e/v3706NHD7S1tRk6dCgZGRloaWlx5coVVq5cSUREhEaZM2bMIDY2lpiYGJycnIiKikKpVHL58mWEELRq1Urjd5YXFxcXbt68SZs2bfj8+TMmJiaMGjUKW1tbzp8/z9KlS7l+/TplypRhzZo1ODs7ExYWxv3792nQoAF79+7FwsKCkJAQFi1aRK9evfjpp5/yGXSqkcXg/1lkIbiMjMyfibyiIfMPoRYz29vb0717d6pWrcrhw4f/UBkRERHUqVMHDw8PgoKCOH78OIsXL8bDw4N69erRoUOHfLHspUuXZu7cuTg6OuLv78+gQYOYO3cukCtmjomJYdOmTdSrV4/y5cszcuRI6tatS0xMjFTGly9fiI6Opnbt2jg6Okqx7AXh5eXFhAkTCAkJoVOnTjg6OjJjxgwNUbqlpaUkZra0tPzuiUZwcDDt27fHyckJNzc3dHV1+fnnn1mxYoUUJiWEkFza9fT0mDp1qvRAaGtrS2BgIF27dpVWbfz9/Tl16pTGKk1cXBz+/v4Akuv3jz/+yMCBA6lfvz4AW7duJSsri3379vHDDz9w7NgxHB0dadOmDR8/fsTY2LjQdiQnJ2NoaEiLFi2wsbHBw8ODwYMHS/sHDx7M8OHDGTFiBC4uLuzfv5+dO3dKE7/SpUtTqlQpihcvnu+eqicYy5cvp169eri5uXHw4EG0tbUZMGAA7u7ubNy4EQcHB1QqFQ4ODgQGBkpu5O3ataNZs2a8fPmSkiVLUqJECebNm8fx48cpXrw4jRo1wt7enosXL7Jnzx5atWpFYGAgSUlJ1KpVi5IlS2JqakpISAjFixeX3vavW7cOLS0trl+/TpMmTYiOjpb6/NmzZ1hYWJCcnEzDhg2ZOHEiM2fOZNCgQahUqkKd59WsW7eO9PR0oqOjefPmDdOmTeP58+ccOnSIgIAAaWUCYPfu3Zw+fZpq1apRs2ZN5s6dW2D43oIFCxgzZgxt27alQoUKLFy4EBMTE1JSUmjbtq2GfuZrlEolBw4cQEtLi4sXL3L27Fk2bdqEra0ts2fPpkSJEgwYMIADBw5w//59Dh06xMaNG/Hw8OCHH37A1dWVmJgY5s+fT2pqKmfPnmX37t2FhhlOmzaNIkWKSFvp0qW/2V8yMjIyMn9h/nBCXJn/eTw9PcWAAQM0vmvVqpXo0aOHhg+EGnWu/aNHjwohhDh69KgAxMuXL6VjVqxYIQwMDDTKnDhxovDw8NC4bo8ePTSO2b59u9DW1hZZWVli9+7dAhCGhoYam7a2tvDz8xNCCBETEyN0dXVFTk7Od7W1Tp06AhDHjh3T+H7o0KGiQYMG0mc3NzfJS+L3UPfR6NGjRZEiRaTv27RpIwIDA4UQ/9dHjx8/lvZfu3atwPbp6OiI6tWrS8c5OzuLadOmCSGEOHLkiNDR0ZE8CNTeEdu2bRNCCDFs2DDh6ekpnj17Jr58+SKEEOL9+/cCEMePHxdC5Pb7kCFDNNrQunVrERAQIIQQIiUlRbi4uIjixYuLrl27irVr14q0tLTv6ovfu6c7duyQ/s6Lu7u7CA8PF0II4eHhIcLCwjT2d+zYUQDSeTY2NsLa2loULVpU3L9/X+qL1q1bCyFyvTxatGghhBAiKytLWFtbi+nTp2uU6erqKl1Tff/zjne1/4R67O/du1fo6+sLNzc3MWrUKHHq1CkhhBChoaEaPhpq1GX5+/sLLy8vjX1f35Nt27aJ3/v3rW7f1+eqadu2rdR+dR/l9f8QQnNcL1y4UGhpaeUbf1paWuLHH3+U2qatrS0aNWokpk2bJu7duyeVFRMTozHeCyM9PV18+PBB2h49eiT7aPwFkNvw10Buw1+D/7U2yD4aMv92/hEx87fK+CNi5sL4s8TMfyXyCnlTU1MB2LNnj0Y2JUBDPFuQ0Pdb2XoUCsU3Hbm1tLTypZfNe0+NjY25dOkSx44d48CBA0ycOJGwsDAuXLigIYr+T1OvXj327NnDxo0bGT16dKHHKZVKlEplPkHyHx2PTZs2JSkpib1793Lw4EEaNWrEwIEDv3vF69/N793n7xG/h4WF0aVLF/bs2cO+ffsIDQ0lLi6Otm3bfnc9ZDG4jIyMzN8HOXRK5k9FLWZ+9uyZ9N3veUr8Ec6dO6fx+ezZs5KRnIeHB9nZ2bx8+VISMqu3bz1IfwttbW0MDQ2ZMGGChvD91KlTODs7k5ycTOvWrUlISGDatGn4+fnx4sUL6fwrV67QoEEDjI2NMTExoUqVKpLvxPTp0/nw4QMKhQKFQsGRI0dwcnIqtC7Ozs7o6OgQGBiIh4cHdevWZeLEiZiYmGiEl1StWpWEhAQMDQ1Zvnw5d+7c4f79+4SFhbFq1SoA2rZtK2Xbunz5siTgz8nJoXz58igUChwdHYHce3rz5k20tLRISkoiOzubq1evcvr0aczNzVEoFOjp6dGqVSuio6N58eIF9+7dw8rKSkOroSYsLAx3d3eWLFnCmTNnWLlyJX5+fnz48AGAOXPmkJWVhUqlokOHDmRlZaGtrY1KpcLX15fg4GDi4+OJioqSNAenTp0iMzOT4OBgrKys2LhxIwAzZ86Urlu9enX27dsn+YEURmJiIklJSTx58gTIFaP7+/tz7do1IiIisLe3582bNyQkJFC2bFkAPDw8JF+RvJibmxMQEMDatWuZN29ePkG5kZGRtKkN7DZu3ChN2o4fP0716tUlX45NmzaRlZUlnb9582ZcXFzQ19fHzMwMb29v0tLSpHu9Y8cOaRKg9hkJCQnB3t6e7du3c/DgQSZMmMCXL18wNzcnMTERpVLJxYsXSUlJ4eHDh8yYMYOaNWtSuXJlnj9/zq5du2jQoIH021q2bBm1a9eW0iuvWbOG4OBgDhw4gI+PD+3atePixYvo6upKIYHz5s3DxsbmD03cZGRkZGT++5BXNGT+VPT19alZsybTp0+nbNmyvHz5kvHjx/9p5ScnJzN8+HD69u3LpUuXWLBggZTW1MHBAX9/f7p3705kZCQeHh68evWKw4cP4+rqSvPmzf+ha2ZlZXH+/HmmT59ORkYGo0ePRltbmzVr1tC6dWuMjIyws7OjXr16xMfH07FjRw3NhIeHB4sXL0apVBIfHy/5BxQtWpT09HR++eUXli5dyvbt2+nZs2eh9TA2NqZJkyacPHmSiRMnUrZsWSZNmoSXlxchISEEBATw5MkTOnfujJmZGcWKFePp06cMGzaMrKwsRo4cyc2bN9m4cSMrVqygadOm6OnpsWbNGgDu3bvHu3fvyMrKwtzcXEpN27BhQ4KDg3FycuLz58/079+fZ8+eYWVlxb59+9i/fz+7d+/m+vXrrFu3jkuXLhEeHs7WrVvzeTiouXfvHhs3bsTFxYUbN25w4MABunbtSpcuXbh48SLu7u7cvXuXNm3a8ODBA+7fv8/Lly959eoVDx48wMbGhh49etC3b1927NhBixYtaNmyJVevXqVHjx7MnTuXYcOGYWtrq3Hd2rVrs3fvXpo2bcrkyZMlEf23mDBhAjdu3KBcuXI0a9aMFi1a8ObNG/bs2UOzZs3Yu3cv06ZN4+eff+bevXvSatnEiROpUqUKFStWJCMjg927d+ebSOadhD9+/JgGDRoQGxvLwIEDmTNnDsePH8fHx4fnz59jZ2dHXFwcZmZmuLu7A7ni/5kzZ9K2bVs+fvzIyZMnEUJI9zolJYWYmBjmzZvH8uXL8fHxIT09HVdXV168eEHFihVZtmwZxsbGNGzYkJUrV2JnZ8f69et58OABCoUCIQSXL1+mZs2a1KpVi4iICNzd3UlMTOTp06ecPXuWkJAQ6tSpw4gRI1i0aBFZWVm0aNGCGzduYGtrS0xMDP7+/qSmpnL48GGWLVuGv79/gWmlZTH4vx9ZAC4jI/OvQl7RkPnTWbFiBVlZWVSpUoWhQ4fmy4Dzz9C9e3c+f/5M9erVGThwIEOGDKFPnz7S/piYGLp3786IESMkMfOFCxcoU6bMP3zNqlWrMmbMGGbPns2ECRPQ19enbdu2UorQdevWoa+vj7W1NatXr+b48eNcuHAByJ0YeXt7U6FCBezt7fnhhx9wdnYGwM/Pj8zMTLy9vbl06RI7d+6U3lwXxq5du5g0aRI///wzXbp04fHjx9y8eVOaFCxatIhPnz5RqVIl7t69S/v27enbty+Ojo4YGRlJot+iRYtiaWmJqamptMrRtWtXOnToQKNGjXj58qUkbg4MDESlUpGUlISnpydaWlooFAq8vLyoWrUqXl5e6Onp8enTJ9q3b8/WrVuJi4ujadOmhYqM09PTWb16NUZGRvTo0YM6deqwe/duBgwYwNChQ3F1daV48eKsXr2aPXv24OPjg5aWFvHx8ZQrV46DBw8yfvx4dHV1+fDhAxs3buTixYu8ePGC2NhYJk+ezNSpU+ncuXO+a9etW5c9e/Ywfvx4SWj/LZKTk/Hw8MDAwABTU1O8vb3p2LEju3bt4sGDB0CuSeGkSZMAJA8LXV1dxowZg6urK/Xr10epVEqrCgkJCRgZGeHu7i5t6omwvb09hw8f5tatW2RkZHDy5EnevXuHj48P4eHhREZG8vbtWyB3EhwaGoqtrS2urq6ULFlSWiHR19dHpVJhaWlJREQEnTt3pnv37qxZswZ7e3t8fX2xtbVl5MiRbNy4kTFjxuDp6UliYiLR0dG0adMGU1NTypcvL60adenShbdv33Lp0iUcHBzo1KkTpUuXpkmTJpQrVw4TExOEEMyYMQM/Pz9pQrd+/XqqVKlCv379aN++PTdu3MiXulqNLAaXkZGR+Rvxh1UdMjL/Q3xL+B4VFSVsbW3znWNqaipWrVolhChYHKsW/YaHh3+XODYvFy9eFC1atBClS5cWRkZGwsDAQADi+vXrQgghmjZtKiwsLPKJt9XkFUCrKUjA/y1B+feIgoUoWFys7pOyZctqfKcWLKtF9wEBAaJZs2Yax9SvXz/fvShTpoyIiooSQghRuXJloaenJ+zt7cWgQYPEL7/8UmAfFAR5BPLq/rCyshJz584tVNT9dd+tXbtW6OjoiE+fPn3zWqGhocLJyUncvXtXYzt27JjGfWjbtq2UHODly5ciLS1NxMfHC0D069dPODs7i1q1agkjIyPRoUMHMWvWLPHs2TPpOgXdayGEiIuLE7Vq1RJKpVLo6OgIlUolzM3Npf07duwQRYoUEWXKlBEuLi5i8eLFYsiQISIkJETcu3dPAOLOnTsa5dWuXVtYWFgIQ0PDfOVlZGSI4sWLi/Xr1wshhBg0aJBo2LBhof0ji8H/msht+Gsgt+Gvwf9aG/4ZMbi8oiEj8zv8MyL1sLAwrl+/TvPmzTly5AjOzs6SD8YfRe2vYGJiQmxsLBcuXGDbtm1ArnEb8M00pX8EtaAcyCcoV4uC4+PjNbbbt28zatSoP+X6UHC/f+teGBsbExgYyOTJk/n8+TN+fn506NDhD19X3Zdq1KLuYcOG8fTpUxo1asTIkSNZvXq1tHJ19OhRQkJC8PPz+657oKurm09HVFC6V3XbzM3NNdIwJyUlUbVqVU6dOsX+/ftxdnZm9erVuLq68vDhw3zlJCUlsWzZMjZs2ECXLl348uULCoWCHTt2MG7cOI02169fn48fP5KZmcmDBw/w8vLCy8uLY8eOcf78eUqWLCmlJla7tDdr1ozdu3dz+fLlfOXp6urSvXt3YmJiyMzMZN26dd8MEVSpVJiYmGhsMjIyMjL/pfwjsyAZmb8TX7+Zz7u5ubkVmtr1wIEDQqlUiuTkZGnf9evXBSD09fULLM/Kyko0atRIAGLKlCnCyMjou+t58eJFAWhcb/ny5QIQenp6wtLSUjRp0kTo6emJ4OBgIYQQq1evFlWqVBFGRkbCwsJClC9fXjRu3FgIIUROTo4oX768GDNmjMab9MuXLwtAKBQKceHCBaGnpyfMzMyErq6usLKyEq1btxZKpVI8fPiw0Lp6enoKQGNT94FSqRSA0NbWFjY2NmL27Nli//79QktLS3ojX9DbeE9PT9GgQQNhZ2cnVCqVKFGihDAwMBBz586V0vbm3VauXCmli7W1tRV6enrCwcFBzJs3T6Nc9bldunQRVlZWolSpUvnKyvuv8qeffhLGxsZixowZwtraWgDC0tJSKJVKsXXrVo2yt27dKoyMjKR0v8nJycLc3FwqU6lUCgMDA2FoaCitTnl5eYmIiAgpNXNOTo60OrRo0SKhUCg06hUQECAMDQ2lz7q6utK5CoVCGBkZCT09PWFoaCh0dXWFQqEQHh4eok6dOqJEiRJCW1tbKJVKcfDgQaneRkZG+dqvq6sratasKXR0dKTjZs+eLYoXLy7KlSsndHR0hIODg/D09NRYqQPEpEmTBCB0dHSElpaW2LhxY6Fj52vUb9LkFY3/LHIb/hrIbfhr8L/WBjm9rYzMP8G3smL16NGj0H3e3t64uLjg7+/PvHnzyMrKYsCAAdSuXZtVq1aRnp7O9OnTadq0KdbW1jx//pyQkBCqVKnCoUOHOH36NOPGjePw4cO4ublhYGDwTfPAMmXKoKury4IFC+jXrx/Xrl1jxIgRQG4Wn9q1azNy5EgyMjLYt28fFy9e5PHjx3h5eTF9+nSMjIzw8/Pj5MmT3L59GzMzMwICAli9erXGdWJiYqhfvz7Z2dl06NCB9PR01q9fL2Udio+P582bN7Rp04aZM2fi4ODA06dP2bNnD23btqVq1aps3boVV1dXOnToQMeOHYHct/LXrl2jbdu26OjoULVqVXx9fRk7dizFihXDz8/vm9nBPn78yOXLl4mNjZUcyL29vYFc9/Zjx45Rrlw5wsPD0dLSYsWKFVhaWlKuXDmGDh2KmZkZp0+fpk+fPlhZWeHn56dR/pMnTzh48CBPnjzBx8eHEiVKEBwczLt373B1deXevXsaou4ff/yR4cOHY2JiQnBwMGfPns2XyjU2NpY2bdpgYGDAly9f8PHxwcLCAiMjI6Kjo4mOjubatWvs3r2bly9f0qBBA86dO0fp0qXZuXMnLVq0YNCgQXz58oWEhAR27tzJiBEjuHbtGl++fKFatWr4+PjQs2dPPD09USqVREdHU7VqVerXr096ejoLFizA2dmZe/fu8fjxY8aNG0fHjh358uUL9erV46effuLz58+0bNmS27dvU6ZMGbp27cpPP/1EpUqVOHjwIAC+vr6cP38eXV1dqX2vX7/m9evXtGzZki5durBo0SK2b9+ukZYZYOnSpTg4OPDw4UMqVqxIz549adSoEcWKFct3n2Ux+L8fWQwuIyPzr+Kv9x9PRuYP4uXlpeHU/Uexs7MrdN/Xfhx5UYeeDBo0iPr166OlpYWvry8LFizAwsKCzMxM3r17R8+ePcnMzERbW5t+/foRHh4O5GZA6tevHx07duTNmzeEhoYSFhZW6PXMzc1ZuXIlY8eOZf78+bi5uZGWlgZAjRo1cHFxYf369ZQsWZIvX75ID57u7u4MGDCAcuXK8fPPP9OkSRMqVqxIdnY2mzZtkgTNsbGxVKxYkXXr1jF79mw+ffrEgAEDMDExoXnz5ujo6FCmTBmqV69O586dGTduHD169ODVq1eSsHzbtm3cuHGDYsWKoa2tja2tLbVq1ZLaEBoaSrly5TA2NqZbt25ERESQk5NDWloa0dHR37xPGRkZ6Ojo0KJFC4yNjbGxsZEcy4sUKYJKpeLatWs0bdoUpVJJtWrV2Lt3Lx4eHlIZZcuW5cyZM2zcuDHfRGPgwIFUrFhRekhWKpUYGxujUCiYOXMmAwYM4MuXL5QpU4ZDhw4BuemP58+fz6RJk6R0uJ8+fcLAwICUlBT27Nkjhbdt2LCBnJwc7O3t2b17N76+vjRs2BBTU1MeP36Mg4MDkBv+tnz5cnR1ddm3bx+jRo3i6dOnbNq0iQEDBhAREUGHDh1QqVRcvnyZn3/+WXoY79mzJ0FBQSxdupTs7Gxq167NoEGDSE1N5ejRo3Tp0oXXr18za9YsMjIyaN68uTTurK2t2blzJ8HBwWzZsgWAChUqSJM/Ly8vrly5ImVNAzhx4gSurq7s3LmTTZs20bx5c9zc3Lh+/bpG3wYGBlK2bFmCgoJYuHAhnp6enD9/Hl9f33z3edq0adJvREZGRkbmv5x/ZLlFRuavREHO1X8V/Pz8RMOGDUViYuKfHvqhFgYnJSVpfO/u7i71R2Hi8apVq0rHtGrVSnTv3l2kpaWJLVu2CGNjY41Qn9KlSwtra2vRq1cvsXXrVslB/Gu+drwuSAzu4eEhPD09NY7bvn270NHRyef+/TW/50Be2DhYuHChqFy5sihevLjkpF6tWjVpf0BAgPD29s53XkH1/9ZYy8jIEEWLFpVEzytWrBAlSpSQ+mvkyJFCqVQKlUqlEUqmUChEdHT0H6pLXmd2NeQRtPfv31/Ur1+/wHoKIcTHjx/FiBEjRIUKFUSRIkUkMf+oUaOEELni8zJlyuRr/9fu3kWLFhUrV67UOGbevHkaYn9AbNy4UUyaNEm4uLgIIYQwMTGREiZ8jSwG/2sit+GvgdyGvwb/a22QxeAyMn8y2dnZf4qZ2P3796lbty42NjbfdOf+V/At8bjI4wDdq1cvduzYgUKhICYmho4dO0ohXKVLl+b27dtER0ejr6/PgAEDqF+/fqFu7/9K1A7k69evx8rKiokTJ+Lm5sb79+8LPScuLo6RI0cSFBTEgQMHiI+PJyAgIJ/g++tQn38EXV1dOnTooCGi79ixo7QCkJqaSpUqVQgPD8fIyEgS0d+5c4cuXbr8qXUpTJCubvfIkSPZtm0bU6dO5eTJk8THx+Pi4iLtVxsx/lk8ffqUhQsXMmjQIODbCRVkMbiMjIzM3wd5oiHzp+Hl5cXgwYP58ccfNVy0IddtWe0+reb9+/coFArJ3O7YsWMoFAp++eUXPDw80NfXp2HDhrx8+ZJ9+/bh5OSEiYkJXbp0yZeDPysri+DgYIoUKULx4sWZMGGCxsN0RkYGI0eOpFSpUhgaGlKjRg3pugArV67E1NSUnTt34uzsjEqlknwkCiMnJ4dJkyZhbW2NSqXC3d2d/fv3S/sVCgW//fYbkyZNQqFQfDMsCuDkyZPo6upKPhVaWlro6upKvgig6ardrFkzADp27Ci5ar97945r166xa9cuhg8fzps3b9ixYwexsbGUK1eOly9f5rtus2bNSE1NpXPnzuzfv5+ePXvy/v17evXqJRn3zZ07l6CgII4dO8aZM2dISEhg+vTpWFhYYGxsTFBQEOnp6QBUrFgRIyMjkpOTCQkJ0XC/1tPT49GjR9y7d08yyzt16hQODg60b9+ewMBAqV62trZMnjyZzp07Y2hoSKlSpViyZAne3t7MnDmTq1evkpiYSK1atdDT0+PixYvSONu+fTsA+/btIz09neHDh1O1alXs7e35+eefSUhIQEdHBx0dHdauXcuRI0dYv369Rr+o9xkZGWFlZSUZQ+bl63F18uRJdu3ahYGBAYcOHWL58uXo6emhpaXFTz/9xG+//UZWVhZKpVIj41SRIkUKHBNqZ/nk5GRGjx5NlSpVuHjxorT/119/pV69etLEYtmyZaSlpeHq6kp8fDylS5dm8uTJdO/eHRMTE/r06UPt2rXZsmULgYGBtG3bFhcXF5RKJVeuXJHCv2xtbfn06ZPk5P3+/Xv69u3L4MGD+fDhA5UqVZK0KqdOndKox5gxYxBCSGF9AMOHD+fTp08EBwdjYWFRqIeGjIyMjMzfC1mjIfOnsmrVKoYPH865c+c4c+YMgYGB1KlTR0qH+T2EhYWxcOFCDAwM8PPzw8/PD5VKxbp160hNTaVt27YsWLCAkJAQjesGBQVx/vx5Ll68SJ8+fShTpgy9e/cGIDg4mBs3bhAXF0fJkiXZtm0bvr6+JCQkSHX79OkTM2bMYPny5ZiZmVGiRIlv1jMqKorIyEiWLFmCh4cHK1asoFWrVly/fh17e3uePXuGt7c3vr6+jBw5UposFEbVqlUZOHAgtWrVokSJEty+fZtx48bRs2dPDVNCtav2nj17CA0NZe/evbRr146oqCjGjRsHwKNHj3jx4gU6Ojr4+PiwadMm3rx5w9WrV/NdV6lUYmhoyO7du3FwcKBWrVo0btxYWsFQqVTcuXMHLy8vgoKC0NfX5/Lly4SFhbFo0SLq1q3LmjVrmD9/PuXKlWPv3r18+fJFMvoLDw9HV1eXYsWK8ezZM7y8vChTpgzv3r1j1apVLFy4kOjoaGlykJdZs2YxduxYyahu0KBBKJVKmjZtyu7du8nKyqJo0aLExcUxYcIESTuRkpJCTk6O5AxuZGTEwIEDefDgAdu2bcPKyor27dtTv359fv75Z+7evUu3bt0oX7481atXB3JNBZ88eUJMTAxWVlbMmjWLS5cuSa7cBY2rrVu38uOPP2JlZUVWVhaRkZH4+fkxcuRI6tWrR8+ePQkLC0OlUvHw4UOSkpKkc6ytrfO1X+0sb2VlRWBgIO7u7lKK348fP+Lr60tERAQrVqzAwcGBmzdvEhwczJIlS5g6dSpJSUlMnz6dIUOGMG3aNEqUKEG1atUYNWoUW7dupWXLligUCrp27YpCoaBkyZLStYsWLcqJEyfw8/Ojbdu2pKen07dvX5YsWcL06dNRKpWMGjUKPz8/Vq1axciRI6lbty6zZs1CW1ub4OBgYmJipPKWLl0qifjr1KlT6O9AFoP/ecgibxkZmf808oqGzJ+Kq6sroaGh2Nvb0717d6pWrcrhw4f/UBkRERHUqVMHDw8PgoKCOH78OIsXL8bDw4N69erRoUMHjh49qnFO6dKlmTt3Lo6Ojvj7+zNo0CDmzp0L5Do7x8TEsGnTJurVq0f58uWlh6K8D0JfvnwhOjqa2rVr4+jo+M0MUACzZ88mJCSETp064ejoyIwZMzRE6ZaWlmhra2NkZISlpeXvTjT09fWZO3cufn5+eHl50bdvX0aPHs2RI0c0BOtqV213d3diY2OpX78+R44coWHDhtStWxczMzO0tLRYt24dq1at4tKlS6SkpLB161ZmzpxZ4LWNjIzIzs6mR48e/Prrr5w/f55Nmzbh4eHBzp072bZtGx8+fGDRokX4+vry888/ExQURFBQEI6OjkREREiO5zY2NtjZ2TF79mxev36Nt7c3NWrUwM7Ojnr16rFx40ZevnzJ2rVrmThxIpMmTdJYychLnTp1GD16NA4ODnTr1o3ixYszePBgnJyciIyMREtLi61bt+Lm5sbs2bMlB/iAgACSk5OlkKS0tDTmz5+PsbExgwYNwtDQkOnTp9OsWTOMjY0pV64cvr6+bNy4EcgNc3r+/DklSpQgICAAT09PVq1aRVZWllS3gsbVqFGjsLGx4cGDBwQGBrJ161aaNm3KzJkzadmyJQkJCVhbW/Pp0yecnJyklaDCwoPUzvI6OjqYm5vzww8/4ObmBuS6i/v7+zN06FBpstyrVy9Wr15NTk4OBw4cQKlUkpmZSVRUFCtXrsTGxkZypFcoFNSuXZuWLVuSlpaGtbW1RrhU06ZNSUxMpHz58vz2229s3bqVihUroqWlRYsWLWjatClt2rShWrVqqFQqZs2axdatW6VxtHr1ammVS6VS0aJFC2xsbPDw8NDIXPU1sjO4jIyMzN8HeUVD5k/F1dVV47OVlVWB4TrfW4aFhQUGBgaUK1dO47vz589rnFOzZk2Nh6RatWoRGRlJdnY2CQkJZGdnS1l91GRkZGjoJnR1dfPVvzBSUlJ4+vRpvjezderU4cqVK99VRkFs2LCB+fPnc//+fVJTU8nKysr3EFqmTBlKlSoF5E4Qtm7diqmpKZs2bcLT05Pr16+TnJyMgYEBnTt3pnPnzly5cgV3d3fc3d0RQuDl5aVRZnZ2Nkqlku7du7N582ZSU1PzaUoUCgXm5uaUKVOGo0eP0q9fP439tWrV0pgA1qxZs8C+aN++PQsWLMiXKSw5OZm9e/eycuVKjTLV1K1bl3HjxjFv3jwePnxIVFQUUVFRUlYkBwcHzp49S5EiRdi2bRu2trYkJiYCcOjQIY17FRERweTJk9m4cSNPnjwhMzOTjIwMaXJ5//59srKyOHHihDR5AXB0dJT+Vo+r8uXLk56eLmkrMjIy8PPzIzw8HA8PD410t5aWlgwdOpTQ0NACtSV52w65IUe9evXC09OT9PR07t+/j6GhIaVLl2bfvn0sXbqUZcuWoaWlhZ6eHlOmTCEnJ4eHDx/i5OSEubk5vXv3lla61Pj4+FC6dGkuXbrEw4cPKVeuHFevXsXFxUU6xtbWlitXrjBz5kwWLVqEg4MDDg4O+SaF6r7T1dWVQq8mTZok1SMlJYU6depIkzlfX1+ePn1a6ER+zJgxDB8+XPqckpJC6dKlGVip2L9d5/Rn8eXLF/Y+hmGuZvlMJ2VkZGT+zsgTDZk/lcKcm7W0chfP8uomChMU5y3j99ygv4fU1FSUSiW//fZbvnS1eVcZ9PX1/1QB7B9F7bIcHh6Oj48PRYoUIS4urkBtwJ9FRkYGr1694sOHD7i5uWFhYSE5f+fVsKgJCAj4U66rpaWlMRYASQ/wr+BrgfWsWbOIiopi3rx5uLi4YGhoyNChQ/OJxL+FelwtWbKEgIAATpw4IU0KC1q9yszM/Oab/IIICwujS5cu7Nmzh3379hEaGoqhoSFWVlaYm5vTsGFDOnfuzMmTJ4mLi+PAgQMAGpOjgsTl/v7+DB48mAULFrBu3TpcXFw0Jhl5+T2n89TUVEm/AWBvb8/cuXNp3Lix5P1y6dIljh07xoEDB5g4cSJhYWFcuHABU1PTfOWpVCpUKtX3dpGMjIyMzF8YOXRK5t+Cubk5AM+ePZO++5ZR3h/l3LlzGp/Pnj2Lvb09SqUSDw8PsrOzefnypYYA187O7psGcd/CxMSEkiVLcurUKY3vT506JYUQ/VFOnz6NjY0N48aNk4TLSUlJ+Y5LTk7m6dOn0uezZ8+ipaWl8bb9ypUrfP78WeMYIyOjfGEo69evx8bGhpycHFq2bAkgGfNpa2vn6y8dHR1ycnJQKpUEBARoCNbnz5/P1atXpXAxExMT/Pz8ePHihUa9GjRowMmTJ4mOjpbEzYcPH+bq1at8+fIFhUKBQqEgKSmJSZMmaYjhz549i5OTE5C7uvDo0SOCg4MpXbo0KpWKChUqaLTv7NmzAFSrVg0rKytGjx5NVlYWp06donXr1owfP56jR49Srlw57ty5A4C7uzsbNmxAR0eHc+fOoVAoWL58OSVKlCA+Pp6oqCj09fXp2bMn2dnZ0uSrSpUq2NvbExERgaWlJV5eXqSlpRETE0Px4sUlY72vw9e+fPlCiRIl+PnnnwscFw4ODgwbNowDBw5gZmbG58+fOX/+PJ6enjx9+pSmTZsydepULl26JN2nhQsX4uLiQnJyMmFhYQwYMIDU1FSpzI8fP/LmzRumTp3KpEmTuHXrFr6+vhq/z+TkZBo3bsz48eNJTk6mWrVqXLp0SaNud+/e5c2bNyxcuJBWrVrx8OFDIHcl087ODl1dXUJCQnB2dqZVq1Zs3ryZDh06kJiYyJEjRwpsr4yMjIzM3wd5RUPm34K+vj41a9Zk+vTplC1blpcvXzJ+/Pg/rfzk5GSGDx9O3759uXTpEgsWLJBWAhwcHPD396d79+5ERkbi4eHBq1evOHz4MK6urjRv3vwfuuaoUaMIDQ2lfPnyuLu7ExMTQ3x8PLGxsf9Qefb29iQnJxMXF0e1atU0zN7yoqenR0BAALNnzyYlJYXBgwfnc9XOzMwkKCiI8ePHk5iYSGhoKMHBwdLKkprAwEACAwOxtbWV3i57e3tTq1atAp2/P378yKpVq2jUqBF79uyhdevWbNq0iWbNmnHo0CG+fPmCi4sLS5YsISsri4EDB9KxY0dpdUQtbh4/fjwzZsygSZMmPH78mF27dqFSqcjOzubEiRNAbojVx48f6d+/P40bN2bRokVs2rSJPXv2AEiC9Z9//pmpU6dSqlQpwsLCePbsGQqFgidPnkjO7hs3bkShUNC7d2/09PSwt7dn8+bNZGZm8uLFC/r27cuLFy+kSaKuri5BQUGMGjUKgPHjx2NpaUlqaiq2trYkJSVx/PhxJk2axKlTp3j79i2HDh0iMzOTs2fPSnV8/Pgx6enpjBw5kkaNGvHLL7/w9OlTjXC43bt38+nTJ8lBXc3nz58ZNWoUHTp0oGzZsty4cYNnz55Rv359DA0NCQkJoWbNmgQHB9OrVy8MDQ05fvw4Bw8exM7Ojvnz59OtWzdat27N4cOH+fHHHyVTRJVKhUKhYPbs2Xz58oVdu3YxatQoRo4cKY3fjIwMAgICWLBgAQEBAdy9e5dGjRpx4sQJHj9+jBCCkJAQypYty8ePH6lQoYKUvvbcuXMcOnSIhQsX8vTpU5o3b07jxo159uwZw4YNIzs7W2NinBdZDP5tZIG3jIzMfxPyREPm38aKFSsICgqiSpUqODo6MnPmTJo0afKnlN29e3c+f/5M9erVUSqVDBkyRCNTU0xMDBEREYwYMYInT55QvHhxatasSYsWLQCYPn26xgrA96BO9TlixAhevnyJs7MzO3fu/EMZtvLSqlUrhg0bRnBwsOTaPGHCBCZOnEjNmjWJj4/H1NQUOzs72rVrR7NmzXj79i0tWrTI56rdqFEj7O3tqV+/PhkZGXTu3Pl30+uqUSgU7N27N5/zd/369dHR0cHV1ZWtW7dStmxZdu/ejZaWFvfv30cIQWZmJtu2bZNWTlavXk3FihW5cOEC1apVIzk5mVGjRtGlSxdevHjB0qVLWbFiBcOGDcPZ2ZkrV67Qv39/4uPj0dXVZdSoUVy7do02bdpgYmLCnDlz8PHxAaBDhw58/PiRihUrMnr0aMqVK8esWbNo2bIlenp6REdHS+FZZcuWxd3dnaCgIKZPn87jx4958OABO3bsYN68eYwcOZI2bdpIaYIhN7wqNTWVpKQkUn2LjroAAQAASURBVFNTGTFiBIsWLeLly5d8+vSJ169fs2XLFkmA3bRpU4oXL46Ojg4nT54Ecp21g4ODCQ0NZeHChXh7e2NhYaFxnZiYGH744Yd84VZKpZI3b97QvXt3Xrx4IaXAHTBgAJCrZTp+/Djjxo2jXr16CCEoX748HTt2lFIHa2trY29vT4MGDejXr5/GOBFCkJqaSv369WnevLm0ggTw+vVrTpw4waJFi4DcNMEjRoxg1apVVK1aFQcHB/z8/Lh16xZJSUk8efKEcePGSSmh4+LipIxvffv2Zfz48axatYr09HRMTU0pXrw4FStWLHD8yc7gMjIyMn8j/rDFn4zM35D/FnfxUaNGabhqF0RAQIBo3br1v6Qunp6eYsCAAdLfQ4YMEa1atRI9evQQU6ZMETY2NvnOMTU1lVygQ0NDhba2tmjUqJGYNm2auHfvnnRcTEyMUKlUUvsKcub+ui4KhULD1fTXX38VgLh3755o27at6Ny5s0hJSZH2W1lZabipA6Jnz54a5bq5uYnQ0FDpM//f2Vpdfzc3Nw1n66NHjwpAvHv3Tgjxf/3v6ekpevXqla/ec+bMERUqVBBCCPH8+XOhra0tTpw4UWg71Zw9e1YAYuvWrb977MGDB0XDhg1FyZIlhZGRkdDT0xOA5KQeExMjDAwMNM7ZunWrUCgUQggh3r9/L27fvi169eol7OzshImJieRivmjRIiFEfgdw9XnkcSgXQoi4uDhRu3ZtYWFhIQwNDYVKpRLm5uaF1l12Bv9rIrfhr4Hchr8G/2ttkJ3BZWT+gvwr3MV/L+Xuv4PCxPlGRka/K6YPCwvj+vXrNG/enCNHjuDs7FxgeNj3oFQqEUJw6NAhEhMTOXToEH369KFOnTqUL18eyA0RMjY2/mY54itRekFJCv7RhAQFCbG7d+/OgwcPOHPmDGvXrqVs2bLUq1fvd8uyt7dHoVBw69atbx6XmJhIixYtcHV1ZcuWLfz222/SykRenUZBbVL3RZEiRRg8eLCkSTl9+jTx8fGYmZn9IcG8OsFBs2bN2L17N5cvX2bcuHHfLEN2BpeRkZH5+yBPNGT+UvyV3MXzunKrN7Vzt56e3h92F586dWq+8oyMjFCpVOjp6X2Xu3hBmaC+5rfffuPQoUNSWuAJEyZoPDzndRcvXbq0ZIyYN5wnMDCQNm3aEB4ejrm5OSYmJvTr1y/fQ3lepkyZQnJyMo8ePZLapq2tzfv37wkICEBbWxsDAwNevHghiZsrVKhAp06dMDY2ZuXKld8s/2uKFi0K5Dqjly1bliZNmpCVlcWmTZsAcHJyYsOGDQwZMkQ6JyMjA5VKpWGO9+7dO+nvoUOHcvPmTaZMmSL1XUFkZmYyfPhwDAwMpHCjwrJm5eTkMG3aNMqWLSuNxypVqhATE8O4ceNISkoqcFzExsby7t07/P3/H3vnHRZFmr3tu8k5ihIkqICiIqDoKCZUFHPC7KiYUDGgDioYCOaEijpmBYyYFXNGHXTMICbEiDmggIDk+v7g61pa0HF297c749Z9XX1pV1dXve9b7UydOuc5T19MTEywsLBAU1OTBQsWiK7bz549o0ePHhgYGGBgYECnTp04cuQIRUVFhIWFsWrVKiZOnMjWrVuBYlPIyZMni2MuibzcCoqv/8mTJxkzZgxt27bFwcGBDRs28P79e/z9/bGysuLGjRs8e/aMV69eieOQG/7Nnj2bJ0+eiA0OGjZsiK+vL87OzsyYMUMsSZOQkJCQ+LGRNBoSfzn+Ku7iQ4YMITAwUBTpTp48mQcPHjBhwgRq1arFkSNH/pS7+PDhw+nRo4fCODds2MCyZcuYN28eLVq0+C538T8y/uvZsyfNmzfH3NycxMREhg4diq6uLhMnThT3kbuLHzhwgIyMDAYPHoyvr6+CkP3UqVNoaGgQGxvLkydPGDhwIJqamri4uJR5Xg0NDczMzOjbty9btmxh2rRpPH78GCsrK8LDw9m0aRPR0dG8fv2ap0+fEhUVxc2bN2ndujVLlixhzpw5nD17lk+fPvH+/Xvu3LnzzQyOPJApLCwkPDwcbW1tfvnlF3x9fdm7dy++vr7MnTuX2NhY7t27R1JSEmlpabRs2VJBFH/27FnOnz+PgYEBx48fR0NDAx8fH1q0aCHqDEry4MED8vPzCQgIwN3dXew6dfDgQdq2bVsqIzJnzhw2b97MqlWrsLOz49y5c/j4+HD16lVR/F6hQoVS56lQoQKBgYHcuXOHI0eOUK5cOc6fP4+fnx/16tUjKCiIKVOm4OTkxPDhw9m5cyc6OjrMmzeP/Px8li1bxqdPnzh69KjY1nn79u3o6ekxZ84chUzP7du3S9346+josGnTJlxdXZk9ezbR0dGibqZ169bcuXOHK1eu0L9/fx4+fIiDgwM2NjbcuXMHDQ0NWrduLQafbdu2pW/fvrRu3ZqlS5eKhoFlIYnBv44kBJeQkPi7IWU0JP5y/FXcxf38/NiyZYvYpnPPnj0cPHiQ3r17U6NGDQ4ePEj58uW/213cyMioVLvYqKgoAgMD8fX1/be4i0NxhyQ3NzdsbGzo0KED/v7+ouO1nJLu4k2aNGHZsmViECBHTU2N4OBgatasiYWFBdOnTxe7DZWFTCZj8ODBGBoa0rt3bxITE/H09OT06dN4eHiwdu1a1NTUGDZsGPb29sycORNHR0f27t1L1apViYyMpHz58jx9+hQTE5OvupiXRFdXl0GDBjF37lx8fX1RU1MTn+hbWFjg6OjImzdvxJtxHR0dWrZsqXCMGjVq0L59e9q1a8ekSZOwt7fHwMBAXDv4R/vktLQ0srKyUFdXx8rKiiZNmrBy5UpkMhkTJ06kQoUKCq2WCwsLmT17Nhs2bMDT05PKlSvj7e1Nv379UFNTo3Xr1jRs2LDU78LW1hZdXV1SUlJwcXHB1dUVGxsb+vXrx+3bt2nWrBmjRo3i0aNHXLp0ibt377J+/XoiIiJ4+/Ytw4YNY968eezfvx9BEFi+fDlQnOWpUaMGlpaWCgHRli1bxGC5fv36bNq0iYKCAj5+/Ejt2rXZsmULQ4YMwczMjHLlytGoUSN8fHzYu3cviYmJPH78mAcPHrBo0SIAnj59SkpKCrq6uowYMYLPnz+zZcsW7t+/T0hICGpqagpeHyWRnMElJCQkfhykjIbEX46/i7u4vEvVw4cPxW3/Lnfxo0ePYmBgUKZ79B/xZ93FoXiuRUVFdOvWjd9++w0AJycn7O3tefXqFeXKlRN1CSVdmwH27dsHFDtJGxoasn//fn799VfGjBnD0aNHRb0EFK+Zv78/8+bNw9DQEH9/fzQ0NMTP+/Tpw5kzZ77bY8XZ2Zlly5axbNkyANEB/dmzZ1hbW2NgYIC7u7sYuNnY2JQybfzll1/o3LmzuHba2tqsWrWKhQsXUlBQAMBPP/0EFPunWFlZ8fDhQ1RUVMS1EwSBHTt20LRpU7y9vUlLSyMyMpJKlSoBlApucnNzEQSBwYMHK2wPCQlh37594vxHjBiBl5cXv//+O3fv3iUiIgJvb2+WL1+OpqYmixcvJi0tjVOnTonBeE5ODk5OTqxatQpvb2+xza+81S9A+fLlxZIxQRDYtm0b48eP57fffuP9+/d06dKF7OxsDh8+zOXLl/npp5+YOHEiK1euVBivvb09Li4uHD16lBcvXuDl5YWqqqoYkD58+JClS5fy6dMntm3bRlZWFjKZjLt37371mkrO4BISEhI/DlKgIfGX4+/iLt63b18cHByYO3euuN+P5i6urKz8T5kafstdvCw36L8CX1u7oKAgcR8lJSWUlZXFION7OXToEBYWFhQVFfHx40fWr1/P4cOH6dix4ze/16ZNG54+fcrGjRvx9/dn+PDh3Lp1i4ULF5KZmUmdOnXK9G2RG2RC2YL0SpUqce3aNa5fv87nz5959uwZPXv2JCoqSmx1Kw+y/sgZPDc3F2VlZTE4Wrp0KSdOnODAgQPiOCIiIsTAc/v27UydOpUTJ05Qv379UseTnMElJCQkfhyk0imJvw1/NXdxTU1N0dvByMgIPz8/cnJyxO+npKTQqVOnr7pkP378GDU1NVq1aoWenp7okn306FHu3btHeno6MpmMhISE7xKBb9q0iR49elBUVMSyZctYtGgR+vr6CrX3t2/fZuvWrTx+/BhtbW0aN27Mw4cPGTlyJFDsbC6TyYiKiuLatWvcu3dPFOBfuHABmUzGwYMHFc5748YNlJSUxBvTtLQ0YmNjefHiBc7Ozvj4+JCVlSWuW7lyxXXmDg4OpdZ8165dJCUlsXr1asqXL49MJhNLx+QvVVVVVFRUuHnzJrGxsejr6zN9+nQKCgpEgz03NzeFkra8vDxGjRrFs2fP8Pf3x9ramjlz5iic+3uc2dPS0nj8+DHHjx8HioXk8myIp6cndnZ2PHjwAEDMZkBxk4MhQ4agpqZG/fr1OXLkCFFRUQoBS0pKCrNnzyYxMVFhvpUqVRKDHX9/f9asWQMUayiuXbtG9erVady4MevWrcPGxgZbW1v09fXZtWsX+/fv58CBAxgbG+Ph4UFWVhYhISHs2rULKHYzb9SoEXXq1KFChQpi44GoqCju3btHbGwstWrVQlNTU8yYxMfHI5PJePLkCYDoLF++fHlsbW0xMjJCXV0dW1tbEhISUFVV5fXr17i4uBAYGMiFCxfQ0dGha9euZf2MJSQkJCR+IKSMhsTfhr+au3hGRgZr1qzBy8uLS5cuMX/+fNatW8eJEydo0aKFGGScPXv2qy7Zjo6OJCUliV2lVqxYwcOHD5kyZQrLli0jKSkJDw8P3Nzc/nD8+fn5DBo0iNmzZzNy5Ej27t2Lu7u7GNy8ePGCJk2aUL58eTQ1NXF2dsbDw4Pff/+dS5cuYWlpSY0aNYiIiMDPz4/Dhw+LYvnz588za9Ys6tatS3R0tBiYQHF9f8OGDXn27BkA3bt3R0NDA2dnZ3JycjAyMsLd3Z1t27Zx/vx5unTpgqurK35+fnh7e+Pq6krDhg3ZsmULb9++paCggB07dhATE8OjR48IDAzEyclJrP+fOHEix48f5/Pnz2hqauLg4EBwcDD79+/n/v37+Pj4YGlpybBhw6hTpw5Q/JQ9JiaG8uXLM3ToUFq1aiWOV873OrMDBAUFUaFCBUJDQ7l48SKtWrVi9erVPHjwQAxgLl++TL169ejTpw9Hjhyhe/fuFBYWcu3aNeLi4nj+/LnCMc3NzRk+fLiYDQBYsmQJNWvWRFdXl59//pnz58/j4ODAixcv+PXXX9HR0aFq1ap06tSJhQsX8vr1a/T09BgwYAC9e/fGxcUFAwMDwsLCOH/+PIIg4O/vz927d7l9+zapqank5eUxYsQI9u/fLzYeePbsmdjZCsDPz4+JEyeipqYmdvvavn276E6+ceNGOnXqxPTp0/n48SOZmZli9zhLS0v69OnDrFmzMDc35/bt27x584aff/65zLWVxOD/QBJ/S0hI/N2RAg2JvxX/iru4u7u7gtD6S/6su7hMJkNXV5eAgADs7Oxo2LAhERER4pNfuUj2Wy7Z4eHhpKSkMHfuXFGHIn8qLZPJRDG4mpraH85v0KBBQLEOIjw8nM+fP5Odnc3cuXOZM2cOv/76K/r6+nTr1o0DBw7w888/M3PmTNFdXEVFhc+fP2NqaoqmpiYtWrTA2toagICAAPr27cuQIUP46aefWLt2LVBcxhYdHc3UqVOZO3cujx494vLly7x9+5a8vDymTJnC7t27SUtLo0+fPrRt21bssNSzZ08ePnzIxIkTycnJwcvLC1dXVy5cuMDGjRuxsLCgfv36GBkZ0a5dO9asWYOpqSl6enqUK1eOevXqUbVqVZycnLh69SoJCQkMGjSIpUuXoqKiwty5c8WWvSkpKdjZ2fHw4UOMjIxo1KgRUKwJkfM1Z/Zx48aVWuvmzZvTtm1bXr9+jZWVFdHR0RgaGmJjY8PmzZtJS0sTM3D+/v7Uq1ePZcuWMW7cOAwMDKhduzaTJ09WOKaKigpGRkbcv38fZ2dnoDgTU1BQIJYLKikpER0dzYoVK7CysuLMmTMEBASwePFiPn36xMaNGxk8eDBZWVkUFBSQmZlJQkICtWrVYu/evWIzAU1NTaytrXnw4AHKysp069ZNzPjo6OigqampcLM/YcIEdHR0CAoK4sWLFwCkpqYCxaVO2traWFlZ0bVrVz5+/IiysjI5OTno6enRt29flixZgpeXF6mpqejr66OioiJ6e3yJ5AwuISEh8eMglU5J/KWIjY0tFQjs27ePyMhIoLjc5sKFC2RnZ3Pjxg1atmyJIAi4u7sDxcGEIAgKOgC5OLckISEhCmVXsbGx/Prrr6xcuZL09HQ+fPjArFmzFPQWqqqqhIaG8vjxY/Ly8mjQoAE9e/bE0dFRPE+7du14+/Ytd+/exdLSUqFjTvXq1TEwMBCFsOPHj8fHx4fz589Tvnx5fvrpJx4/fsyVK1cUxhofHy96iXyLa9eu0aFDB6KjoxVuEjt06EBaWhrx8fE0btxY1JiMGDGCFy9e8PnzZ3bu3FlmXbz8JjsuLo41a9ZQr1497O3tefPmDbGxsXTu3Jm3b9/SvXt3njx5QtWqVcnMzMTY2BgzMzM2bNhAeno6SkpKDB06lM2bNyusyeTJk3n37h2fPn0iMjKSli1bUqlSpTKF6klJSeK2GjVqEBUVxb59+wgNDaVhw4YMGzaMNWvWoK6ujrKyMsbGxgwfPpwlS5bg7e1NfHw8ampqPHr0SCx9EgRBLH0CmD9/Pu/fv+fTp09ER0creEvAP7wmevTowYsXLzh48CBv3ryhWbNmTJw4kQsXLhAZGSkK5KFYD+Tn54epqSm+vr68ffuWo0eP0qRJkzKvY9WqVYmPjyc+Pp47d+5w//59MQu2ePFiKlWqxN27d2nQoAFmZmZERUXx7t07rl69iiAITJs2jYYNG1K/fn3u3r1LnTp1WLBgQSk9hKqqKjk5OWRlZZXqZvblHJSUlJgyZQpPnjwRf5++vr4Kn8vHMXXqVBwcHFizZg16enqMHj2a3Nxcpk6dSl5eHnXq1KFfv35fNVIMDAwkPT1dfH2ZeZKQkJCQ+PsgZTQkJP4FVFRUFITqf0ZkHhISQp8+fTh06BDBwcFkZ2dz/fp1unTp8qfHkZWVhaenJ56enmzZsgUTExNSUlLw9PQkLy8PQRAUujv9KwwYMEDMYmzdupXWrVuL3YD+UyLwssT93xL8165dm8ePH3PkyBFOnjxJjx498PDwELUK/yxysfbhw4fFkrmRI0eycOHCf/qYampq2NraKmz7s+JzZWVlJk+eTMeOHfHw8GDjxo3Mnz+fS5cuKWhH/og/04Dha5QvX54OHTpw5MgRAE6ePPlNzdHXxOBS1ykJCQmJvx9SRkPiP85fyf172rRpCjdRubm5+Pv7Y2Fhgba29jfdv69cucKyZcsU3L/lODg48OzZM7S1tUX3byUlJdLS0vD29kZTU5Pz589jb2/P+PHj+fTpE4WFhXTt2lX0GSjLaXr27Nloa2sjk8nQ0NBAWVlZLOFKTU1l7ty5NG7cmNevX+Pp6QlA7969UVdXR19fn/Pnz3Pu3Dnu3LmDpqYmTk5O4s22qqoqx44dK9XCFMDFxUUURk+ZMoVbt25x7do1du3aRePGjWnevDmamprMmjWLly9fkpubK4q/hwwZwvLly0UROEDnzp3x9vYW369YsQI7OztmzpzJ48ePadeunSiGlne9atu2reiYLS/bcXd3Z9SoUSQnJ7Ny5coyr6ncdM7CwgI/Pz+ysrJYvXo1u3fvJjU1FVtb21KBgVzwLBd2v3v3jk6dOlG9enWgWCci176YmJhw5swZMjMzWbJkiSjWnjlzJlDspeHt7c3Zs2cJDw9HJpOJYuqBAweiqqoqbgsNDeXmzZvo6OgwfPjwUteh5O8rNjaWZs2aoampibGxMSNHjkRXV5eKFSsSEhIidrSaMWMGiYmJqKmpiZqTr/2+oFgUb2ZmhrGxsfhbkDdg+PjxI2PGjAGgWrVqtGnTRqHBwdOnT9m6dSuJiYloa2tTo0YNDh8+TIcOHcQmAgUFBTRq1Ejh+ktISEhI/JhIGQ2J/wp/FfdvHx8frKysRAfoUaNGcefOHaKjozE3N2fv3r1fdf+uWrUqjo6OCu7fcjw8PHB0dERFRQVHR0eio6MpX748hoaG1K9fnw0bNvDrr79SWFjI5cuX6dmzJx8/fqRv3774+/tz8+ZNMjMzOXXqFE5OTmhpaaGlpcXw4cNxc3OjWbNmGBoaMmXKFGxtbVm5ciUxMTHMnz+fcePGERcXJ47Fz89PLDHbsWMH7969IywsjOrVq7N9+3b69OmDiYkJlSpVQlVVlXXr1nHs2DH09fXFenxnZ2dRrwHF5T2DBw+msLCQRYsW4ebmxpUrV3jz5g3t2rWjcePGREdHY29vT3p6OhcuXODq1au4urqWWqurV68yZswYNm3axKVLl1izZg0PHjxg27ZtZGZmMnnyZGrUqCGW1E2cOFHhqXpUVBT6+vr06tWLVq1aiddUTn5+Pi4uLvz888+Ympoyb948zp8/j6mpKYaGhgwaNIiIiAjRnA+K9ThNmjQRMwuzZ8+mYsWKbN++nY4dO/L8+XN69uxJkyZNqFOnDhkZGWRkZHDw4EEcHBwA0NLSQklJiaNHjzJlyhTu3LmDs7Mz06dPB4oDFJlMhp2dHbNmzcLQ0JAlS5Zw7do1zpw5U8r7pCTe3t7MmTMHJSUltm/fTkJCAiEhITg6OqKkpETTpk3x8vJi9+7dXLlyhRs3bjBq1ChxbDY2Nhw7doykpCSMjY3R19cHijNSHz584MyZMzx48IAePXpgaGhISEgIs2bNol+/fty4cQOAPXv2sHTpUlGkDzBy5EgKCwuxs7Pj8OHD3LlzRzRJnDBhAu/fv+eXX37B39//q21zJTF4MZIQXEJC4kdACjQk/ivI3b+huNvP8uXLOXXq1J8KNOTu3wCDBw8mMDCQhw8fisZ8cvfvkoGG3P1bJpNRtWpVEhMTWbx4MUOHDiUlJYWIiAhSUlIwNzcHioW8R48eJSIigtmzZwP/cP/28/PD0NBQwf1bjkwmY//+/YwePZrIyEjU1NRo0KABy5Yto0KFCly/fp1r167Rv39/3rx5Q1FRES4uLixcuBANDQ3c3NwYPnw4PXv2JDU1leDgYEJCQjAyMsLGxgYo1guMGjUKKA5sKlSowJYtW1i7dq1C6U39+vWpUqUKubm5FBUVUbNmTQICAlBWVkZJSQkbGxtWr17N+fPnMTIy4vr16+JTevkNe9u2bRXm17RpU1avXk2DBg24d+8eGzduZOfOnYwdO5bNmzfTvXt3BgwYQGpqqngOuQj8S1JSUtDW1qZ9+/YkJSVhb2/PsGHDGD58uChUX7NmjdjtSE9PT0FzY2lpKQZxffv2Fa+pnEGDBlFYWMiKFStITk4GikvNfvvtN5SUlPD29iYoKEjsEpWfn8/WrVsVshwpKSmcO3dOzALMmDGDbt26Ua1aNQIDA7l//z5KSkq0bduW6OhooLjsyNbWltWrVxMUFISuri5ubm4KviTv37+nfv36YrlcbGwsT548KVU69SWxsbFoa2tjaGhI9+7dMTIyomvXruzevZs3b95gamrKo0ePAGjUqBHW1taEhYXRpk0bAIYOHUpsbCyurq5kZmZy5swZoLjkqm3btlSrVo1q1arRvn17UlNTuXfvHo6OjuTm5jJz5kymTp1K9erV2bJlC2ZmZmI5UEpKCo8ePcLGxobKlSsrmGS2adOGTZs2MWTIkG96s0hicAkJCYkfBynQkPiv8Hdx/4biJ6wla8Pl7t9l1ZmXFNBaWVmxadMm9PX1OXbsGE2bNhU/a9y4MQkJCZw+fRoozhi0bdtWQUexcuXKMsuYSo5djoqKCk2aNMHAwICIiAixrOb58+eisPrBgwfk5ORw+/ZtUb+QlZXFp0+fMDQ05Pr162hra1O3bl369euHu7s7Z86cQVVVtZQb+J49e1i8eDEpKSli16GePXvStm1bsb5++/btNGnSROz2VVIEXpKWLVtibW1N5cqVMTMzIz09nQEDBjBixIgy95c3BpAjzxCVXJewsDBycnJEk8WYmBhSU1MVdBvywMXc3Jx27dqxYcMG6tWrx4EDB8jNzaV79+4AhIeHs3jxYnH88rIsAwMD3Nzc6NWrF82aNcPT01Ph+gMKehV5w4KSyJ2/r1+/TqtWrejcuXOZwn8bGxvxvK9fv+bXX3+loKCAxMREypcvj7OzMz///LPoQ9KkSROCgoLo0qWLgreLHBMTE1EQX3JdW7ZsKWZc5ON///49N2/eJCYmBi8vLwICApgyZYq4T40aNcRAacyYMQwdOhQNDQ2Cg4Px8vIS/52+f/8e4A8NIL/mDC4hISEh8fdDCjQk/iv8Xdy/5ZTsyvPfdv/+M5R0hc7MzAT+4VIN/3A3nzFjhtiOtW/fvmzdupWAgIBSYu9voampiaampthSVo6SkpLC9QTFa6qrq8v169eJjY0lODiYpKQknJycuHLlyr8sIP8jkbycIUOG0K9fPxYvXkxERAQ9e/YsM1P1Lb41x7I+hz8vJn/y5AkNGzYkJyeHKlWqsGfPHvLz8zl27JhC6dc/y7/6b2jIkCEMHTqUpk2bkpiYyJw5c5g5cyZubm5i2+c/QhKDS0hISPw4SGJwib8UfzX3b/nrj57Cfg09PT3Mzc0VNBNQ3C5WLiz+Hs6fPy+Ko2vUqAEUZwLk2woKCrh27ZpYg18W1atXR11dnZSUFAV3cwMDAywtLbGxsWHJkiX06dOHW7du4ePjw/r16zl8+DDm5uaiCBiKxdHjxo1j8eLFxMbGkpWVJQrl4+LiUFJSIiYmBmdnZ7Kysli3bh36+vro6+ujo6PDkSNH2LJli+j0raqqSrdu3cT3jx49ErM936KoqIiYmBgsLS1FN+rVq1eL11QuHN+5cyc9evQgMjJS4bdVrlw51NXV6d27NxkZGRgYGHDw4EEiIyPFdfbz8xODEy0tLbHULy0tDQMDA5o1awbAkSNHkMlkosh58+bNJCcnM3bsWMqVK0diYqLo8fGl87e3tzcWFhYKYvKy8PX1FUXjL1++xMLCgho1ajB+/HhmzZqFkpISVatWZdGiRfj5+QHFpWW+vr5ioAn/aGpw7NgxHBwc0NHR4cSJEwrZjytXrrBnzx7i4uLQ19dn5syZFBQUKPwbunz5Mjdv3mTGjBlUr16dEydOANC6dWv27NnDL7/8wtSpU2nSpInoHD9jxow/3blKQkJCQuLviZTRkPhL8Vdz/3737h2nTp2iVq1atGvX7p8654QJEwgODqZKlSo4OzsTERFBfHw8W7Zs+e5juLq6igHX8+fPadasGcbGxkydOpUqVaowcuRIPn78KJr2lYWuri7+/v6MGzeOoqIiGjVqxKdPn4iPjycqKkrcz8bGBnt7e9avX4+Ghgbx8fGkpaWRkJAg7mNsbIyfnx99+/bFzc2NAQMG4OzsTEFBAaNHj6Zfv37o6Ojw8OFDbG1tEQSBKVOmMHfuXCwsLHj27BktW7ZERUWFU6dO0aZNGzHrIDeoq1q16h+uy71790Qdx5gxYzhz5gxhYWGEh4fz4sULxo4di5KSEv369aNu3bqiu7UcLS0thg0bxsCBAwkLC2P9+vWoqakxbNgwfvnlF3E/ZWVlUlJS2LZtG1u3bsXPz4+GDRvSrl07du/ejZeXFzKZjCVLltCoUSOCg4PJysoiMzMTNTU14uLimDZtGtevX+fRo0fs2LEDW1tbli5dSkFBAZGRkbRv35758+d/NVj88OEDR48eZdasWaID/IABAwgJCeHdu3cEBgbSr18/KlSogJKSEkOGDCEoKIioqCh8fX2ZOHEiK1asEI+XnZ3NwoUL2bRpE0pKSjRv3pzbt2+Ln3/69Inq1atjampKVFQUYWFh3Lx5k8GDB7N27Vq0tbVp0aIF6urqnDt3juzsbLp16wbAmzdvuH79OmfOnKFq1aqsXr0aJSUl3NzcWLduHdra2kycOLGUfwdIYnA5khhcQkLiR0DKaEj8R3B3dy9lfvY1NmzYQEFBAXXq1GHs2LFim9B/ByXdv0eOHFmm+3f//v355ZdfqFq1Kp07d+bKlSsKXYz+LGPGjGH8+PH88ssvODo6cvToUWJiYv6U8P3SpUvY2dlRrlw5UQweFhZGVFQUHTt25LfffiMmJkahhWxZzJgxg2nTpjFnzhwcHBxITEzkyZMnpbwVatasSVFREV5eXtjb21OvXj2xMxcUl0Pp6upSuXJlTpw4wYcPH5g+fTrZ2dm0aNGC5cuXA8UZh1OnTuHt7c28efPIzc0lMzOTFi1aoKmpyb59+xg7dizPnz/Hz8+PU6dOkZubS+vWrcWMwte4f/8+7969o3379lhYWODl5cXKlSv55Zdf8PHxEd2zN23axOnTp8XMQlZWFgCrVq3i9evXmJiYYGtry4QJE8jPz8fY2BgjIyOFLlvDhw8XA9EjR45QVFTEyJEjUVZWxsjICCgOKGfPnk3z5s359OmTKH7Py8ujatWqzJw5U8zYtWvXDjU1NUxNTcXgqnPnzigrK4ti8i958OABgiBQrVo1tLS0OHbsGB8+fKBu3bp069ZNYd3Hjh0rGkk2b96cmTNnsmPHDoXj5efns2rVKlxdXalduzbVqlXj3bt34ufNmzcXzyU34FNVVcXMzIz27dvToEEDsrKyOH78OK6urjRp0kQ0BRw9ejStW7fG3t6e2NhY3NzcqF+/PqGhoQiCwIwZM8RGBl8yZ84cMfulr68v6TMkJCQk/sZIGQ2J/zh/JKKWu3+XpGR9u9z9uyTe3t6l+vKHhIQoCGtLnvdrImu5+/fXut6UPE9kZCRjx44t5Tr+JUpKSgQHB4tdtsqiZHmYXDxd0iHdzc2NV69eoa+vL57PwcGhVClYyWOUpQmQu1TLy2rk5/rSpXrx4sVcvnyZ2NhYhg4dStu2benQoQMqKioIgiAGOwCOjo6cPn1aXI+SpT82NjYYGRmxYsUKVqxYweLFi1m2bBn79u0jISGBrVu3MmDAAKZNmwYU60jc3NxKCfK/tWY2NjYsXbq01DWVu2f36dOHPn36AJCQkICzszNPnz5VEJADvHjxAlVVVVEkXpLGjRuzdOlS8b2+vn6p8p/AwEDmzZsnvr9+/TotWrRgxowZQHHG7OLFiyxevJg1a9ZgY2PD0KFDCQ0N5cyZMzRu3Pib8/3yesrXvSxOnjzJsmXLMDc3R1dXl4KCAnJycsjOzha1J1paWlSpUgUo/i0nJiYq6FbevHlDVlYWL168QF9fn8LCQjFrcfr0acLDwwkPD6dRo0bidzZt2oSBgQE7duwQHde3b9/O0qVLefjwIZmZmRQUFGBiYlJK1F9yHSUxuISEhMSPgRRoSEh8QWFhITKZTBSm/xWQP/3+T2FpaUlSUhInT57kxIkT+Pr6smDBAs6ePfunxKzyffPy8lBTU/tDcbGOjs53u2B/zYfhzyCTycjPz+f58+eEhITQvXv3MjVB/6xI2sjICF1dXYVt/fv3JyAggIsXL3LhwgUqVar0h0EGFLeBlslk3Lt375v7PXnyhPbt2zNixAhmzZqFkZERv/32G4MHDyYvL08MNMq6jiWDGXl74vDwcKytrVFXV6dBgwYKwcgfcfHiRfr27UtoaCienp7o6+sTHR0tliuWhSQGl5CQkPhx+OvcSUn88BQVFZXpBg6waNEiHB0d0dbWLlO8+vTpUzp06IChoaGC4/AfIXcRP3ToELVq1UJDQ4P69etz69YtcZ+Sbt8lBdMfP36kf//+oldGmzZtRB+G2NhYBg4cSHp6uujqrKamJgp81dTUUFJSQkNDo5S7OBSLwd3d3dHS0sLQ0BBPT08+fvxYpoO0tra22OnKw8NDPMbJkyepUaMG6urq2NjYlLp5s7GxYfbs2QwaNAhdXV2srKy+KTQuSV5eHhMmTMDHx4c1a9Ygk8m4ePEiiYmJQHE73W3btmFiYoKenh7NmzdXcEgPCQlh1apVpKamUqlSJTQ0NFizZo1CVqdy5cqoqqri5eUlaksCAgJELUhKSgo6OjpoaGigpKQkBn+qqqro6OiIJUsxMTEK45B/38HBgYsXLyrcPMfFxYnu2fJ5REVFYWlpyZkzZ0hNTeXx48fi/mW1pO3cubOC47zc8bpChQpUqFBB1CkA7Nq1S6FkUO5ZYm5uTpMmTQgMDCxVIvbs2TMcHR3F66+iooK2tjZWVlZidqxOnTpoa2tjYGBAw4YNefr0qaijad++Pbm5uaxbt46RI0eSkZHBy5cvAahYsaLoOp6eno6Ojg6ampoMHDhQnJNMJiMkJIQzZ87w6tUr2rZtK/7O3r9/z4IFC5g2bRoODg48efKE1q1bExoaiomJCWZmZsA/Om5duHABa2trlJSU6N69O7Vq1WLx4sWSGFxCQkLifwQpoyHxH+NrbuAtW7ZESUmJpUuXUqlSJR49elRKvDpy5Ejy8vI4d+4c2traouPw9zJhwgTCw8MxNTVl8uTJdOjQgfv374tPF+Vu3+vWrcPY2Jjy5cvTu3dvkpOTiYmJQU9Pj0mTJtG2bVvu3LmDm5sbS5YsISgoiKNHjwLFpSja2tpMnjyZBw8eMGHCBGrVqsWRI0cU3MXj4+Np0aIFgwYNIjw8HBUVFc6cOUNhYSHh4eHcvn2bypUrizeoRkZGXL16lZ9//pmlS5diY2PD1atXqVevHiEhIfTs2ZMLFy7g6+uLsbGxQglZWFgYM2bMYPLkyezatYsRI0bQtGnTPxRa9+vXjxMnTrB48WIqV67M+vXr2bZtm6hb+PjxI5mZmURFRWFsbMzOnTuZP3++QlvgDx8+oKGhwdmzZ1FWVhYDSHkmQldXl169erFp0yZ69erF7du3iYmJAYpvds3NzUXdw+TJk2natCmfPn3i2rVrDBw4EBsbG8zMzHjz5g0zZsygdu3arF69mkaNGvH06VN8fX1ZsmQJo0ePZtSoUSQlJREcHMz48ePFbFV+fj7JycmsX78emUzG6NGj/9RN8NWrV0UDyNmzZ+Pi4sK1a9e++Z2wsDD69OnD6tWrKSwsZP/+/SQlJVG1alXy8/Px9PSkdu3azJ07F2VlZVasWMGtW7c4ePAgL168oFWrVjx9+pT58+dTuXJl4uPjiYyMJDo6GmVlZWxsbLh9+zZ+fn6Ymppy7NgxVq1aBcC5c+fQ09Nj9+7dzJw5kxs3bpCXl8ehQ4cIDg7m8+fPvHr1Ch0dHXbv3s2tW7fYsWMH1tbWTJgwAQ0NDV6+fCmuv56eHidPnkQQBPG39uDBA7Zv30737t2xs7PjyZMnLF++nJkzZ/L48WMWLVpEdnY2Z8+eVfCWkfO/LAaXBOASEhI/GlKgIfEf42tu4C1btiz11HfmzJkMHz5cDDRSUlLw8vISBa4ljfm+h+DgYFq2bAkUBzwVK1Zk79699OjRA/iH27eTkxOAGGDExcXh5uYGwJYtW7C0tGTfvn10794dfX19ZDKZgnFeSkoKe/bsUXAXr1GjhoK7+Pz583F1dVXoAFSjRg1RL6GtrY2ZmZnCceUtWeXHXLRoES1atBC1Dfb29ty5c4cFCxYoBBpt27bF19cXgEmTJrF48WKxE9C3yMzMpLCwkDFjxlBYWIijoyOHDx/G2NiY3377jZycHCwsLOjatSu5ubkIgsDGjRsVslCFhYVYWVnh4uIibpM/BZfj6urKrl27CAoKYuHChdSqVYunT5+ioaGBiooKa9asYcKECQoNAbp27QrAb7/9RmZmJj4+PixatIjU1FSsrKzQ1NRk165d+Pj4cPjwYSZMmICTkxNGRkYMHjxYoYtZYWEh7du3Z9y4cejr6zNs2DAWLVqkMI9vIc+6jB49moULF/LmzRv69+8PFLdOLmnAWPKaLF26lAMHDlCjRg2uXr0qXpPt27dTVFTEpk2bRK+W5s2bY2BgwPPnz3F1dQUgNTWV0NBQ0tPTMTExoU6dOqxcuZKOHTsyYcIEWrRowYIFC0hLS6NJkybMmTOH/v37U7lyZQwMDKhQoQLKysqiA/nly5fF88lL9DZu3EizZs3o06cPlStXFrNjFhYW4r+/Zs2acfDgQdHRfPny5bRu3ZpDhw5RVFSEp6cnSkpKZGVlMWbMGNq1a8fMmTOZNGkSq1evLjPQkJzBJSQkJH4cpNIpif8Y33IDP3nyJC1atMDCwgJdXV369etHamqqWM4xZswYZs6cScOGDQkODubmzZt/6twlb9qNjIyoWrUqd+/eFbfJ3b7l3L17FxUVFX766Sdxm7GxcanvfUlJd/GSXglnz57l4cOHAGJG41/h7t27NGzYUGFbw4YNSU5OprCwUNxWck5RUVG8f/9ewYE9NjZWFJ0/efJEDPhmzJiBiooKFSpUYNCgQYSGhopjTkhIICcnh0ePHollPTo6OqSmpjJ69Gjx2JUrV1YoUQMICgpCWVlZfGK9e/duRowYQVZWFq9evaJOnTrk5ORga2vL27dvefnyJcbGxshkslKi+4SEBLKysli/fj0ZGRmoqqry6tUrUlNTxbVu2rQply9fJjc3l1evXjF37lwFDYi1tTX79+8nPT2dlJQUUVzfoUMHcR8/Pz/RM0NOnz598Pb2Fl3NV69ejYeHB5s2bRIDyGfPnimsv0wmIzs7m1q1apGVlcXHjx8ZPHgwpqam4jVJSEjgwYMH6Orqir8dIyMjcnJyePjwIUZGRmIgaW1tzfz587ly5Qr79+/H3d2d8ePHM2TIEPbu3YuVlRUGBgacOXOGCRMm0KpVK7F9rbe3N+np6QpNGFRVVRXKzFxcXIiIiEBXV5ebN2/SsWNH1NTUSEtLE38z+vr6NG7cmNzcXJKSkvD09CQ+Pp6cnByePXvGgwcPKCgoEFsWHzx4kKlTpyIIgniNviQwMJD09HTx9ezZszL3k5CQkJD46yNlNCT+Y3xNUPs94tUhQ4bg6enJoUOHOH78OHPmzCEsLEzhxvZf4d/l9v097uL/DhHz91KW8PR7RMy1a9fm8ePHHDlyhJMnT9KjRw88PDzYtWsXmZmZmJmZldk9rOTNeElXcjkdOnRAEAQOHTpE3bp1OXfuHJ6enjx8+JD09HT27NkDQKdOncoUBJfky3HIBedfjuNf4c+4mh8/fpygoCBCQkK4cuUKJiYmpRoKCIJATk4OM2bMwMDAgI4dOzJ9+nTxmmRmZlKnTp0yPVbkrXEjIiKIjIykWrVqbN++nalTp3LixAnq169PSEgIffr0oU2bNrx//57Pnz+zbNkyXFxcOHXqFKmpqX9q/h06dEBdXZ29e/eipqZGfn4++vr63/39stzo5Xzt+kpicAkJCYkfCEFC4j9A06ZNBT8/P4VtnTp1EgYMGCDs2rVLUFVVFQoLC8XPZsyYIQDCx48fyzxeQECA4Ojo+IfnPXPmjAAI27dvF7d9+PBB0NLSErdFREQI+vr6Ct+7f/++AAhxcXHitvfv3wuamprCzp07BUEQhC1btgg6OjoK30tKShIA4dy5c18dk7e3t9CwYcNS25s2bSqMHj1asLa2FtTV1YUKFSoIwcHBCvO4efOm0LFjR0FZWVlQVlYWunfvLrx+/VoQBEGYMGGCUKVKFcHd3V3Q0dERZDKZULFiReHKlSvi90u+5Mf+Fjk5OcLEiROFcuXKCYBgY2MjjBs3TlBWVhYeP34sxMbGCnXr1hXU1NQEU1NTYdKkSUJ+fr4QHBwsODk5CdbW1sLixYsVjmloaCg4ODgI8+bNE2xsbARAUFdXF1RVVQWZTCaoqKgI+/fvF86dOyfIZLJS41ZRURG0tbUFR0dHQSaTCQMHDhSMjY0Fd3d3YeDAgUK7du0UzpeXlyeYmJgI69atU9geHBwsKCsrCy9evBC3yY/56tUrQRAEoUePHkL37t3F30hBQYFgZWUlVKlSRejUqZOwYMECwdTUVDAyMhJ8fX2Fjx8/CioqKsLu3bsFa2troUqVKoKfn59gbW2tMAdlZWXh5MmTgiAIgo2NjWBqaiqoqamJn2tra4svLS0tQUlJSVBTUxMcHByE48ePC4Cwd+9eQRAEoX79+sLo0aPFOXz8+FEAhNjYWKFXr15Chw4dSl3XL8dTrlw5QUdHR3jw4IHQsWNHoXz58oK2trbg6uoq9OjRQ2jZsqXQrl07wczMrNT1MDIyErKzs4Xz588LjRo1ElRUVASZTCaMGjVKePXqlaCuri5s3LhR+PXXXwVbW1tBXV1dKF++vODl5fWHvz9BEIT09HQBEN6/f/9d+/8VycvLE/bt2yfk5eX9t4fyTyPN4a+BNIe/Bv9rc5D/dzg9Pf1Pn0fKaEj817G1tSU/P59ly5bRoUMH4uLiRPGqnLFjx9KmTRvs7e35+PEjZ86c+aqDcllMnz4dY2NjKlSowJQpUyhXrpzY578s7Ozs6NSpE0OHDmX16tXo6uoSEBCAhYUFnTp1Aoq1JJmZmZw6dQonJye0tLS+y108MDAQR0dHfH19GT58OGpqapw5c4b8/HyioqKwtbVFT0+PAQMG4O/vT4MGDcQnvH369MHAwICoqCj69+9PXFwcHTp0YOTIkSxfvhxDQ0MqVqzIypUr8fDwoEWLFqiqqori9fHjxzNu3Dj8/f2/KaZftGgRZmZmbNy4kfj4eJycnLh58yZr1qwhNTWVBg0a0K5dOx4+fEj37t0ZN24cu3fvZtWqVWXqEkpiaGjI/fv32bBhA4MHD2batGmYmJgwf/58Ll68yLZt2+jbty/37t1j9uzZBAUFkZ+fL/pe3L17Fx8fHwYPHoxMJuPgwYPMmzcPGxsbHjx4wIgRIzh69CitW7cGirtCZWdn07Nnz1Jj0dDQYMCAASxcuJCMjAwePHiAnZ2dqFNo3rw548ePx8LCgsLCQkaMGEFaWhomJiacOXOGvLw8Bg0aRIUKFZg0aRJpaWkUFRWV0sBcuXKF8uXLY2xszJgxYxgxYgQmJiacP3+elJQUOnTowPz58zlz5gwjR47EwMCABQsWUL58eQYMGEBhYSEbNmwgIyODfv36AfD27VuOHz9OcnKyaEQ5YcIEunTpgpaWFitWrODq1asKXbC+HE9ERAStW7fm2rVrtG/fnlOnTtGkSROmTp2KgYEBGzduZP78+WI53uHDhxk8eDA+Pj4MHToUPz8/Dh8+TM+ePTl58iQ///wz9+7do3Xr1sTFxREYGIi/vz+jR48mIyODRYsWYWdnx7lz53jx4sU3fydf8iOLwSURuISExI+KpNGQ+K/j5OTEokWLmDdvHjVr1mTLli3MmTNHYZ/CwkJGjhyJg4OD6DhcUkz9R8ydOxc/Pz/q1KnD69evOXDggFhm8zUiIiKoU6eO6IIsCAKHDx8WSx/c3NwYPnw4PXv2FG+U5d/r378/ffv2xdbWVnQXHzp0KEuWLMHe3p7jx4+TkJBAvXr1aNCgAfv370cmk1GrVi22bduGtra2KPQuWUd/69Yttm7dSt++fdmxYweamppcuXKFgIAApk+fzqdPn/Dw8KBatWqoqKjg7OyMk5MTampqYsmLjo4Opqam3ww0dHV1mTFjBkePHhW7/hw7doyWLVvSq1cvDh8+jJaWFoWFhWzfvp1JkyahoaHBhAkTCAsLK9MsUI68pWpSUpJopOft7U3v3r0xMjLCzMyMzMxMEhMTCQgIEB2khw0bxpQpU0QNh0wmo2bNmvTq1YugoCDatGnDrFmz0NPT49y5cwrXsXv37mXO19bWlq5du9K2bVtatWqFtrY2zZo1Ez8fNGgQAwYMYO3atWRlZVG5cmXxc0NDQyZNmkRcXBwhISHk5+dz6NAhtm3bRo0aNXj+/LmoK5GXPSkpKaGnpye+Dw0NpUKFCjg7O2Nvb8+wYcNYsmQJHz58YMyYMbRp04YXL17QokULGjZsiLu7uyjE9vX1xcfHh5EjRzJs2DCUlZVJTU1l4MCB5OXlsXPnTp4+fcq5c+eYPHmygq5Jfn4DAwNMTU1p164dw4cPZ/Lkyfj7+3Po0CHs7OyYMWMGdnZ22NjYUK1aNVq1aoWysjK6urqYmpqiqalJixYteP78OUVFRWzbto0uXbqwbt06li5dysaNG5kyZQpdu3ZFJpMxceJEBg4cSEJCAj4+PmX+PnJzc8nIyFB4SUhISEj8PZEJ37ojkJD4mxMbG0uzZs34+PHjv61u/3v50uH73bt3aGtri4ZpZe1fo0YNfv31V2xsbBg7dixnzpzB2NiYDRs2EBYWRnh4uIJfBRTf8IaHh9O/f39CQkKYNWsWTZs2xcPDg+7duyu4P3+Pk7mcHTt20KdPHz5//lxmXXnXrl3R19cnIiJC3FbSedvKykqcR8muYs7OznTu3Fn0UZHJZOzYsYPu3buL++jr67Ns2TL69+/PkiVLGDduHE+ePBHb68rXy87OjrVr1yqMS+68fffuXd68eUPFihU5ffr0d5niGRgYUKlSJW7cuKGwfciQIaxfv14MoLy9vXn37h2HDh0S9/Hz8yMxMVF067aysmLUqFFMnDhRnGdAQIBCEG1iYiLqeuQUFhaSk5NDVlYWa9euJTw8nEePHomfp6enY2BgUOpYJXn37h2TJ09m//79fPjwASUlJQoKCggMDGTWrFlfHU9mZiYhISEcOnSIV69eUVBQQHZ2Nvr6+kybNo3x48ejoqJChw4d2Lt3L97e3qSlpfHixQtu3ryp8DsRBIHs7Gzu3LlDxYoVadiwIa9evaJ169a0bt1azLx8SUhISJldp0Jj76OmV9q1/e+AUlEBVZ9fIqniT3/bjEZ+fj6HDx+mbdu2f1udiTSHvwbSHP4a/Jk5ZGRkoK+vT3p6Onp6en/qPFLplITEfwj5U+Rv8S0HalVV1VIC8y+Ri4EPHTrEkSNHCA4OJjo6mi5duvzp8f47ROt/JKaW8886b5cUnMvF4P+s8zYUG/iV9HCQk52dXapZwB+NWUlJ6Q+zZpmZmYSGhoote0vyRyVo38LLy4u8vDy2b99O5cqVefPmDSNHjmTt2rVioFEW/v7+nDhxgoULF2Jra0t2djZdu3bl3bt3DBw48JvzGDZsGGPGjCn1mZWVFWpqal8VzX/5ACAwMJDx48eL7zMyMrC0tJTE4BISEhJ/R/60qkNC4i/EsGHDFISzJV/Dhg0TRdBfE5X/X/KlAL6kMLqoqEgIDg4WLC0tBTU1NcHMzEywsLAQ/Pz8hKZNm5YS3AqCIPj7+wuAkJKSIghCsZi5atWqAiCYmpoKenp6Qs+ePYWMjAzxnF5eXoKFhYWgpaUl6OvrC+rq6kLTpk2FBg0afHXdWrduLQiCIDx+/FiQyWRCjx49hIoVKwpqampClSpVRFH15MmTBUtLS8HV1VUUg7ds2VLQ1dUVhf1qampCs2bNxPGkp6cLMplMaNq0qbgNEHx9fYXOnTsLmpqagq2traCtrS1EREQIjx8/LrUWAwYMEARBEPT19YVatWoJfn5+pcTgPXr0EAwMDEQRNf9fcC6f4+bNm8u8ZhUrVhTKlStXarubm5ugoqIivq9SpYpgamqqIAavVauW0KRJE3EfZWVloXPnzuK1LzkHa2tr8bgtWrQQXFxcBHV1daFSpUpCSEiIkJ+fLwiCIBw7dkxQUVERfvrpJ0FdXV1wcHAQZs+eLQBCQEBAmXMoKQaX07p1a3EdtLW1S4ns5eOxt7cXqlatKorB5Z97enoKgiCU+dvs1KmT0KdPH6FOnTpCo0aNBA0NDaFixYrC6NGjhczMTHEMJcXgJiYmgkwmE3bv3l3mHEoiicH/Gkhz+GsgzeGvwf/aHCQxuMT/LNOnT8ff37/Mz/T09Chfvvw39QL/LXbv3s3ixYuJjo6mRo0avH79WhT57tmzBycnJ3x8fIiLixO1FdWrV0dJSYm+ffuyZMkSXrx4QXJyMuXKlePEiRO8fv2aTp06iW2Cnz9/zokTJwCIiYnh1atX9OvXj8uXL9O9e3dWr15dZtZCvs3GxgZra2t2796Nv78/bdq04erVqyQmJgLQpUsXZs+ejb6+Pnv37uX8+fPMmzePJk2aiG1dNTQ0uHr1KufPn8fAwICgoKAy2whv376dZcuWsWDBApYtW8bSpUvJzMzE0tKSNWvW4OPjw9y5c2nXrh2Ghv8on7l79y6enp7ExcUBxUZ2TZo0YfPmzezduxcoNmucOXMmFy9eFDMgFSpUKPO6mJubc+3aNcaMGcOQIUNQV1fn0KFDXLp0qVTL1ffv3/Pw4UPOnDnDgwcP6NKly1eNJOXi62bNmrFkyRJxjbt27Yq/vz+dO3dm9uzZvHjxgoCAAE6dOsW5c+do3rw5ysrKJCcns3HjRt68ecOkSZPKPIec3NxclJWVmTNnDtra2hgbG4s6oWbNmjFnzhxSU1OpX78+P/30EwsWLBDF7xUrViQ5OZlff/0VNTU1/P39SU5OFlvT7tmzB3NzcypVqsTWrVtRU1OjRo0aHDp0iPbt29OoUSOio6PJyckhMDCQEydOcPfuXRYvXswvv/zCrFmzaNKkCYcOHWLu3Ll/aBxZkh9NDP53KJeSkJCQ+FeRAg2JvzXly5enfPny/+1hAKU1Gd8iJSUFU1NTPDw8UFVVxcrKCjMzM3bt2gUgCm41NDTEm1KZTIa2tjaGhoY0adKE/Px8ZDIZv//+O1WqVMHe3h4rKyt27tzJzp07MTY2JjMzk02bNolme2fOnGHDhg1s3LiRSpUqiTqJsrh//z5PnjyhU6dOhIeHM2/ePACWL18OwN69e7G0tERTU5MuXbpgZGSEh4cHFy5coKioCCUlJfT19SlXrhzt27dHX19fFJh/SfPmzenduzcAs2fPZunSpTx+/BhlZWXs7OyAYu1FYGAg/fv3JzIyEigOZNasWSMK8UNCQlBRUeHp06eYm5tTo0YNfv/9d3r27Cm6vn8LTU1NCgsLOXfuHNHR0eTl5VGtWjV8fX3ZuHGjwr6qqqosX74cZWVlqlWrRqVKlfj48WOZx5WXzd27d486depgYWHBkydPOHLkCN7e3ty/f5+uXbuiqqpKuXLlROH26dOnKSgowNbWln79+mFjY8OUKVMU3M2/RO7PERMTw7Fjx1BSUsLAwAAvLy/Cw8PR1NQUHcFTUlJo3ry5OJ7169czaNAg+vfvT7ly5Zg0aRITJ04UNSJGRkYYGhqSkZFBgwYNRFf4vXv30rlzZ5KTk+ncuTPa2tqYmpqSlJRETk4O2dnZKCkpMX/+fFFgLg+yvyQ3N1ehfE0Sg0tISEj8fZG6TklI/JvYs2cPM2bM+K59u3fvzufPn6lcuTJDhw5l7969nDx5UrwBlLNv3z7xphqK6/73799PZmYmgYGBVK1aVRR7q6mp4ePjg4WFBbm5uRw5coSioiIaNWokfr9x48YoKSnh5+f3zSADih3MlZWV8fDwQFdXl8TERF69eoWvry9QnE1o0aKFgvP2ggULyMrK4vnz5+J4+/fvLzpvDxgwgKpVq+Lu7l5qPeRoa2ujp6dXKjC4d+8eRUVF4no4Ozvj4uKisI+/vz9Tp05lw4YNfPz4ES8vL44cOcKgQYNKzS8kJARnZ+dS24cMGcKlS5d4+/YtaWlp/P7779SuXVthn0aNGtGsWTMFzUybNm2oWbOm+L5ixYo0bdpU4XsrVqwgPz+fJ0+eAMXi+ejoaBISElBSUqKwsJCXL1+Snp5OdnY2d+/excrKikuXLonu2/IuXCVd60uirq7Onj17yMzM5Pjx44SEhPDhwwfWr1/P9u3bvzmecuXKUbt2baytrcnIyGDSpEnk5ORQt25dheNPmDCBnJwcMVuYkJDA4cOHefDggbjfq1evEASBx48fM2bMGKpXr46KigpeXl5MnDiR9u3blzn+OXPmoK+vL74sLS3L3E9CQkJC4q+PlNGQkPg3YWRk9N37WlpakpSUxMmTJzlx4gS+vr4sWLAAFZU/90/ynxVRfw/yTMrDhw9xcHBQuIn+kpKu3CX5vxaDf1nOpKWlRbdu3QgODsbExIT379//KTG4np4eBQUFpY6blpZWyhH737H2/1dicPn3W7ZsScuWLQkKCqJ58+YEBwfj7e391e98KQbX1NSkW7du5OXl/eE8hg0bhoWFBTNnzlTo2iWJwSUxuISExP8uUkZDQuLfhLu7u9jGdcWKFVy6dInly5dToUKFMk3TNDU16dChA0uXLiU2NpaLFy+SlZVFUVERGRkZTJ48GVNT01KZh5SUFDp16sTs2bNJTEykR48evHnzRvw8Ly+PZs2a0bBhQ3FcV69eJTY2loEDB1JUVER4eDgymQw1NTV0dHTKfDk6OlJYWMiSJUs4d+4cMplMzETY2NiQmprKnj170NXVFT0Rli9fjpKSEra2ttjY2FBQUMCrV6/EsVlZWZGcnMzevXvR0dER29Wmp6fTqVMndHR0qFWrlmgQB4gBTMltX2P8+PE4ODigrq5OnTp1WLVqFdnZ2WKWRFlZGW1tbTQ0NAgNDSUhIQGZTIZMJiMsLIyqVasSGRkpepc8efIEmUzGvn37+PTpE1paWjg5OfHu3TuF865du5b169dz/vx5unTpwqJFi0q1IVZVVS01h9q1a7Nt2za6devGqVOnaNasGbVq1WLy5Ml8+vQJBwcHnj17xosXL5g+fToVK1akXLni2v7r168rXPNRo0ZhZmaGhoYG1tbWYttaGxsbAE6ePElKSor4XlVVlUuXLlG3bl00NDQoV64c27Ztw9vbmy5dulCxYkWmTZtGQkICy5cvp02bNiQnJ6OmpibOIzIyUrym0dHRqKiooKysjK2trfg6cuQItWvXRkdHBx8fH7S1tbl+/TpPnjwRWwGXRF1dHT09PYWXhISEhMTfEymjISHxb+bq1auMGTMGe3t76tevz+jRozl//jxXr14V94mMjKSwsJCffvoJLS0tNm/ejKamJhoaGkRFRVGuXDkqVapE+/btGTdunBg0AOINube3N7GxsTx69IiePXsSGxsLFIuUW7RowcqVKwkKCuLs2bPEx8fj6uqKk5MTCQkJDB06lMDAQDIyMhRaxJbExsaG3r17ExMTQ8WKFdm4cSOvX79mx44dQPGNbm5uLj179qRPnz6EhYWxbt063N3dWb16NRcuXGDo0KGsWbOGDh06YGBgwPv378nPz8fS0pJdu3axePFiVq5cSXh4OIGBgSxYsIBJkyZx+/ZtMRNibW0tOoC3bdsWTU3Nr5oNGhgY4OTkxIIFC2jfvj15eXkMHz4cf39/srOzOXLkCPXr18fIyIjFixdz7tw5UXtRs2ZN3r17x8KFC1m3bh2VK1cWA4qzZ88SGhpKr169mDJlCkeOHBF1L3FxcQwfPhw3Nzfy8vJo2bKlaLb45XqeOnWKhg0boq6ujqGhIUFBQbRt2xZlZWU2bNhAeHg4CQkJLFu2DF9fXzZt2oS9vT3NmzfnxYsX+Pv7s2vXLm7fvs3s2bPp168fdnZ2LF26lJiYGHbs2IGuri6DBw/m+fPn3Lx5k127dlG3bl309PRo164d4eHhQLFuZN68eYwbN45ly5ahqalJnz592LNnDx06dGDs2LFcu3YNLS0tOnfuTGpqKm3btsXGxoZz585hb2/PoEGDmDt3LtWqVaNbt25MnjwZNTU1kpOTuXPnDlFRUZw6dYpBgwbRvn17zM3NmTVrFleuXCnTQf1b/EhicEkILiEh8b+ClNGQkPg3k5KSInb70dPTw8XFpZS/gIGBAWvXrqVhw4bUqlWLkydPcuDAAVRVValVqxZbtmzh3bt3BAQEAHDq1CkACgoKSExMZOvWrZibm6OlpcXGjRs5e/YsV65cEfeRu4OvX78egBEjRtCmTRscHBxQVlbG2NiYSpUq4eTkpPD0ueQLYMOGDdjb2/P48WMaN27ML7/8QlZWFgAeHh6cOHGCpKQkOnTowNSpU7GxseHEiRPY29vj7e2Nr68vgiDQvn172rVrh5aWFoaGhri6umJnZ0dQUBBQ7NDdvXt37O3tmTRpkpjVAbCwsCA0NJSAgAAqVKggahS+hYeHh9hZqlevXlSpUgVHR0cmTpxIkyZNqFmzJpaWlmhra9OgQQMaNGiArq6u2DXq+fPneHh4iP4jI0eOJCgoCHt7e0JDQ8nKyhLXYdmyZbRp04Y6deqgqamJr68vbdq0KTWmsLAwTpw4gaWlpagt8fT0pHfv3uTn53Pz5k0GDhzI0aNH6devH9HR0bx9+5a9e/fy5MkTcnJy2LZtG2FhYQBUqlRJbDyQkpKCnZ0djRo1wsHBgVatWvH777/TpEkTUSfi6enJ+vXrRWG6rq4uOjo6LF26lF69euHk5MShQ4cwNDSkQYMGnD17Fh8fH+rWrYuJiQlbtmzhxYsXuLu78+TJEzp37owgCEycOJGOHTsSFxeHoaEhmZmZuLi4EBQUxM2bNwkICMDLy0t0KH/79i3Hjh0THdS/RHIGl5CQkPhxkAINCYl/My1btsTa2pp79+6RmprKli1byM7O5smTJ2JpVefOnfn9999JT08nMzOTixcvik/Ia9WqRf369UlISCAnJ4eOHTvy9u1bvL29mT17NpaWllhaWhISEkJ8fDzVq1fHwMCAu3fvMnbsWIKCghgyZAgeHh6iy/jIkSN59eoV7u7uFBYWlhKdfw0NDQ2aNGkidhhKTk4WjdtcXV15/Pgx9+/fJzc3FwcHB7y9vRV0Js2bN+fz5898+PCBlJQUdHR0CAwMFMvB5MFASTG4fFuzZs3EbdOmTePVq1cKYvDY2Fj69OlT5rizsrJIT0+nWbNmeHp60qFDB8LDwxXKuL5FSEgIb9++Fbs/DRgwQPzMzMwMKA7+9u3bR1JSEvXq1WPJkiViVqlevXro6ekpOKJfu3YNbW1tBfE1FAdZlSpV4vPnz6Snp3Pp0iWmT59OUVERSUlJmJqakpeXx6lTp0hKSsLT01MM3u7evQsUO5XHx8dTtWpVJkyYQLNmzbh27RppaWliQNSnTx+FdsYpKSmEh4dz4sQJnj59SlpaGjY2Npw+fZrt27ejoqLCrl276Ny5M0uWLMHY2JiqVatSWFhIQkICtWrVUnDwrlu3LoGBgejr65OZmUlCQgLp6elMnz6d1q1b8/vvv/Px40fRpVwSg0tISEj8+EilUxIS/2Z0dXW/W/haFv+qyLikO/j27du5fPkyWlpaXL9+ndWrVwPF5Vf/Kl8rufojSs5P7qlR1rZ/RtQuCAL5+fnMmDEDAwMDjh8/TmJiIkePHmX79u1MnTqVEydOUL9+/X95zH8lateuzePHjzly5AgnT56kR48eeHh4iO2Sy+Lf4fz+R5QUu+/evVtBKP41sbskBpeQkJD4cZAyGhIS/weoqKjg4eHB/PnzuXnz5leFr38WuTj42bNn4rY7d+6QlpZG9erVxW329vaMGzeOlStXoqKiwtmzZ2nYsCEJCQlAsWj7/Pnz6OjooK2tjYqKiiiKVlFRUQgi3r17R3x8PLq6uujp6VGnTh3y8vJ48OABAwcOJD09HZlMxo0bN0p5TcTFxWFvb6/QBvbKlSu4urqiq6srGsWlpaWVmuvo0aPR09NDV1eXxo0b8/DhQ/GzDRs2UKNGDYYMGUJGRoZYTpWens6dO3dYunQpb9++xcjIiDlz5jBo0CCio6PJzs7Gzc0NFRUV5syZQ2JiIjo6OqipqSkEH1OnTmXMmDGioLpFixZltgPu0qUL8fHxzJ07V2G7vIxNTmRkZCnxeWRkJIMGDWLr1q2kpKTw8uVLoPimVK5LqVq1Kh07dkRbW5tJkyaJviTTpk0jLi5OvOa5ublMnz6d8ePHs3XrVipUqMDu3bv58OEDULYQvVatWmJJ3pc4ODhQUFCg4GeRmprKvXv3OHDgADo6Oty6dYuVK1cqNCI4evQomZmZ4m9FWVmZuLg4nj9/TkBAAJmZmdjZ2WFnZ8f06dPLPLckBpeQkJD4cZAyGhIS/2YOHjzIo0ePaNKkCYaGhhw+fPhPC1+/hoeHB46OjqI7eEFBAb6+vjRt2hRXV1c+f/7MhAkT6NatG5UqVSI7OxsVFRWUlJQICAigWrVq9OrVi9DQUOzs7IiLi6N3795oaWkxdepUCgoKCAkJUQg0jh49irq6OmfPnkVZWZn4+Hj8/PywsbFhyZIlBAUFkZSUxM2bN2nTpg0zZsygZ8+eXLx4keXLl7NixQqFORQVFTFjxgyqVq3K27dvadCgAcuWLRPbrr5+/Roo7jZ1+vRp9PT0iIuLo6CgAICVK1cyfvx45s6dy+fPn5k1a5ZYCqavr4+Ghgaurq5MmDCB3bt3c+nSJTp16kRwcDB6enpYW1tTrlw52rZty9SpU9m6dStbt27lxYsXCuOMiooSy8TGjh1LcHAwDRs2VPCUiIiIwMjISOw01aFDB06fPs2RI0cUMh89e/bk1q1bHD16lJMnT4pjtbe3JzIyEk1NTQYMGMDChQs5ePAgGRkZeHl5iYFYfn4+N27cYO7cuRQUFDB58mQEQWDLli0ANG3alA8fPjBv3jxMTU2ZMmUKUBwkGhkZlSlEDw4OpkWLFmIQePv2bX777TcmTZqEnZ0dnTp14vDhwzx69IiEhARRO6OmpiY2GBgyZAhubm4cPXqUY8eOcfz4cZSVlbly5QrKyspERkYyf/58nJycmDRpEsuXL2fhwoXcu3cPf3//P/Xb/xHE4BISEhL/a0gZDQkJFFvT/qsYGBiwZ88emjdvjoODA6tWrfqq8PXPIpPJ2L9/v+gO7uHhQeXKlUUjNmVlZVJTU+nfvz/29vb06NEDIyMjXF1dGTBgAL169aJbt26oqKjw888/s3DhQu7fvy86O3fr1o0dO3Zw+fJl8an8p0+fMDQ0pFq1atjZ2dG9e3fU1NRQUVFBX18fmUyGqakprVq1YseOHURHR1OzZk2CgoKYPn16Kd+Gn376iTZt2lC5cmUxi3D9+nUyMzMBxKzI3LlzcXV1xd7enoEDB4qB2syZM/nll1/w8/PD1NQUZWVl8do9evSInJwctm7dyk8//URGRgYfPnzg0qVLDB48mLS0NAwNDdHR0aFdu3Z8/vyZn3/+me3bt5dqWVurVi3xuB06dMDV1bVUBkDuwr1q1SoWLVqEk5MTR48eZdy4cQqlQfJOWSoqKpiammJqaoqmpiZubm4YGxujr69P165dadu2LUFBQVhZWbFmzRrx+5UrVyYwMJCwsDCmTJmCkZER5ubm2NnZkZKSwuXLl1FTU2P48OF4eXmhq6tLvXr1iIqKAoqDtq1btyoI0d3d3dm5cycXLlwAik0Ip0yZIrY3PnHiBPn5+axdu5YGDRqQmpoqOqXXqVOHwYMHM2PGDB49eoSjoyPHjx9HVVWVgoICjh49ip2dHbNmzeLgwYOcOnWKxYsXk5WVRUREBDVq1Phq5zBJDC4hISHx4yAFGhIS/yZiY2NZsmQJjRo1IjY2lg8fPpCdnc24ceNEn4nvPUZJvnQHt7KyEt3BMzIy2LFjhyigVlNTY9u2bTRv3pw2bdrw4sUL7OzscHZ2xtLSklevXrFt2zbatm3LwIEDqVu3rigul1NSXA4wefJkHj58iIeHB3PnzuXhw4cKwvaSeHl5cfv2bfLy8nj69Gmpp9ZPnjyhcePGdOjQASsrK3R1ddHS0gIQfSeePHlC//79FTIHct6+fcvLly9F4by3t7dC2VXdunWxsbHB0tKSChUqsHfvXt6+fYuBgYFY3iTPNNja2vLq1Ss+fPggBi1QrPMoV64ctWrVwsbGBkEQMDAw4MqVK9y7dw8DA4NSJoRDhw7l+fPnZGdni12i1NTUynQel3tzxMfHA8X6ig8fPjBixAiuX7+OkpISmzZtwtDQUPxOgwYNCAkJ4fnz5+Tl5bFmzRpevXpFYWEhiYmJCIIgCswLCwv5/fffuX79ulhudu7cOZ49eyYK0eXZqK5du7J27VqgONi7d+8e8fHxxMfHk5CQgIWFBXPmzCE7O5t+/fqhoaGBrq6uOK6pU6diYGDAmjVriImJISAgAEEQWLFihfhb8fT0JC4ujtWrV6Ovr8+lS5cYOnRoqXWRI4nBJSQkJH4cpNIpCYn/AVRVVVFWVhZvpv+MwLykuPzIkSMEBwcTHR0ttn79M2RlZeHp6YmnpydbtmzBxMSElJQUPD09Rffpb4mU/x0CZplMhiAICuvxPW7l8HWB+sKFC2nZsiXa2tocOXKEqKgoWrduXcq0ryycnJw4ceIEFy9e5MKFC3/KyRyKBdfKyspcu3ZNQQsDiFmD73Gtr1SpUqlmBX/WqT4kJIS1a9dSvXp1Tp8+/U/9Vn5kMbiEhITE/xpSRkNC4v9TVFTExIkTMTIyKuXILXfj1tHRQU9Pr5Qbd0JCAs2aNVMQTJd045YLpr/lxl3ypnTTpk0Kguk+ffrw9u1bhfHevn2b9u3blxJMh4SEEBUVxf79+5HJZJw9e5bnz58rPEkXBIGdO3dy9uxZnjx5gra2Njo6OmhpaSGTyUhLS2P48OGkpaUxZMgQGjZsSHBwMAUFBTRv3pyIiAgABZfoLwkJCcHZ2ZnVq1djaWmpYPw2d+5cGjduzNy5cwkMDASKW+EaGBjw4cMHzp8/z/jx41FVVUVJSQkNDQ10dHQwMzNDJpPh4eGBrq5uKRfs7xHL6+vr8+rVK4X1iI+Pp6CggL59+2JiYsK5c+eIjIwU51mpUiUADhw4IDqklxRYX758mZYtW+Lo6MiqVatYunQptWvXBhDLhOTic3kJnZubG1u2bEFLSwttbW06derEhAkTePXqFQEBAaImBeDEiRM4OjqiqamJsbExfn5+VKlSBWVlZaKjoyksLGTevHk0aNCA2rVrs3DhQqysrMRAqmRpoLu7O0+fPmXcuHHIZDKxjfCHDx/o3bs3FhYWaGlp4ejoKLbGla9tTk4OHz9+ZNSoUejr62NgYEBaWhoODg7ifqqqqri7u3P8+HG6du3KmjVrGDJkCKNHjyY9PZ3mzZuLTQnKQhKDS0hISPw4SBkNCYn/T1RUFOPHj+fSpUtcvHgRb29vGjZsSIsWLcQg4+zZsxQUFDBy5EgFN+6+ffvi4uLCypUrRcG0qqoqbm5uomD69u3bPHv2TLyx/BJzc3Px7/IWrXLB9Pjx4/H29ubw4cMAvHjxgiZNmuDu7l5KMO3v78/du3fJyMggIiKCrl27it4PcmQyGZUqVeLly5c4ODigra3N1KlTWb9+PadOnaJmzZps2bKFrl278vjxY2bOnEnVqlVZvXo1O3bsYOTIkUCx23VmZianTp3CyckJLS0tsRQK4MGDB+zYsYMDBw6QkZGBt7c3SkpKLFu2jOHDh5OSkiK2O92wYQMfPnxg8ODBqKqqcvz4cVasWMGFCxfYuHEj69ev56effsLPz4/Dhw/Tp08fevfuzcOHDzl//jzwx2J5AEdHR/bt28fu3buBYnH5rVu30NHRISsriyNHjjBq1CjMzc0pV67Ywfny5cvUq1ePVq1aERUVJXapkgusV69erVDqBIiB6uHDh8nPzycmJoapU6cSHh7O0KFD2bRpE61atSIjI4O5c+eSnZ2NkpIS4eHhTJo0CQ0NDUJCQsjLy+P58+dUqVKFJUuWcPXqVYKCgliwYAFQHDipqKiwY8cOZs6cia6uLv7+/iQlJeHv70+7du0UxrVnzx6cnJzw8fFh6NChXLhwAS8vL3JycqhTpw6TJk1CT0+PQ4cOMWbMGJ4+fSqurY6ODps3b6Znz56sW7eOSZMm8enTJ+Lj46lZsyYTJkwgJyeHDx8+EBcXx5UrVygoKEBVVZUlS5YwZMgQjI2NadasGTdv3qRixYp/+O9SjiQGl5CQkPj7IQUaEhL/n1q1ahEcHAyAnZ0dy5cvF8W/iYmJPH78WKwX37hxIzVq1ODKlSvUrVuXlJQUJkyYQLVq1cTvy5ELpitWrPjdN1aDBg0S/165cmWWLl1K3bp1yczMREdHh19//RV9fX2io6PFEh97e3vxO5qamuTm5mJqaoqamlqpkhr5cQ8ePEhcXBxz586lb9++ZGdn4+LiQkxMDMnJyVy9epXWrVsza9Ys3rx5Q7ly5dDR0eHw4cMoKSmxZMkSdHR06NSpE1lZWQQHBytkgnJycti4cSMWFhYArFixgrZt2xIdHc3SpUvR09NDR0eHT58+YWNjQ+fOnZk/fz7a2tqUK1eOsWPHimN///49tra2VKlShapVq3L27FkiIiIoV64c3bp1A/4hlh89ejRNmjRBSUmJ1q1bs2zZMnFMLi4uTJs2TdRsZGVl0b9/f7Zt24aLiwuurq5oaGhgZWVFhw4dAEQ3bXV1dTFLEBYWxvjx41m7di0WFhYKJnxySmYwBEEgLy9P1Cfcvn0bLy8v5s6di7W1Nbm5udSoUYNBgwaRk5PDpEmTCAoKEkvKKlasSNeuXVFWVsbf35/Ro0eL59HV1WX48OGEh4fz4sULtLS0OH/+fCm9DxSXUSkrK4vZMnlZlbm5uYKmZvTo0UyaNIn4+HgiIyMZO3YsNWrU4Pbt28TExHDw4EFat25Nu3btWLx4MQMGDCA1NZX3798ze/Zs1q9fT/369Tlx4gQ7d+5EXV2dq1evsnPnTj5+/MiIESM4cOBAqfHl5uYqtNWVxOASEhISf1+k0ikJif9PrVq1FN6bmZnx9u1b7t69+4eC6fHjx4tu3HIR7L/CtWvXFATTTZs2Bf4hmI6Pj6dx48bfZf71NYF5TEwMDg4OnD17lv3793PgwAFUVFQ4fvw4FSpUICEhgaysLA4fPsyHDx9QVVUVnczlN79Q3Onp7du3CIJQymvCyspKDDIAfHx8EASBTZs2kZOTQ9u2bXFzc+PNmzeicLpChQrUr1+fY8eOkZWVRUZGBhUrVhRF3N7e3rx7946ioiKGDx9OZGQkS5cuVTjn18TyckJDQ8WuWv7+/ixbtoxNmzYRHR2Ns7Mz9erVo0ePHqXWsqT3Q4cOHUhOTi7l9F2SqlWrKoir7927J2bBzM3Nkclk3Lx5k7p16/Lx40cGDx4MQMOGDcnMzOT58+doa2tjaWlJTEwMrVq1Yt68efj7+yu0z3V2dmb27Nk8fvyYvLw8zp49S2FhoYLm4tOnTwwaNAhzc3OePn1KaGgofn5+ODo6IggCurq6zJgxAzU1NbGULj8/XwyyoNhkr3v37gpr6+HhQXJyMsrKymzbto2KFSuycOFCXrx4QfPmzcnKysLY2BgdHR3xuispKSn4vpREEoNLSEhI/DhIGQ0Jif/Pv+LI/VcSTP8Z+vbty9atWwkICGDr1q20bt1aFNxmZmZiZmYm3hiXZMCAAeLfS96I/jNoaGhQvnx58b1MJvvmtfhnXLC/hzZt2vD06VMOHz7MiRMnaNGiBSNHjmThwoX/9DHV1NREjw85Xwqsc3NzSUhIEFvllkWXLl3o0aMHx48fZ9myZUyZMoVLly6J2pE/Iicnh23btlGnTh22bdvGzz//TNu2bTl16hRHjhzh999/Z82aNYSHh6Onp8fAgQMZNmwYY8eOVQgq/yzf+g0ZGBiQn59f6lpLYnAJCQmJHwcpoyEh8Qf8WTduuQj2ewTTZXHv3j0FwXS1atVKCcFr1arF+fPny+yW9GfO2adPH27dusW1a9fYtWsXffv2FT+rXbs2r1+/RkVFBVtbW4VXyZtDeatUKG6jqqamhpKSEqGhoTx+/BhVVVV0dHRQVlYW19Dd3V18Ip+SkqLw5P3Jkyds2bKFTZs2YWNjg76+Pu/evSMnJ0fcRyaTERMTw9atW1FSUmL37t00bNjwu71QcnNzxdKpunXrYmtry/r16zExMWHAgAEMHTqUChUqEBYWhpmZmaiHkK9pyTnL0dDQUBD6h4aGcvPmTVRUVFBTU8POzo6YmBhxf3kJ1YkTJ7h16xZVq1ZFRUUFd3d3xowZg5qaGi4uLiQkJHDy5EnmzJlDaGgoN27cQE1NjV27dlG+fHmSk5NJSEjg8+fP4rF///13dHR0sLS0pE2bNly6dInPnz9z48YN2rVrx4sXL4iMjKRDhw68ePGCKVOmEBcXh6qqKqmpqSxcuBA7OzsOHTqkMMcPHz6wZcsWdHR0aN26Na9eveL333/Hzs4OZWVl1q1bx4sXL/D396datWo8f/5c/A2pqKhgZ2fHtWvXGDx4MBUrVhQNB0siicElJCQkfhykQENC4g8oKTC+fv06ly9fpn///gpu3KNGjSI2NpanT5+KIlh5J56Sgun379+TnZ39zfNZWVmhpqbGsmXLePToETExMcyYMUNhn1GjRpGRkUGvXr24evUqycnJbNq0iaSkJPGcN2/eJCkpiffv3381ILGxscHNzY3BgwdTWFio8ETdw8ODBg0a0LlzZ44fP86TJ0+4cOECU6ZM4dOnT2Ue79mzZ6irq7N27Vq8vb1RV1fH2tqabdu2sWrVKlRUVHB0dOTVq1e8evXqq2uQnp7Ovn37OHjwIAcPHiQnJ0fUyyxatIhOnToRGxvLihUraNasGerq6ty8efOb61qS/v37izf9e/fuZfXq1Rw+fJj9+/fz22+/0bp1a6A4oFu5ciXbt29HRUWFo0eP8ubNmzIzXZUrV2b48OFiqRQUGyguWLCAy5cv07ZtW/r27Sv6fsgzJefOnUNTUxMbGxvu3bvH+/fvOXfuHK6urly4cIE1a9bQqFEjjhw5wpUrV9izZw/v3r0jIyOD7OxsbGxsyMvLY/Dgwdy5c4fDhw8THBzMqFGjUFJSEoMkFxcXcWxubm40atSIvn374uXlxfbt27G1tUVZWRkTExNGjx5Nnz59FDwzsrOzefbsGSoqKnTu3Jnk5GS6devGsmXL8PPzY8uWLQQFBWFoaEhgYCCzZ89my5YtVKlShc6dO3Pu3Dmg2GW9XLlybN++HU9Pz+++ZhISEhISfz+k0ikJiT/gjwTGJd245YLprl27EhoaChS3MR0+fDg9e/YkNTW1lGD6S0xMTIiMjGTy5Mlim9SFCxcqBAHGxsacPn2aCRMm0LRpU5SVlXF2dqZhw4ZA8dPy2NhYXF1dyczM5MyZM9jY2JR5vr59++Lr60v//v0VSrJkMhmHDx9mypQpDBw4kHfv3mFqakqTJk2+qg158+YN5ubm9O/fn2fPnlGtWjWGDRvG8OHD+fDhA2pqavTq1UsUVH8NQRCIjIwUb3R1dHS4f/8+UFzidubMGdTV1RkzZgx169bl+PHjtGnT5pvHlPPy5Ut27NjBpk2b6NevHxUrVsTZ2ZmLFy8SGBhIcnIyRUVFODs7s3jxYrE71/jx41m9ejVBQUFlzl9NTQ0jIyOFUiljY2PGjRsHwOzZs1m6dKnY2lVfXx8o7oJ15MgRJkyYgJOTEwDly5fn7NmzqKioUFRUxIYNG5DJZLi5uVG5cmXCwsI4fvw43bt3RxAEWrRogZ2dHU2aNCE3N5fevXuLvzF5i1oLCwtxbAsXLmTYsGG4urqKwuvhw4fz+PFjYmJiiIiIYOzYsXTp0oX09HSguPzH3t4eV1dXioqKePnyJY8fPyYwMBAfHx/s7OwICAjAz8+PnJwcunbtyp07dzhw4AA//fQTEydOBIrLuDQ1Naldu3apbmjwdTH437XrVIBLuf/2ECQkJCT+a0iBhoQElFlDvm/fPvHvcoFxWcjduL/FypUrWbly5XePp3fv3vTu3Vth25du1LVq1eLYsWNlft/ExITjx4+X2v7lMQBGjBjBiBEjyjyOrq4uS5cuVRBbQ3HpU1l0796dJUuWULlyZUxMTEhPT2fo0KHi8W1sbBTa30ZGRoodjUJCQti3bx/e3t7s3LlT4Wl6SEiIGNg1adIEgPv372NlZSXuU7XqHzcQFQSBHTt2oKysTM+ePfn555/Fz6ZOncrUqVPp2rUr+vr6YukbFIuzc3Nz+e2337CyslII2uTjLyuQK9ntSltbGz09PdEwsORvrmnTply+fBkoXls7OztRy+Hg4MDRo0dZvHgxa9as4cCBA0ydOlUU76urq2NgYMDUqVPF4LYsSnYyq1+/vhjwLF68mPHjx2NoaMi+ffuwsbFh7NixCmVokZGRaGlpcenSJXFbq1at8PLyYtasWWRlZfHw4UMmTZoEwK+//srKlSspKCgQ3cDHjx9PpUqVOHjwoBgQl4W8RExCQkJC4u+PFGhISEj827C0tCQpKYmTJ08yc+ZMnj9/TpMmTTh79ux3dciS868I8/+If4eQXklJqVTQ9kfu4nl5ed89j7J8Vvr378+kSZNwcnLCxMQEc3Nzzp07x7hx47h//z6//PILZ8+eLfU9W1tbZDIZd+/eLbM5wd27dzE0NPxDUX9Z10S+BpmZmUBxkDBu3Diio6NF/dKXrZXLmltJfkQxuISEhMT/KpJGQ0LiP8z58+fLdAaXv/5bfPr0ib59+6KtrY2ZmRmLFy9WcJSWyWQKWZ5NmzYhk8l4+vQpkyZNQkdHB21tbXR1denZsyc3b95EQ0ODixcvkpiYCBSLqRctWoS2tjYGBgY0bNiQ9+/fk5eXR2hoKAkJCeKfkZGRZY6zcuXKqKqqcuXKFdLS0hg2bBgmJibcuHGD8PBwNDU1xbXU1NRESUkJJSUlbGxsCAsLw9HRkaKiIs6ePVtqTlBssHf06FEEQRDdw3/99VeUlZWpWrUqTk5OaGpqMmnSJDQ1NUXn9zt37hAaGoqamppoILhjxw769++Pnp4ePj4+ZGVlsWnTJqA4EwbF5WZqamqiBuVrGBkZoampiZaWFrq6uowaNYoqVapgZGREtWrVFDJukyZNwt7eHi0tLerWrUulSpVYsWKFKBiXu7YvW7aMdevWkZmZSe/evfn06ZPYSODo0aM0atQIAwMDRo0aJWYtvsTFxQVra2tUVVXFjIeVlRW2trZUqlSJmTNnUqlSJTHjVJYAvCSSGFxCQkLix0EKNCQk/sO4urqKotyyXv8txo8fT1xcHDExMZw4cYLz589z/fr1r+4vd0s3MDDA39+fK1euoK2tjbOzM2vXrmX//v1YW1sjk8kwMzOjoKCA169fo6amxvHjxzl8+DA+Pj7IZDLU1NT45ZdfqFGjhvhnz549yzyvrq4uAwYMYMKECbi5uXHq1CmqVauGtrY2zZs3Z/ny5cTHx7N582Zyc3MZM2YMp06dIiQkhGnTphEbG8uAAQPEUqI3b94QGxvLjh07gOIA4MOHD4wePVq8sd6wYQM9evQgISEBe3t7nj9/jr6+PmvWrGHo0KEoKyujqanJoEGDuHLliuhCvm/fPpycnLhx4wbTpk1DTU2N33//ndzcXHFtQkNDMTU1pV69et+8PvHx8WRkZJCWlsbdu3fFFsORkZHs27dPoXOXrq4ukZGR3Llzh/DwcNLT00lLS8PT05Nz586Rnp5OUlISU6dOxcrKir1793L27Fnmzp2LjY0N586dIyUlhSFDhnD16lVRX9GlSxcxIyMPWqpXr861a9cYNmwY27dvB+Dp06ckJiYSERHBs2fP2LlzJydPngRg+fLl4lpLSEhISPzYSKVTEhL/YTQ1NUt5K/y3+fTpE1FRUWzdupUWLVoAEBERgbm5+Ve/o6enh7Kystip6Nq1a6iqqqKiooKvry+FhYXUrFkTVVVVEhMTcXV1paCgAIAWLVqQm5srir6hWPCtoqIi/vmtEid556kzZ85gYmLCyJEjycvLo169eqLpXXBwMB4eHgptaO/cucOCBQu4du0akydPZvHixYwaNQobGxsmT54MFJdFjRs3jtOnT7N27VoAWrZsycaNG1FRUSE0NJRdu3bRpk0bRo0aJbavtbe3x9LSUhR0Q7HQ+5dffhHfq6qqkp+fz/79++nRowehoaFMnz6dgoICRo8e/dUsDkBycjJQrL9xcXH55rWZOnWq+HcbGxsCAgKIioqicuXK9OjRg3fv3iEIAgMGDGDWrFkYGxvTr18/Tp06xZIlSxg2bBhjxowRr5GVlRVaWlokJiZy584datasKWZt1q9fj4aGBsuWLSMrK4uIiAi6d++Ojo4Ojo6OjB07FldXV9HUsGPHjuzYsaNMQ0T4e4rBJcG3hISERNlIGQ0JCQkePXpEfn6+wlN1fX39rwqsS7qNL1y4kLFjx5KQkMCbN2+4deuW6Ddx69Yt8vPzefjwIUZGRnh7e/P8+XNatmzJkiVLePXqFd7e3mLLVygu6/kyszN27FgF921dXV1at26NlZUVb9++xcfHh6SkJIUA7u7du6VExw0bNiQ5ORlVVVUWLVoEwM6dO0lOTmbgwIHiftWqVePy5ctiu+Dp06eL4mx5p6SAgADS09MJCwtDTU2N+Ph4hW5i1tbWpQz40tLSGDJkCBs2bACgXbt2FBUV8eTJEzHIKMvJHf4h5P/06ZMYTH2N7du307BhQ0xNTdHR0WHq1Km8efOGyMhIXr9+zbRp03BwcGDVqlWi7sHMzIy3b9+KQvHExER69epF5cqVGTZsmKjDkLvTq6ur06xZMzQ0NMTz+vn5AXD58mU+fPjA2bNnefnyJXXq1KFu3bpoa2uzd+9e8RhlITmDS0hISPw4SBkNCQmJ76Kk+FdOSQF0ZmYmderUKbMGXy40joiIYMyYMRw9epTt27czdepUTpw4Qf369f/UWG7cuMGdO3fIz89n2LBhREdHI5PJ6NSp0791TnJKCqHlRoP/rKh7yJAhODs7s2jRIgIDA2nevDnW1tbfPE5RURHlyhU/NdfQ0PiqgzjAxYsX6du3L6GhoXh6eqKvr090dDQLFiygR48enDlzhg8fPqCiokJQUBABAQFoaWmJQnWZTMbevXsJCAjA2tqatWvXsmfPHk6dOkVSUtKfcgqPjo7G39+fsLAwGjRogK6uLgsWLFDoXvUlkhhcQkJC4sdBymhISEgoCKzlpKeni94VUBwslDTZS05OVjAfrF27NsnJyZQvX76Uk7jcMwKKxcOBgYFcuHCBmjVrsnXrVuDPO6hfvHiRV69eERUVRVFREefPn6dcuXKi2D4xMZEZM2YoCO27d++Ovb292Anpj+b0PfzZcTs6OuLq6srZs2fJz89XaDtbFnl5eaSkpODh4YGKigqGhoYoKf3jP90pKSkKc3R3d6eoqIg5c+bg7u6Ouro6V65c4dOnT+Tl5XHo0CFGjx6NmZkZkZGRtGzZslTwkJGRIWo4WrRogYmJiVj2JsfBwYGbN28qOLb//vvvCvvExcXh5uaGr68vLi4u2NrairoXQRBKHRMkMbiEhITEj4QUaEhISCgIrM+cOcPt27cZPHgwSkpK4hN8udD6xo0bXL16leHDh6OqqkpOTg59+/bFz8+PjIwMateujbOzMwMHDiQ2NhaZTMa6detEc7eLFy+ip6eHv78/ycnJODg48OzZM2JiYrh16xZ6enq0bt1aLFuC4nKievXqid2qRo0axfHjx6lWrRq5ublkZmZSq1YtZDIZO3fuJD4+nl27dlFUVMSQIUPYu3cvQUFBKCkp4e/vL3arSk9PF7s3LV68WJzT1atXqVGjBvb29gBs3Lix1Jr99ttvwD+c33V0dFi2bBnZ2dk8efKEp0+fcvPmTZo1a4aWlhZOTk5cvHgRgMaNGxMTE4MgCPTp0weZTCaWXdnY2DBjxgyFblWDBg1i5MiRxMXF8fr1axo3bsy2bdtQVVUVRfXVq1cnPj6epUuXoqSkxMyZM9m/fz+7du3i8OHDKCsrs2fPHurVq4eBgQEGBgYcOHCAixcvsnjxYgCeP38OIArN27Rpw4MHD3j8+DEvX74EwMfHB319fdHDZejQody5c4eDBw8yZcoUAH766SecnJzIysri6tWrHDt2TOxSdvHiRe7fv4+6urq4hhISEhISPyZS6ZSEhARQLLAePnw47du3R09Pj4kTJ/Ls2TOxBj8sLIyBAwfSuHFjzM3NCQ8P59q1a2zbto2nT59y4MABlJWV6d+/Pzdv3uTWrVucO3cOAC0tLbS0tLh37x5RUVF8+vSJyMhIRo4cyaBBg3BxcaFevXro6upy+fJljh07hru7O0+fPkVJSYnOnTszdOhQtm3bRl5eHpcvX0Ymk3Hy5Ek8PT25d+8eqqqq2NjY4O7uLmZSdu7cSVBQECtWrMDMzIyZM2fSv39/GjZsKI5hxYoVXLlyhYULF7Ju3TouX77MihUrCA0NpWHDhrRo0YIVK1ZQq1YtvL29S62b3Pl99erVjBkzhtTUVHG/Q4cOsWHDBuzs7JgyZQq9e/fmwYMHTJ48mWXLliEIgqhXKNnaeOHChQQFBREcHAzApUuXGDVqFGFhYVy9epVZs2YxfPhwCgoKmDt3Lm5ubqxevVqc98OHD5k5cya5ubm4ublRWFiIlpaWQiYEwMnJCQ8PD7Zt24a3tzfm5uY8e/aMiIgItLS0mDZtGjVr1lToaDVlyhRq165Njx49aN++PfHx8bi4uGBsbCz+Vnbv3s379+8ZNmwYzZs3p2fPnmLWR94C+fjx4xgaGpZaz7+TGFwSgUtISEh8GynQkJCQAIqzGiX1FVlZWYSGhuLj4wOAubl5KSfyZ8+eYWxsrNCtKjExEXNzc4YOHcqSJUuQyWRoaWlRoUIF9u7dC4CBgQELFy7E29ubzZs3U1RUREREhJg9ycvLw8DAgNjYWFxdXUlPT6d9+/ZUqVIFKC7bkdOtWzf27dtXZmtgLy8vvLy8FLYdP36cy5cvc/fuXezt7enVq5fC5x07duTdu3dMmzYNKC7xmThxIgsWLMDb21u86a5Zs6b4nZUrV7Jt2zaWLFmCt7e3KFzv3r077dq1AyA0NJQaNWrw4MEDNDQ0yM/PR1tbG1NT01Ljbt68uUK3KgsLC0aNGsX+/fupV68eGzduxM7OjvHjx4vBSEnmz5/P/PnzgWJh+PHjx4mLixM/DwkJETMoDg4O/Pbbb6IbuEwmw8DAgM6dO4udoUJCQliwYAEZGRmiY3u/fv04d+4c8fHx5ObmYmRkxMmTJ2nQoIF4nt9++43s7GzS0tKIjY2lWbNmrF279ptaGskZXEJCQuLHQQo0JCT+RwgJCfnqDTkUC6zv3btHvXr1SE9PZ/r06QDfvCn8s92qyiIhIYEHDx6IN7BycnJyePjwIS9fvkRVVRVPT09atmyJh4cHPXr0ELs//Vni4+OpWLGiWBZVEhsbGwoKChg6dKjC9pSUFO7evUthYWEpp+tv0bt3bwCePHlCjRo1gOJuWLt376ZKlSq8e/euzO/JfTjkaGho0K9fPzZs2CCu9cOHD8vMsAA8fvyYKVOmEBsbK55j7NixrFq1imrVqvHkyRMqVarEjRs3vnsuNjY26OrqimJxeZcqgAcPHpCdnU3Lli0VvpOXl4eLi8s35/YlkhhcQkJC4sdBCjQkJCREFi5cSFJSEmpqatSpU0cUWP8r/LPdqvbv38+ECRMoKCggPz8fTU1N0ehPbi5YsltVXl6e6Lb9Lb7lz/G9fG+3qrK6TnXt2hV7e3v69+9PWFiYuP38+fO0adOG7Oxspk+fzpw5cxS+d/HiRZydnUXxet26dcvsVpWfn0/Lli2pWrUqe/bsITU1lfbt22NgYKDQRliOPLPzR5TsvAWIXaoAsfXtoUOHsLCwUNhPXV1d4X1Za/Ll/l9+R0JCQkLi74kkBpeQ+A/w6dMn+vbti7a2NmZmZixevBh3d3fGjh0r7iOTydi3b5/C9wwMDBRM3J49e0aPHj0wMDDAyMiITp06KfhLfCmabtiwIU+fPiUyMpLQ0FASEhKQyWTIZLJS5nAuLi5cu3aNzMxMPnz4wIkTJ7C0tGTYsGFUqFABDQ0NatasycGDB8XvJCYmAlClShVsbGwICwtT6FYlk8nQ09NT6Oykq6srdnZ68uQJq1at4s6dOwwcOJBatWrh5eXFu3fv8PHxYfXq1WK9/ufPn8nLy2PkyJE4OTnRqlUrZsyYwf79+0lMTMTHx4fmzZszatQohXm9e/cONTU1Tp06BUCtWrV4/vy5QketklSoUEGhzEi+7urq6mI2Q0VFhfDwcCZOnIiRkRHlypUrs1vVmTNnAKhUqZLCdjMzM6pUqUJhYSHr1q3DwcEBDw8PypcvLwrl5U7xUVFRWFlZUbduXTQ0NESPja9lmm7fvs3Dhw9ZsWIF9evXp23btlSrVo0XL16I2RD5eFxcXDhx4oSog7hy5QoymYx+/fqhr69P06ZNFdzhbWxsgGKH8HHjxoni8erVq6OqqsqAAQOoWbMmrVq1YsuWLdjY2GBpaalgzFi+fHnMzc0ZM2ZMmeOXkJCQkPhxkDIaEhL/AeRP4GNiYqhQoQJBQUFcv34dZ2fn7z5Gfn4+np6eNGjQgPPnz6OiosLMmTNp3bo1N2/e/KZoumfPnty6dYujR49y8uRJAIWWs2VRVFREmzZt+PTpE5s3b6ZKlSrcuXNHvNm+du0aAwYMoE6dOrx584aePXsyZcoUoqOjFbpVOTo6snz5cho0aEBhYSGfP38uVX6Um5tLeno669atY/PmzXTp0oVu3boxfvx4pk2bxrx589i9ezcVKlTg5cuXbN26FVVVVRYuXEj79u25f/8+Xl5evHz5koCAAMLCwsSn4ps3b8bCwoLmzZsD0LRpU5o0aYKXlxeLFi3C1taWe/fuieN1d3dnyZIlzJgxg549e3Lx4kUuX76sUKplYGDA+fPnqVatGuvWrWPatGmkpqZy+/btMtfy8uXL4k3+7t27cXd35969e2RmZjJp0iTCwsKoV68e9+7do3v37jx+/BhbW1syMzNxc3OjZcuW7Ny5k1WrVrF8+XIAcT5fYmJigpKSErt27WLs2LEoKyuzfv16WrZsiZeXF4GBgcTExNCxY0dMTEywsbFh//79QHFAXKFCBdzd3RkxYgRr166lbdu2opnhlStXKF++PBEREaSkpLBu3TqguBxNJpORmprKjBkzKF++PIGBgVy6dImePXuira3Nzp07xd/N58+fSUhIKHP8f2UxuCT+lpCQkPhzSIGGhMT/MZ8+fSIqKkpBMB0REYG5ufmfOs727dspKipi3bp14k1xRETEH4qm3d3dcXZ2xsDAABUVlTLFx2Vx8uRJBdE0FPttyFm0aBEtWrRg9+7dDB8+nOXLl6OiosKzZ89wcHAQOxANHDiQ7du3i92q1NXVS5UdzZ07l4SEBLFFbl5eHm/fvqVcuXIYGxtTVFSEj48PqampmJmZoaOjQ2pqKh4eHmzYsIHs7Gy8vLzE8qWtW7cSGhrK2LFjiYyMxNvbW1wzKL7Z9/f3p3fv3mRlZWFra8vcuXMBsLS0ZMeOHQQFBTFjxgzMzMxo1qyZqEeA4gxOfn4+UVFRrF69mh07dtC7d2/u3LlT5lrKDQsBjIyMMDIyws3NDT09PfLy8hg4cCDBwcGEhISgp6cntsHdunUrRUVFrF+/Hg0NDebMmcOaNWvIy8v7anmRhYUFS5cuZeLEiYSGhuLq6kqzZs3YtWsX69evF4NHKM6KhIeHo6WlBRQHL2vWrGH8+PG0aNECCwsLsrOzefr0qcI85GVY8i5WoaGhBAcHo62tzcqVK3n06BEaGhqcPn2agIAArl69ipGREdnZ2VhaWmJgYKCg6ymJJAaXkJCQ+HGQAg0Jif9j/h2Cafhj0XSrVq3w9vYuJZr+Z/mWaBqKa/s7deqk0K1q//79dOvWjZycHLFblZGRkUK3KgMDg1LdmRo3biwKgD9+/IiRkRGjRo1CT08PfX19tLW1RR8HgA8fPuDi4oKrqyvq6uq0atWKuLg4Tp8+zZIlS9i+fTtXrlzh/v37/PLLL8TExCiM3cjIiA0bNpSa08iRI4HS3apCQkJYuHAhY8eOZcmSJairq9OnTx8WL17Mhw8fqFChAps3bxbFyvISoy9Lpm7cuCFmsbKyssjIyEBTUxNtbW0WLlzIwoULKSgoELUmd+/epVatWmLQ9v79+zJN7sqaR//+/YmNjeX3339n586dzJ49m5iYGHbt2iWKwUeOHCkGGQBv3rwR10pLS4v379+TnZ1No0aNRGNFOfIuVVD824yLixMzVWpqauTn55Obm4urqyuVKlViyZIlKCsr06ZNGyZOnEiHDh1QUSn9vyBJDC4hISHx4yAFGhISfxH+WdE0/ONJc0REBGPGjOHo0aNs376dqVOnYmdn90+N53tF0yW7VT18+FD0S+jUqRNDhw79LtF0SaGxPPMgFxqXRC74NjIyQiaTicLihw8f4uDgQM2aNfHz88PZ2Znc3Fyio6Np3rx5maLpstDT0yM9Pb3U9rS0tFI3xaqqqqipqYkZopLi6O9BLqBeu3YtP/30k8JnX5aW5efnk5qaytSpU3F0dFQoO8rPzy8l1IZiLUyHDh3o0KEDM2fOxNPTk5kzZ5bqDFWSAQMGkJqaSnh4ONbW1qirq9OgQYNSzuFlzSU0NJSuXbuW+kxDQwNLS0uSkpKwtrZGVVUVX19fFixYwNmzZ0uNXRKDS0hISPw4SGJwCYn/YypXroyqqipXrlwRt5UUTMsxMTFREE0nJycrCIxr165NcnIy5cuXF43Z5K+SegsXFxcCAwO5cOECNWvW5O3btxQVFXH69GkSExMxNTUVPRSguATK0dERbW1tLC0t8fX1FZ22nz9/zpkzZ+jQoQOGhoZoa2tTo0YNDh8+jIODgyiaXrhwIU5OTkyZMgUtLS3Onj2Ls7MzOjo6CnPav38/2dnZvH//HvhH/X2zZs3Q09OjefPmosAcijMJwcHB5OTkUKlSJfHJvru7Ox8+fBD/HhYWxrlz55DJZGIWx9LSkuXLl3P+/Hl0dHTQ0dHByMioTGF7amoqvXv3Jjk5menTp+Po6Mi2bdvEcWzbto309HTCw8ORyWScPXuWjIwM0fm8ZDen3bt3i61sfXx8CAsLEzMUhYWF2NjYMHv2bAIDA5HJZPj6+nL69GmF6ynPhDg4OHDz5k3OnDmDmZkZFy5cEIOMwYMHo6GhQXBwMDo6OmhoaIjaGCUlJdTV1UUTQJlMhqGhIVeuXEFDQ4OOHTuKvxV5u+PIyEiOHTvGmDFjaNu2LTVq1CA2Nla8VnJUVFQYP348GhoaVK5cmdDQUFxcXEhKSqJKlSps3ryZ5s2bU6NGDZo0aSJmPdq0acO7d+84f/48r1+/5uLFiwrXWkJCQkLix0PKaEhI/B+jq6vLgAEDmDBhAkZGRpQvX57g4GAFwTQU18eXFE1PmjRJ4Wlv3759WbBgAZ06dWL69OlUrFiRp0+fsmfPHiZOnEh+fj5r1qyhY8eOmJubk5SURHJyMkZGRkRFReHh4YGGhgYjR44kKCiIunXr0q5dO5SUlFi6dCmVKlXi0aNH+Pr6MnHiRFasWEGTJk3o1KkTdnZ2bN26lVevXvHs2TN0dHT45ZdfqFu3LgcPHmTbtm1cvHiRESNGsHz5cpycnOjduzeRkZEKcxozZgwymUxsmevr6wvA8uXLqVevHqtXry7VTent27fk5uYyadIkHBwcSnV32rNnDwEBAdy6dYs9e/aQm5vL5s2bmTp1KhoaGly9ehVVVVV69uxJVlYWv/76aylhe05ODnXq1MHT05PBgwdjbW3Nzz//DMCtW7f48OEDTk5O1KtXj+nTp9O1a9dSJWxQHLD06NGDkJAQgoKC6NWrF9OmTcPAwABNTU2OHj1KYWEhCxYsYNasWdja2hISEsLw4cOxsrLCwsKCq1ev8vHjR8aPH0+fPn34f+yddVhU6fvG75lhhilCGhQQaZBGFAMQULGxQEEFBRsbxUawC1CstcDCxG4M7LXBxgQMVAxAVJB4fn/wm7OMoOLGd93d87muudY58cY577DnPe9zP/fEiROxfv163Lp1CxcuXEDfvn0BAAEBAejcuTOICOrq6pgzZw4iIyMhEAgQHx+Phw8fYsCAAXjw4AEOHz6MrVu3MhOoBw8eoFOnTiAivHnzhlnF4XK5WL9+PZydnVFQUIDY2Fi5/p0+fRrl5eUwMjLCpk2b8OzZM4wePRpNmzbFunXrUFhYiP3792PBggUoKSnB1atXYWNjg8TERHTu3Bl3795lvEWWL19e7UrTzygGZ0XgLCwsLL8PdkWjBnyZhvTvpLo3qH83iYmJjFsyS/XExMTA1dUV7dq1g7e3N5o0aSInmAaABQsWQF9fH82aNUNAQADCw8Pl4ufFYjFOnToFAwMDdO7cGZaWlggJCUFRURGUlZUhFotx9+5ddOnSBWZmZujfvz+GDBkCXV1d2NraIikpCa1bt0ZMTAwAYOnSpQAqYu2bN2+OunXrwtPTE9OnT8fWrVsBVLydV1BQwJ07d9C5c2fExsbC2dkZbm5ucHR0xNatW7F582bUr18fU6ZMQXR0NGMiFxgYiNevX0NTU5Pp04cPH5g+nzlzhnk7b21tjWfPnmHBggVVHuDLysoQFBSESZMmwcPDg3G8lqGmpgaxWMyEMRkaGmL48OHgcDhwcnKCtbU1MjMzcf36dezbtw8tWrRAdnY22rdvz7hY165dG+Hh4QgODsbBgweRl5cHHo+Hvn374ty5czh27BhUVVUhFouho6MDgUAgN0mUcevWLXh5eTGu4nv37kVYWBhiYmKwaNEi/PLLL3j69CkEAgEGDx6MCRMmICEhATweD+3bt4e7uzsSExOZFQ2pVIq9e/fixo0bcHBwwPz585m6vLy8YGRkhHr16mHZsmVYuHAhhgwZgk6dOqF58+aQSqWIi4uDo6MjZs2aBbFYjF9//RXW1tbo2LEjAgICAAAtW7ZkJndisRjv3r2Do6MjevXqxbiay4iKikJgYCCys7PRtGlTjBo1CtOmTcOxY8ewb98+XLx4ER8/fsTYsWOxfv16uLq6ol+/flBVVUVSUhJevXqFpUuX4tdff8W+ffuq1VzMmjULKioqzEdfX7/KMSwsLCws/xCI5bu4u7vT8OHD/+5mEBHRiRMnCAC9e/fu724Kw8ePH+nly5fM98jISLKzs/v7GvQPoLCwkFRUVGjVqlV/eV3m5uYkEAjktnXo0IH69OlDREQpKSnk6elJenp6JJVKSSgUEgD68OEDERGtXLmSFBQUqHHjxjRlyhRKT0+vcd1WVlY0a9YsIiI6fvw48fl8ev36NRERLV68mLhcLkkkEuYjFouJy+XS2LFjiahiLJmYmFQp98vf5PDhw8nd3Z35/vjxYwJAo0aNIiKiOXPmkIGBAbP/y99RaWkpRUdHU/369alWrVokkUhIQUGBunXr9tU6qyvHwcGBpk6dSkRE79+/p9evX9OuXbuIz+dTaWkpEREZGhrS3Llz5cqxtbWlqKio715PWb/OnDnDbCssLCQAJBKJ5K6loqIiaWlpERHRiBEjqHnz5nJlpaWlEQDav38/AaCoqChSUVGRO2bnzp1U+X8TGhoaJBQK5eqpPF6ys7NJX1+f6tSpQ6GhobRjxw4qKSlhzjc0NKTY2Nhv9rGoqIjy8/OZz5MnTwgAM27+iXz+/Jl27dpFnz9//rub8rth+/BzwPbh5+C/1of8/HwCQPn5+T9cDxs6xfKHEYlEf4rb8r+ZyoLp/Px8REdHA/i66dpfjUy4nJmZiXbt2mHQoEGYMWMG1NTUcObMGYSEhODz588Qi8UIDQ1Fq1atsH//fhw5cgSzZs3CggULMHTo0O/WExgYiKSkJISHhyMpKQk+Pj7MW+zCwkLo6uoiNTW1ynmVV8i+5yRdmcqiaUVFReZt+PfG57x587Bw4ULExcUxepURI0Z8VwT9LWS6kOr4lst2Tah8TX5EVP4tauJ2XlPR99GjR5GSkvJN0ffXYMXgLCwsLP8ifsck6D+Hu7s7DR06lMaMGUO1atUibW1tioyMZPYvWLCA6tevT2KxmOrUqUODBg2i9+/fM/szMzOpXbt2pKqqSmKxmKysrGj//v01qnv//v1kampKQqGQPDw8KCEhocqKxunTp6lp06YkFAqpTp06NHToUCosLGT2GxoaUnR0NHXv3p3EYjHp6enR4sWL5erJysqiDh06kEQiISUlJerWrRu9ePGC2Z+WlkYeHh4klUpJSUmJHB0d6dKlS0RElJCQwLwJlbWv8ichIeG7/QRAy5cvp7Zt25JIJCILCws6d+4c3b9/n9zd3UksFpOrqys9ePCAOefBgwfUoUMH0tLSIolEQs7OzpSSkiJXrqGhIc2YMYP69OlDUqmU9PX16ZdffpE7ZuzYsWRqakoikYiMjIxo0qRJVWb406ZNI01NTZJKpRQSEkIRERFVVm1WrlxJFhYWpKioSObm5rRkyRJm3759+wgAKSoqkoKCAnG5XLKysqKMjAy6ePEiOTk5kUQiIR8fH3r16lWNy5W94U5OTiYPDw8SiURka2tL586dI6Lf3rhX/kRGRlLHjh2pWbNmzNvoym+oBQIBASAjIyPmrXiXLl2YOiMiIkhHR4fq1q1LQqGQbG1tadu2bcx+WZ0HDhwga2trAkATJkwgALRgwQLmuCNHjhCXyyV9fX258yqP7T59+pBEIiGRSESqqqrUsmVLevv2Lbm7u9OwYcNo5syZVLduXeLxeCSRSGjq1KkEgMzMzEhXV5d5e56amkocDofEYrHcW3ihUEhcLpcAkKamJt24cYOIiMrKykhNTY2UlZWZtrRo0YKaNm1KhoaGzLbY2FhmNUFFRYU0NDSoWbNmRPTbyt6YMWPI2tqagoKCqGPHjlSrVi1SUlIiNTU1Gjx4MH3+/Jns7OwoMjKSioqKaPTo0aSnp0disZhcXFzoxIkTTH2nT58mACSVSuX+lujp6dH48eMpICCAWXUwMTGhNWvWEBHRL7/8Qurq6vTp0yemrOXLl1cZGwCoadOmdPLkSVJQUKBhw4bJrWjo6uqStrY2Ef32u9+5cyeZmJiQoqIitWzZkrKzs5nj7969SwDI3NycGfstW7aUW+X4HrI3aeyKxt8L24efA7YPPwf/tT78kRUNdqJRA9zd3UlZWZmmTp1K9+7do7Vr1xKHw6EjR44QUcXDxvHjx+nx48d07NgxMjc3p0GDBjHnt23bllq0aEHXr1+nhw8f0t69e+nkyZPfrTc7O5sUFRVp1KhRdPfuXdqwYQNpa2vLPYw9ePCAJBIJxcbG0r179+js2bPk4OBAwcHBTDmGhoakpKREs2bNooyMDFq0aBHxeDym/WVlZWRvb09Nmzaly5cv06+//kpOTk5yoSjW1tbUs2dPunPnDt27d4+2bt1KaWlpRCQ/0fj48SONHj2arK2tKScnh3Jycujjx4/f7SsAql27Nm3ZsoUyMjLI19eX6tatS56ennTo0CG6ffs2NWrUiHx8fJhz0tLSaPny5XTjxg26d+8eTZo0iYRCIWVlZcn1XU1NjZYsWUL379+nWbNmEZfLpbt37zLHTJs2jc6ePUuPHz+mPXv2kLa2Ns2ZM4fZv2HDBhIKhbRmzRrKyMigqKgoUlZWlptobNiwgXR1dSk5OZkePXpEycnJpKamRomJiUT024TAwsJCrj9OTk7k4eFBZ86coatXr5KJiQkNHDjwd5W7b98+ysjIoK5du5KhoSGVlJRQcXExGRsbk0AgYO7H+/fvqWPHjhQQEEB79uwhADRx4kQ6duwYzZs3j9TU1AgArVy5kjIzM6lHjx40cOBAevToEV25coXq1KlDSkpKdOjQIXr48CElJCSQoqIipaamEtFvEwZbW1s6cuQIOTk5Uf369YnL5VJERATTt/LycpJKpaStrU2HDx+mTZs2MeFOly5domvXrhGPxyN1dXVKS0ujmzdvUnx8POXm5pK7uzu5uroy1zM4OJh5mJW148swnWbNmpGpqSklJCRQTEwMASAdHR1KSEigjh07klAoJB0dHUpPT6fQ0FBSVFSUm2j069ePDAwMqHbt2pSbm0vFxcUkkUgIAF29epVu375NU6dOJS6XS9HR0RQWFkb6+vokEokoISGBgoKCSFlZmaRSKY0bN4727t1LYrGYVqxYwUw0QkNDqXHjxnTq1Cl68OABzZs3jxQVFenevXtERNS8eXMCQFu3bpX7WyILb6tduzZt376dDh48SKNHj6a+ffsSUUUYl4aGBvXs2ZNu3bpF+/fvJxMTEwJAGzZsIAC0Y8cOEovF1L9/f3rw4AHp6OiQsrIyM9H4/PkzKSsrE4/Ho6lTp9L06dNJQUGB6tWrR0FBQXT58mUyMjIiY2NjunHjBj18+JB69+5NAGjx4sX08OFDcnR0JJFIRKNGjaLc3Nxq/xZ8LXQqKvUezbqa+7d8/ij/tYeSnxW2Dz8HbB9+DtiJxk+Eu7s7NW3aVG5bgwYN5B6aKrNt2zZSV1dnvtvY2DBx2z/C+PHjycrKSm5bRESE3EQjJCSE+vfvL3fM6dOnicvlMm8vDQ0N5R7QiYj8/f2pdevWRFTxZpnH48m9ibx16xYBoIsXLxIRkZKSEvNw+yWVJxpEv0+jAYAmTZrEfD9//jwBoNWrVzOx8Zs2bSKhUPjNcqytrSk+Pp75bmhoSD179mS+l5eXk5aWFi1btuyrZcybN4+cnJyY7w0bNqQhQ4bIHdOkSROys7OjO3fuUMOGDQmAnAaAqGIC4+rqSkS/TQgqazJkD9bHjh1jts2aNYvMzc2Z78bGxpSUlPRD5cru3Z07d4joN40GANq5cycREXXs2JGCgoKIiCgmJoZ0dXVJJBJRq1ataOjQoQSAGQ9hYWFkbGxMioqKpKmpSTwejw4ePCjXppCQEOrRowcR/TbR2LVrFxERLV26lACQs7MzGRsbE1HFb0r2ENqzZ0/S09MjBQUFAkDdunWj7Oxs6tGjB+nr61c7lpo1a0YKCgrMyk3Dhg1JIpHItePLiUb37t3JwMCA1NXVmesh04K8efOGWrduTQBIRUWFJk2aRHZ2dnITjYyMDDI0NCQOh0MA6Nq1a8wqQOVVmO3bt5OVlRVxuVzi8/k0b948IiIKCgoiQ0NDuXZ169aN/P39yc7OjkaMGEEAqvyt8PLyovHjxzP3Ulb3lzg4OJCamhoJBAKqVasW2drayrVt0qRJxOVySSAQkL29PSUnJ8tpNK5du8asTohEIrK0tCQdHR1mopGcnEwcDof69u1LjRs3Zq6hlZUVrVixgoiI4uPj5VbIlJWVmckOUcXvWl9fn7lu1REZGVntSgs70fh7Yfvwc8D24efgv9YHdqLxF+Pu7k6DBw+W2/a/ENP6+voydcjYtWuX3MODs7MzCQSCKoJaAHT79m0iqnjg+lJoGhcXR3Xr1iUiooULFzL/royqqiqtXbuWiCr+56+goEBeXl40a9YsuRCmP2uisXXrVub7o0ePmImObKJx/PhxuYH+/v17Gj16NFlYWJCKigpJJBLicrk0ZswYppyaCG83b95MjRs3Jm1tbUZEq6mpWe11kDFy5Eiys7MjPz8/cnd3/64YVzYhkE3ciIjpT+VQqTVr1lCtWrWIqGYi3+rKffv2LQFgVs1k9ycnJ4eKioq+ey8KCgrIxsaGeQO+YcMGZizfvHmzSqiVRCIhPp9PLi4uRPTbROPp06dy5ebk5BCPx6Pz58/TmzdvKCIighwdHZn9X4ZOWVpa0pQpU6ptY03a8SWy0KXKdVVe/SIisre3Zx70qxvHsbGxcqFT9vb2xOFwqF27dhQXF0fPnz9n9n15flBQELVp00auvGHDhjEibVl43Zd9UlBQID8/PyL69t+SAwcOkEgkYsK1ZA/9suv5ZdIG2dipPNGQkZCQQEpKSsTn8+n8+fNERNS+fXsKCAhgxkJCQgIpKChQWVmZXJ9UVVWZlxLfE49XBysG/zlh+/BzwPbh5+C/1gdWDP4/4Gvizb9aTPs9CgsLMWDAAAwbNqzKPgMDgz9cvoypU6ciICAA+/fvx8GDBxEZGYnNmzejU6dOf1od1blDf8sxOjw8HCkpKZg/fz5MTEwgEonQtWvXKgLe6u5daWkpysvLceHCBQQGBiIqKgqtWrWCiooKNm/ejAULFtSozQ8fPoS7uztOnjxZIzFuTfoo659M5Lt8+XI0btz4h8v9Ulwsc7D+HkpKSrh69SpSU1Nx5MgRTJkyBVOnTsWlS5eYNu3fvx+1a9eWO+9LAe+XIm4dHR14enoiKSkJixYtQnJyMgYNGvTVdnxLwP0j7fi9cLnc74qjO3bsiA8fPqBx48aME3tKSgoaNWpUbZnfEoEXFhaCx+PhypUrVe6vTFT+rb8lrVu3RlZWFg4cOICUlBQsXLhQrowfTdrA5XLRvn17JCQkwMjICAcPHkRqaqpcyuXv8T3xeHWwYnAWFhaWfxG/YxL0n6O6tJay0JPt27cTn8+Xe6s3bdq0b6agHTduHNnY2Hy33vHjx5O1tXWVcyuXHRAQQF5eXt8sx9DQkAmTktG9e/cahU7JBN9E8qJ4Pp9PAoGAIiMjmbef+P+3ojNmzKD69evTu3fvCAAjZpW9RT506BDZ29uTUCik5s2b08uXLxmNhpKSEvXo0YNu377NlOfu7k5DhgwhX19fAkC1atWiSZMmUf369Sk6OpqIKt6CDh06lDgcDikoKDAiWlmYiuyt/u7du0lRUZE4HA49fvyY5s+fT/Xq1ZO7NiEhIaSiokJlZWUUFRVFfD6fuFwu2dnZMSFDTZs2rRLa4eHh8dV7IHt7DIA2bdpErq6uxOfzCQDt3buXOU4WGnfgwAFydHQkANSnTx8qKytjhM+VBdiycjU1NWnp0qVERMx1X7FiBXE4HFq4cCFJpVK50CkiouvXr1Pz5s1JKBSSmpoa9evXTy6JgWzcFxYWkoKCAiUnJ1ObNm2Iy+XSunXraMCAASQQCJhQIg6HQzwej3ljXd34T0xMJC0tLWYl4NmzZ8wYDQkJYd7o6+vrk6urKzVp0oQ598mTJ9S9e3eqVasWiUQi4nA4TFKGL1cPSktLaeTIkaSiokJqamo0ZswY6t27d5UVje7duzPX1MrKihQVFWnLli1EREwoU0pKCjk5OZFIJCINDQ3S09MjouoTHxgbG1NYWBhFRkaSsrIycTgc0tXVpaFDh8qtqMionJY3IyODABCfz2fe/gMVCQR4PB5xuVwyMTGh3bt3M+d/62/JyJEj5e7DlyuPspUM2f2ysLCgS5cuVZtAwMPDg8zNzeXCvmT9nzBhAvn6+pJIJCIDAwMCQBcuXCAiosaNG5O3tzcjFvfw8KDExMRv/n38ElYM/nPA9uHngO3Dz8F/rQ/sisbfiImJCUpKShAfH4/27dvj7NmzWL58udwxI0aMQOvWrWFmZoZ3797hxIkTsLS0/G7ZAwcOxIIFCzBmzBiEhobiypUrSExMlDsmIiICjRo1QlhYGEJDQyGRSHD79m2kpKRg8eLFzHFnz57F3Llz4evri5SUFGzbtg379+8HAHh7e8PGxgaBgYGIi4tDaWkpBg8eDHd3dzg7O+PTp08YM2YM8vLykJCQAD8/P+jq6qJ+/fqIjo7G6NGj5dpUt25dPH78GDdu3ACAKisMU6dOxeLFiyEWi+Hn5wc/Pz8AwKhRo9CgQQN06tSpiknX2rVr0apVKwDA7NmzMXLkSJibm2PHjh1o3749oqOjkZqaCpFIBD8/P1hbW8PHx4dxoAaAjx8/Ys6cOdDX10erVq2gpaUFU1NTZGdnY/PmzWjQoAH279+PnTt3AgAWLlyIBQsWoH///li9ejVq166N9u3bIywsDNevX0f9+vVBRPDx8YGuri4mT56MRYsWwcfHB8XFxXIOz5UZM2YM4uLiUFhYiODgYPTo0QOZmZly5mXjxo3D/PnzcenSJUyfPh2vXr3CnTt3EBERgYKCAly7dg09e/ZkxkPr1q2RlJQkt0Jw9OhRNGnSBM7OzswKQEFBAT5+/AgiQqtWreDq6opLly7h1atXCA0NRVhYGLp27YpHjx6hsLAQBQUFWLduHcrLy2Fubg4+nw9ra2uMHDkSffr0QUlJCUaOHImSkhJwOBwoKyvDwsKCcdX+ks6dO2PQoEG4f/8+6tSpAz09PWafzCTw1KlTOHLkCCZMmAAFBQUMHjwYvXv3Rrdu3aCoqIh169bBwsICY8eORVxcHIyMjPD27Vt8/PgR8fHxUFZWxsuXL5GYmIg1a9bA0tISCxYswM6dO+Hp6SnXnh07diAqKgp2dnaYMGECiouLoaamBgCwt7cHAPTt2xezZ8/G7du3MWfOHGa1oWHDhnBxcUFubi62bNmChw8fIiwsDEVFRYiNjUW7du2QlpaGhIQEpKen4+zZs9VeExlmZmYQi8Xg8/mYMWMGrKys4OnpCT6fj169eiEoKAhDhw6Fv78/zp07ByKS+1syZcoUxqCwuLgYv/766zfrGzt2LHr27ImIiAg0aNAA9vb2KCgogI2NDeLi4jBlyhTcuXMHDRo0wLlz5xAdHY1ly5ZVKWfevHmYPHkygoKCMGjQIHC5XJiYmAAA+vfvj+DgYDRu3BixsbHIyMjAyJEjv9mun80ZnHUFZ2FhYfn9sM7gfxA7OzvExMRgzpw5qF+/PjZu3IhZs2bJHVNWVoYhQ4bA0tISPj4+MDMzY1yZv4WBgQGSk5Oxa9cu2NnZYfny5Zg5c6bcMba2tjh58iTu3buHZs2awcHBAVOmTJF7gAOA0aNH4/Lly3BwcMD06dMRExPDPLhzOBzs3r0btWrVgpubG7y9vVGvXj1s2bIFQEWYzps3b3D37l18+PABhw4dQocOHZCcnAxnZ2fcvn1brq4uXbrAx8cH7du3BwAcP35cbv/06dPRpEkTODg4ICQkBCdPngQA1KtXD82aNUPXrl2rPCTp6+tjyJAhAAA/Pz8MHToUBQUFqFWrFlxdXbFz506Eh4ejQYMGUFFRQXh4OJo2bco8YAMVYS9Lly6FRCKBhoYGxGIxOnTogJEjRyIsLAz29vY4d+4c4+o8f/58REREYPHixZgwYQIuXryI8vJyHDp0CMHBwZBKpVBQUIBUKsXo0aOxatUqJCQkwMbGRs7h2cPDg/HNAICwsDB06dIFhoaGAABlZWWsXr1arr/R0dFo0aIFJkyYgGXLluHAgQN48uQJJkyYgP3798PPzw89e/ZEUlISAKBNmzY4e/YssrOzmTKOHz+OwMBANG7cGAMHDgQABAUFYe7cuUhKSkJRURHWrVuH+vXrw9PTE4sXL8b69etRXl6OHTt2ID09HevXr8fy5cuxadMmWFtbAwAcHBwwefJkJCUlgYiwbt06pKenY9GiRejSpUuVUKbKKCkpoX379vjw4QPMzc3l9snCzurVq4eIiAhoamoiLCwM6enpaNasGZ4+fQpDQ0M0bdoUJiYmSE5ORlRUFGbNmoUlS5bg8ePH2L9/P4yMjBAXF4fx48czDurLly+HiooKU5ds8jtjxgxs2LABvr6+EAgE6NSpE9asWQMAzP0pKipC//798eTJEwQEBKC4uBhFRUVQU1NDQUEBnjx5gqZNm6JHjx7w8vKCubk51NXVkZSUhNLSUri4uKBfv35fvSaV0dDQQMOGDTF//nzm91m7dm0MGzYMTZs2RcOGDVFUVISGDRtW+VsiEAgwfvx42Nraws3NDVzut/+8Z2dnw9vbG/Xr10d8fDz27t0LLy8vdOvWDSoqKuBwONDT00NISAjKysrQu3fvasuxtLREYmIiunfvDmNjY5SXl0NPTw+qqqq4c+cOcx39/PwQHR393fAt1hmchYWF5V/ED6+BsPzjqIkbb034liheFsJTWVD6tdCpL8XPYrFYrswpU6aQg4ODXL3VieIVFBSotLS0RiLahIQEEggEVF5eXqO+ypYJZalSZcgclr29valnz55MWtJvIQtBkl2jL1Mb+/r6MumIqxNSf0v4XK9ePSYc5lsu3EQkFzo1cuTIKqFeeXl5cu37WsigsbExdezYUU40HhgYSIsXL67xsuqXZX9PtD9o0CByc3P7anmVQ6e+7IcMX19fJnTpR0Ttlcfr1atX5UTkleuVXV+ZO7aenh717du3ijv2l1T+7Xz5W8UXSRKIiJSVlcnX1/e7CRe+FNdXl7ShcoKHTp06Mden8rF9+/al9u3bExFVGzq1fv16psyxY8cSl8ulOXPm0MuXL6tNaLF79+5vhk6xYvCfE7YPPwdsH34O/mt9YEOnWP5nfE3MKnt7SpXEs18KZ6srg8Ph/GGX5JqIaIEKMaxMKP0jfPz4EcuXL0erVq3w9u1bPH78GJmZmUhJSUF4ePgPl1cTqnN+rk74vHv3bkybNg3Aby7c48aNq+LC/Xv4nhj6S9F4TEwM4uLicOnSJTln75ryrXHwZzvP/4iYvCZC+8r8Ge7YX6tf1oYv78vv4csED8eOHYOTkxOzn4hw5swZJCUlYc+ePV8tp/Jv7OHDh+DxeNDS0oKWltbvahcrBmdhYWH598CGTv2NDBw4EFKptNqPLNTln4KmpiYAICcnh9mWlpYGAEhJSYFUKkXr1q0BAHXq1GH6OXHixBqVf+HCBbnvv/76K0xNTcHj8eDg4ICysjK8evUKJiYmcp+aZlr6EmVlZejp6eHs2bPgcDg4cOAA3NzcsGHDBhQWFiI5ORne3t41Lq+8vJwJqWvbti2mTp0KACgtLcXFixdx4cIFSKVStGnTBgDw6tUr5tyysjJwOBy0atUKjo6O8Pf3R15eHp4+fYrw8HDk5+eDw+Fg4sSJuHHjBq5cuYLt27cjMDCw2rZMmjQJcXFxSE1NBZfLBZ/Ph0QiYa6Vubk5bt26hbt372Lp0qVQUlJCs2bNcO/ePZw9exYPHz7E7t27mUmiTEfx6NEjZGZm4ujRo6hTp06VeP5r166By+UiKysLQEUsfmhoKDQ1NZGdnY0lS5YgPT292jbb2toiLS0Nb9++BVDxkGxvb49ffvkF+vr6mDFjBjIzM5Gfnw8VFRWIxWI0b94cCgoKUFRUBIfDwa5du7Bnzx7079+fCTnr1KkTTp8+zYwXAwMDzJkzB7q6umjZsiUAICYm5qv3VSAQoKysrMr2ly9fokOHDujbty9SU1Nx/vx5dOjQAZqamhCJRDA1NUVCQgIAwMjICEBFSFpWVpactur3cuPGDUYLoaurCz6fj4EDByI/P5/57QkEAlhbW2P69Omwt7eHgYEBnjx5wvSrsLAQHh4eKC0tRe/evREbG4sXL14wGiYZe/fuBVChzUpOTkZJSQn69OmDoKAgpKam4uDBg9Ue/+jRoz/cTxYWFhaWnxt2ReNvJDo6+qtvxJWVlf+0ejIzM/+0sr6GSCRCo0aNMHv2bBgZGeHVq1eYNGkSAKBJkybo06cPLly4gJ49e+LUqVNM/3bt2oXp06d/t/zs7GyMGjUKAwYMwNWrVxEfH8+koDUzM0NgYCB69+6NBQsWwMHBAbm5uTh27BhsbW3Rtm3b39WnMWPGIDIyEsbGxliyZAkSEhIQExODc+fOwdTU9IfKWrt2Lfr06QOg4o1tVFQU9PX1ceHCBbx48QL6+vo4efIkLly4gCFDhqBv3744c+YMgApBrbW1NZ4+fYpx48ZBLBbjwYMHyMnJQUBAAPbt24eMjAwAFQ/Ospj6Dh06VNuWOnXqYPHixZg8eTJMTU2Rn58PgUCAd+/ewdnZGaWlpXBzc4OBgQHevXuHBQsW4PXr15g0aRKICHXr1oWFhQUCAgKQlZUFiUSCp0+fAqiYUFlaWqJHjx5VxOkbN25EkyZNmJj9/fv3w97eHgcPHoSvry/q1KkDLy8v3Lt3jxFky+jRowdmzpwJX19fzJo1C+/evcPdu3excuVK7N27FwsXLkRSUhIGDx6MjRs3YtSoUZg7dy4AoFWrVigtLcWxY8fw+fNn3L9/Hy1atMCgQYOwdu1a9OvXD6amphCLxYiOjsbp06exa9cuPHv2DD169PhmmmhZ4gPZpLqkpASJiYl4+fIlAODp06e4cOECFBQU8PTpUxw8eBAaGhp48OABPn36BAC4ePEiXFxccPToUQQHB6Nv3741H1jV8OHDB7Rq1YoRZK9atQrjxo2DlpYW7t27h2vXrmHp0qVYsmQJhg0bBh8fHyxcuBBZWVkwNjZm+lVeXg4tLS0sW7YM+vr6mDVrllxih+DgYGZMA8ClS5fQu3dvHDt2DPPmzUNwcDA0NTWxYMECREREICQkBGlpadi8eTMAMHV9yc8iBmdF4CwsLCx/HHZF40/Ew8MDI0aMqPHxWlpaVd7Ayz6/N+zg72TNmjUoLS2Fk5MTRowYwUwgxGIxTExMmBCVevXqwcTEBGfOnMGUKVNqVHbv3r3x6dMnuLi4YMiQIRg+fDj69+8PoCKUxNfXF71798bo0aNhbm4OX19fXLp06Q95iQwbNgyjRo3C6NGjYWNjg0OHDmHPnj0/PMkAKt7Iy8ZGfHw8JBIJBgwYgCNHjgAAtm3bBicnJ1hZWQGoyBJ26dIlAEBWVhZu3ryJfv36ISEhAaNHj8awYcNw+PBhGBgYgMPhQEdHBzo6OujduzfS09PRqVOnr4YbDRw4EIMHD2Y8ER4/fozr16/Dy8sL69atw5IlS6CiooKzZ8+iT58+GD9+PBYuXAhHR0c0b94cPB4PioqKMDIywtGjR9GqVSu0aNECQIWQ19raGoGBgXLi9PLycmzevJlZZcnPz8fLly+xbds2ODs7Q0FBAR07dsSbN2+YCWplBAIBjhw5Ai0tLbRp0wbLli1DcXExs7JhaGiIOnXqYPPmzXjx4gUzQSwpKcHp06dhaWmJ7t27QyqVoqysjBHZ+/v7o7y8HB4eHvDx8cG1a9cYwblshadr165fva+yxAfNmzcHAJw+fRqqqqrMw3T79u1x+PBhODs7o0GDBnB2dkbdunXh7e3NJEuQrQaqq6uDx+P9kE9FdciE/uPHjwdQsYL2yy+/MCtKJiYm2LRpEywtLbF161a0bdsWV69ehVgshoWFBQDAxsYGXC4Xnz59QpcuXbB//35mBeZraGpqMiFPMiH3qFGjwOVykZSUBFtbWyxdupQJ+/paeBQrBmdhYWH5F/HDqg6Wr1KdeJbl63wpTv294At/iJ8NmYi+suhXJqKviSv75MmTSUFBgTw9Pb/ryl4TLl++TO3atSN9fX2SSqWMk/ytW7eIiKh169bUu3fvr55fnR9EdckAviVOX7x4MXG53CpibC6XS6NHj/5uHyIjI8nIyEhum0wELhPwV+fE7ebmxiQ0kI0bAwMDWrhwIRERXblyhdTU1MjU1JSGDh1Khw8f/m5bZFQeh7LrkZKSQuXl5VVcu8+ePfvNa1eT/n9NDP49oX91YnlDQ0OysbFh7mtaWlq1zukODg5VRPyVxesyf6HKdOjQgQYMGEBERMnJySQQCKh27dpf7RsrBv85Yfvwc8D24efgv9aHPyIGZ1c0WP4QX3pk/FcoKyv7IcH6HxG8R0dH49atW2jXrh2OHz8OKyurKnHyNUUWVqOsrIyNGzfi0qVLTFmye/lnCa9l4nQA2LBhg5w4vbCwELq6ukhLS5P7ZGRkYNy4cX9K/UD11/1b98LR0RGPHz/GtGnT8OnTJ/j5+X1zReN7aGhogMPhMK7dI0eOxPPnz+Hl5fWXJRL42dDT08OGDRtw+/ZtJnFBcHDwV49XVFSEsrKy3IeFhYWF5Z8JO9H4kykvL8fYsWOhpqYGHR0dRvQLVIhKbWxsIJFIoK+vj8GDB8v5PGRlZaF9+/aoVasWJBIJrK2tceDAge/WmZiYWCXLz65du+QyLH0pnpWZ5eXn5zPHlJaWYtiwYVBVVYW6ujoiIiIQFBQEX19f5hgPDw+EhYVhxIgR0NDQYHL9f69vsnYaGBhALBajU6dOePPmTZW+7N69G46OjhAKhahXrx6ioqJQWlrK7L9//z7c3NwgFAphZWWFlJSU714fGZ8/f0ZYWBh0dXUhFArB5XKhqKgoJ8Ln8/ngcrkQCASoX78+9u3bJ3eN9+zZAysrKygqKiI7OxvFxcUIDw9H7dq1IRAIwOPxIBKJ5Mo8ffo0li9fzvhGzJkzhxEQW1paIjMzE2PHjkXfvn2hpKQEXV1d5OXlMWFUmZmZMDc3R/PmzXHkyBE0bdoUnTt3xrFjxxAdHY38/Hw0btyY0WnImD59OrS0tKCkpITQ0FCMGzcODg4OePPmDWbPno1mzZrBwsJCTngOVIR5paSkwNnZGRKJBKqqqmjSpAkj4hYIBHj27JncfYqLi2POz87OBofDQVRUFG7cuAEOh4M1a9Zg7969EAqFyM7OhqOjI168eIGMjAyYmZmBz+fDxMQEpqamjDYFqNA49OjRA2pqapBIJHB2dmYSA2RnZyMhIYFph7m5OTgczldj/6sjJycHL1++xJgxY1CvXj1s374dysrK8Pf3R2BgIPLz85GcnMyI0NPS0sDhcBjdU+XfLAAMHTpU7jfr4OCAvLw8AEBsbCyCg4ORnJyM4uJiLFiwAAoKCsx9lo2JVatWwdLSEkKhEBYWFnKeO7IxPH/+fKSnp1cZwwKBALGxsUhNTYWOjg6GDRsGoCIUj8vlwtzcHCoqKtDV1WWuo4eHB7KysnDjxg1G5K+trQ0AWLRoEVN3fn4+7ty5gyVLluD9+/fIzMxEVlYWrl69isaNG0MoFOL48eN48eKF3DV+//49Pnz4AGtra6SlpcHAwABhYWE1vkcsLCwsLP9cWDH4n8zatWsxatQoXLhwAefPn0dwcDCaNGmCFi1agMvlYtGiRTAyMsKjR48wePBgjB07lnmQGDJkCD5//oxTp04xDt+VU0f+UR48eICtW7di7969KCgoQEhICCOeBSoegDdu3IiEhARYWlpi4cKF2LVrFxN/XrmPgwYNknM6/l7fLly4gJCQEMyaNQu+vr44dOgQIiMj5co9ffo0evfujUWLFqFZs2Z4+PAho8OIjIxEeXk5OnfuDG1tbVy4cAH5+fk/pIlZtGgR9uzZg61bt8LAwADnz59HTk4O2rdvj/Lycvj7+6OwsBATJ06Ei4sLHj16JJcuV+YsvmrVKqirq0NLSwthYWG4ffs2Nm/eDLFYjG3btiE2NhZ79+5F3bp1kZWVhRYtWsDe3h7r169Hbm4uwsLC8Pr1a3h6esLb2xt8Ph+xsbEYPXo0EhMTMXz4cAAV6WM/ffrE6FieP3+ODx8+4O7duwCAiRMnYvTo0QgLC8P79+/Rq1cvRnexceNGzJgxA0uXLkWTJk2wefNmLFiwAPr6+hAIBIiPj8fAgQNx8+ZN5i2zjIEDByIqKgpSqRQbN26EoqIidu7ciUePHjFC7itXrmDmzJnw9vZGbm6unCGdzCyy8uQtJycH3bp1w82bN6Gnpwd9fX24urqiT58+sLKyAhHh3LlzzDgFKlY93N3dUbt2bezZswc6Ojq4evUqs/ogEAjQr18/REZGIiIiAuHh4RCLxVi9enWVsfU1Jk+eDIlEgv79+4PH48HPzw9z585Fu3btmAxM2traX03XW/k3a2tri969e1f7m50yZQry8vLA4/FgYWEBHo+H/Px8EBEsLCxw9OhRHDp0CBcuXEB0dDSWLl0KBwcHXLt2Df369YNEIkFQUBAzhrt164YTJ05g4MCBeP36Ndzc3HD27FksXrwYcXFxiIyMhJWVFdTU1HDixAkMHToUvXr1YiYQw4cPx+zZs2FqaorZs2fD29sbpaWl8PDwQGJiInR0dGBubo6lS5eibdu20NLSQmRkJEpLS2FqagolJSXmRcGePXuwevVqWFlZoXXr1jh27BjevHkDdXV15OXl4ciRI2jcuDEuXbqEOnXqwMjICAEBAVWMPGWwYnAWFhaWfxE/HtXF8jXc3d2padOmctsaNGhAERER1R6/bds2UldXZ77b2NjQ1KlTf7je6uL0d+7cSZVvb2RkJPF4PDkjuIMHDxKXy6WcnBwiItLW1qZ58+Yx+0tLS8nAwEAuHt/d3V3OTO9rfNm3Hj16VImX9/f3l2u3l5cXzZw5U+6Y9evXk66uLhERHT58mBQUFOjZs2dyfUANNRpDhw4lT0/Pak37Dh8+TFwulzIyMqo9V2ZOlpaWxmzLysoiHo8n1x5ZP8aPH09ERCEhIaSrqysX13769GkCQD179iQiotq1a1OdOnVIIpGQkpISdevWjTQ0NGjZsmVUXFxM7du3JwDE5/NJT0+POnXqRADo6NGjREQ0cOBAUlZWJgA0ceJEIiJq2LAhDRkyRK5dTZo0ITs7O0pKSqK6deuSoqIiubq60p49e+Q0Am/evCEA1KBBAxKLxaSkpETNmjWjhw8fEhFRs2bNyMTEhKRSKWPIGBMTI1cGABoxYgQtXbqUAFDv3r3p2rVrxOFwmLj/vLw8kkgkpKKiQnw+n/T19QkArVy5koiIfvnlF1JSUqI3b95UuR+RkZEklUqpQ4cOpKenR0KhkLp27UrLly9nxkt1WpLKOioANHDgQDmdgZGREWloaBAAUlRUrKJluHbtGgGgx48fE5H8bxbVaDTw/8Z006ZNIz09PWabh4cHPXr0iJYsWULa2tq0cuVKpv+WlpZybZ42bRq5uroS0W9jWHa/v/yIxWL6/PkzXb9+nZo3b05CoZDU1NSoX79+9P79e6bMkpISGj58OCkrK5OqqiopKSmRs7Oz3PU6fvw4U66Ojg5FRUURAAoICJDrY7t27ZhzOnToQGKxmObMmcO0vWXLlvTw4UMCQHPnzmU0F1/7rUVGRlbbt6jUezTrau7/7PNn8l+L5/5ZYfvwc8D24efgf6XRYCcafyLfcs4mIkpJSSFPT0/S09MjqVRKQqGQANCHDx+IiGjlypWkoKBAjRs3pilTplB6enqN6q3pRONb4tmvuSlXdguW9TE0NLRKG77XN3t7e8blWUZcXJxcuzU0NEgoFMqJgyuXExcX99U+1GSi8S2h75w5c8jAwOCr51bnLF4TR3JnZ2cSCARy+2Xi69u3bxPR912xZQ90ZmZmRFQzx+rKYnIZI0eO/K6btIzg4GBSVFSkdu3aUVxcHD1//pzZ9737RFTx0L1hw4YqY/NH3Mu/5QYumzhXbgeHwyE+ny/XDtmx1fUbQJVrNGLECPLw8KCcnBw6fPgwAaD09HRmEvXlRONbv9nqnLlFIpHchGzHjh3E4XCIiKiwsJAAEJfLJT6fz/RLUVGRpFIpCQQCmjlzJqmpqVG9evVo0KBBcmNY5khep04dCg0N/a4jeWW+FHXL0NfXJ0VFRSIimjlzJnG5XGYiWBOn+65duxKfz2fGh1gsJolEQgDowIED1baFFYP/nLB9+Dlg+/Bz8F/rAysG/4n4mtA0MzMT7dq1g62tLZKTk3HlyhUsWbIEwG8i3NDQUDx69Ai9evXCjRs34OzsjPj4+O/W+T0H5z+byq7VAGrUt5pQWFiIqKgoOXHwjRs3cP/+fQiFwj/c7m8JfWsigP7SWbyyI3nlNt+5cwcLFy5kjhkwYIDc/vT0dNy/f19OS/B7xOI/6lj9IyQkJOD8+fNo3LgxtmzZAjMzM/z6669Mn2pyn74cJ4C8QLyye3l14+R796S8vFyuHbq6uhgzZsyfMl50dHSYMir/tr78Xf3ob1ZBQT5atbLLt0zTZGZmhoCAAKZf/fr1Q2lpKXbv3o3x48fj8ePHmDlzJkpKSuTGsMyRfOnSpRCJRBg8eDDc3Nx+99+Ca9euwcDAAJ8/f8bVq1cxa9YsCAQCOc3W9ygoKICXlxccHBzQvn17pKenIy0tjdFaVQcrBmdhYWH598BONP5HXLlyBeXl5ViwYAEaNWoEMzMzPH/+vMpx+vr6GDhwIHbs2IHRo0dj5cqV3y1bU1OTEVzKkBmIVSY7O1uuzl9//VVOIKqtrc14NwAV4tSrV6/+KX2ztLSs1t27Mo6OjsjIyKjWV4TL5cLS0hJPnjyRcx//sozvIRP6rly5Elu2bGGEvra2tnj69Cnu3btX5Zz379/jl19+QX5+PnR1dREbGwsPDw8cOHCAcSQ3NTXFzZs35RzJVVVVoaqqitu3b8PExASKioqYMGECnJ2d4eLigm7dusmZKaampsLFxQUSiQQ3btzA6tWrkZWVhe3btwMA7t27Bw6HU0UzU5mLFy9CKpUyGhyZuJ3D4SA2NpaJdweA5ORkWFtbQ1FREXXr1mUMECvfD0tLS5w7dw7169dHUlISVFVVUadOHWRkZEBBQQGmpqa4fv06+vXrB1tbWzg4OOD8+fMAgJs3b6JPnz6MczmHw8GrV69w8+ZN6OrqYsOGDcjLy4OysjL69+8PT09Ppm5ra2ssWbIEp06dAofDkRPYyzRFIpFIbrzw+Xxoamoy4+VreHh4MCLp/v37yyVt+PXXX2FpaQkOh8O4lNvb2wOoEHa7uLgw7ZNKpRAKhTAxMcGIESNw+/ZtNG/evMpvtlmzZhAKhZg6dWq1LuIytLW1oaenh6KiIiQlJcHe3h5WVlZYvHgxOBwOunbtCqlUivT0dERERMDa2poZwxwOB6tWrUJAQAD8/f1x8OBBTJ48GefPn8eNGzcAgPGAEQqFaN68OdauXQsOh4O8vDzG4bxywoZRo0bh0aNHICI0a9YM79+/x549e7Bt2zYYGxszfjKVxeqlpaXYtWsX8vPz0a5dO0Z78ubNG4wdOxahoaGws7ND7969q4jGWVhYWFj+fbBi8P8RJiYmKCkpQXx8PNq3b4+zZ89i+fLlcseMGDECrVu3hpmZGd69e4cTJ07A0tLyu2U3bNgQYrEYEyZMwLBhw3DhwgUkJiZWOU4oFCIoKAjz589HQUEBhg0bBj8/P8aYbOjQoZg1axZMTExgYWGB+Ph4vHv3Tu4t/u/t27Bhw9CkSRPMnz8fHTt2xOHDh3Ho0CG5Y6ZMmYJ27drBwMAAXbt2BZfLRXp6Om7evInp06fD29sbZmZmCAoKwrx581BQUICJEyd+9/rIiImJga6uLhwcHMDlcrFt2zZmQuDu7g43Nzd06dIFMTExMDExwd27d8HhcJCcnIz79+9DIpEgJSUFU6ZMwdWrV2Fvb884kgPAy5cvcfHiRcaRHADatGmDWbNmYfDgwTh06BAcHR0RHR3NTLp8fHwAVEzqfH190a9fP2zatAlt27aFhYUFOBwO2rVrx2RFOnv2LM6dO4cuXbpU20dbW1ukpaVh165dGDt2LLS0tDBy5EhkZGRg06ZNzL28cuUK/Pz8MHXqVPj7++PcuXMYPHgw1NXV4e7ujhUrVgAAXr16hSNHjuD+/ftMPzt06IBFixYxb5rDw8PRtWtXWFhY4PXr1+jRowcAwNzcHHFxcZgyZQqTEUsqleLy5cu4ePEiSkpK0KZNG8YI7sKFCzhx4gRKSkpw4MABfPjwAc2aNUNhYSESEhKgpaWF27dvQ1tbG4GBgXB1dZUbLyUlJbh69SomTZr0Xbf5tWvXAqgwk2zXrh2ioqLw8OFDXLx4EatXr8ayZcugq6sLfX19mJmZ4dixYxg5ciSSk5ORnZ2N/fv348qVK5g0aRL69euHbt264eLFixg3bhycnJwAgHH+trCwwObNm7Fy5crvrlBGRUVhwIABcHBwgLKyMq5du4bevXtDIpGgb9++WLNmDR49eoSSkhJm0qajo4MXL15g7Nix6Nq1K7Zv346tW7dixIgREIlEMDQ0xOPHj9G1a1cMHz4coaGhuHbtmlx63bp162L37t04c+YMJk+ejMDAQCZhA5/PR2lpKXx8fFBYWIjhw4cjLi4OFhYW8PLywpYtW2BlZQU/Pz/ExsYCAM6fP4+FCxciIiIC3t7eePr0KUaOHInBgwcjMDAQEydOxJAhQ6r8DQD+fjE4KwJnYWFh+RP54WArlq9SnWFfZQOrmJgY0tXVJZFIRK1ataJ169bJxXCHhYWRsbExKSoqkqamJvXq1avGcck7d+4kExMTEolE1K5dO1qxYkUVjYadnR0tXbpUTjz79u1b5piSkhIKCwsjZWVlqlWrFkVERFC3bt2oe/fu3+xjTfpGRLR69WqqU6cOiUQiat++Pc2fP7+KtuTQoUPUuHFjEolEpKysTC4uLrRixQpmf0ZGBjVt2pQEAgGZmZnRoUOHaqzRWLFiBdnb25NEIiFlZWXy8vKiq1evMvvfvHlDffr0IXV1dRIKhVS/fn3aunUr8fl8Gjx4MNPWvLw8EovFNHz4cPr8+TNNmTKFAJCCggLp6upSp06d6Pr166SiokIJCQl08eJFql+/PnE4HJJIJGRra0szZsyg4uJiEolEpK2tTTNmzCAAZGdnR8OHDyc7OzuKjIwkoq9rNCpf2y+1A4cPHyYOh0O1atUiqVRKffv2pWHDhlGjRo2IiCggIIBatGghd33GjBlDVlZW9OLFC/L19WX6ZGhoSFOmTKGysjKmT4cOHSInJycCQCKRiLlPt27dYsS7O3furFY/JBOI6+vry23/9OkTAaDw8HBmm4WFBYnFYhIIBCQWi8nZ2ZkuXLhQ7XjhcDhkYGAgN16Iqmo0ZEkbANCSJUuoRYsWxOFwSEVFhbZs2UJEv2lFJkyYQFwulwCQg4MDbdu2jbnOxsbG1LJlS7nfrJ2dHTk7OxMR0ahRowgAk2yhOo3Gl1oqWZ85HA4BIBUVFXJzc2PaIxvDHA6H+ZiamjLX3MbGhpSVlRkdhCy5QkREBNWvX1+unokTJzLj6Pz586Sqqsr0VYa/vz9T1tatW0lfX5/U1NSI6Ldx2bBhQ1JRUSGBQEBWVlYEgCZNmsSUsXXrVkafIRKJyMLCglq3bs1oP77k7xaD/xX81+K5f1bYPvwcsH34OWDF4Cx/Kt9yEv4aZWVlZGZmJvfQ8F+jpg7J1U12ZA/lRETh4eHE4/GqCMc5HA4tXbqUiCoE2BwOh4yMjKoIsH/0/lUnbvf29mYyXTk4OFTJcLZr1y7i8/lUWlpaoz7JHjQvXrzI7H/79q2cQPhrzuWGhoY0ffr0KtuHDRtGrVq1IqIK8T6Xy6WGDRtWO7mtrszY2NgqdVY30fhW0obKfU9ISCAlJSW5yQHRb8JtkUgkdz8VFRVJS0uLiCqE5c2bN5erRzaevuUC7u7uTp6enqSmpkZdu3alkpISysnJoaKiIuYYsVhMpqamlJmZSa9fvyYAtGLFCjnxt7KyMiN29/X1lesfEdHu3bvlJqxfJmwAQH379iWRSETq6upUXFxMtWrVosWLFxPRb/c/PDxcLkmDbFIi49GjR1XGiSyjVXX/0/qaGJydaPy9sH34OWD78HPwX+vDH5losKFTLAxZWVk4cuQI3N3dUVxcjMWLF+Px48cICAj4u5v201NZ1Cujsgi3sLAQTk5OjL6gMpqamgAqBNjXr1+HUCjEli1bMGnSJKSkpKBRo0Y/3B4ej4eCggLcunULPB4PmzZtwtGjR3/I4PB7fZLxe0Xp1YnFQ0NDYW9vj6dPnyIhIQGenp41FjMrKysjPz+/iudFXl4eVFRUvtpmWbt/REgvE26vXLkSDRs2lNtX2Xvl92JjY4MFCxbA29sb/v7+2LJli5yQvLS0FEZGRoyvCVAxjiof86N9qo6CggIUFxdj5MiREAgEAFAjb5/qxkRNx4mioiIUFRWrbB9SX41xlmdhYWFh+WfAisH/AQwcOFDOabryZ+DAgX9aPVwuF4mJiWjQoAGaNGmCGzdu4OjRozXSifwMzJw586vXqXXr1r+rzHr16oHP58uJ5PPz86uIxjU1NeVE6vfv38fHjx+Z746Ojrh//z60tLSqCN0rPwQrKSnByckJTZs2xadPn+Dp6YmpU6cyYt2austHRkYiLy8Ptra2sLe3x969e5GcnAxvb28AwI0bNzBt2jS5ayTTOSgpKUFJSQkKCgq4fv06gIoHwuHDh+Pjx4/MZODkyZNMvZmZmeBwONi5cycAoGXLlmjQoAHevHmDkpISODs7M/chNzeXOS84OBi+vr6IioqCpqYmmjRpAg0NDSxfvhxJSUno27dvlXtS2Y1dIpGgYcOGSE1Nhbm5OY4cOVJFgL5o0SKcO3eOcc4+deoUlixZwpxXGZkYGgBmzZol515fWcgtE24/evQIJiYmKC8vh6mpKTMBACoSIFy8eJH5DlQI8AHA1dUV2tra6NWrF16/fs3s9/DwwP3793Hy5El4e3vDyMgIp06dAp/PZ5ICcDgcfP78GUeOHAGHw2GE7J06dZJLAlFeXo7Y2FiIxWLs2rULCQkJkEgkkEqlEIvFTPYoAwMDuLu7M0aYQIVmAwC2b9+O8vJyrF+/HkDFJGPUqFFy12zHjh14/vw5FBUVGeF85XEh639oaCjEYjHs7Oxw69atKveVhYWFheXfB7ui8Q8gOjpaTrhZmZqmfpw6dSrzQPI19PX15dy+/2kMHDgQfn5+1e6rSfra6lBSUkJQUBDGjBkDNTU1xiFZlslJhqenJxYvXgxXV1eUlZUhIiJC7g1uYGAg5s2bh44dOyI6Ohp16tRBVlYWduzYgbFjx6KkpAQrVqxAfn4+EhIS4OvrCyUlJXTo0AHR0dGIiIjA48ePkZOTg2nTpsHS0hLPnj37qrv8+fPn0a9fP7x48QJDhw5F586dcffuXRw6dAg+Pj7Yvn07OnXqhNDQULRt2xapqamYOXMmrK2tsXz5cmhpaaFXr15Yv349OnTogPXr12PJkiXg8XiYNm0a8vLyEBoaWuV6zZo1C0DFm/7ly5dj5cqV+PjxI3r16gUbGxv069ePcTqXcezYMQiFQqSmpiIzMxPdu3fH7NmzoaysjE6dOuGXX36RO76yG7uenh527twJHx8frF27FgEBAWjTpg1SU1OxYsUKHDlyBBs3bsTu3buRmJiIBw8eoLi4GC4uLrC2toaPjw+TlSk3N5dxr4+IiICNjQ2mT5/OZL06dOgQ6tSpA6FQCBUVFURFRWHYsGFQUVGBj48PrKysMGbMGDRv3hyjRo1CQEAAhgwZAqlUitu3b+PmzZuYOXMmgIrUvnXr1kVERAT8/PzkXLJfvHgBXV1d5rf4+fNn2NraMokUcnJyYGBggCZNmmDTpk2QSqWIioqSu0bPnj1DYWEh+Hw+jhw5gkePHqFPnz5o27Yt+vXrh927d2PDhg3Iz8/H0aNHsWLFCuzYsQP5+fmYP38+tmzZgkaNGkEsFkNBQQFXrlwBADRu3Bhbt27FsmXL4O3tjQ4dOmDPnj2MgHzNmjVIT0+vNqNeUFAQWrVqhYkTJ1Zxo68MKwZnYWFh+Rfx41FdLCz/LQoKCiggIIDEYjHp6OhQTEwMubi40Lhx45hjnj17Ri1btiSJREKmpqZ04MABOT0DEVFOTg717t2bNDQ0SFFRkerVq0f9+vWj/Px8RoAtEAiIw+HICbAbNGhAo0ePpi5dupCqqioBYMrdtm0bKSgoMBqGyk7V1Ynb9+3bx7Rn+/btZGVlRXw+n3g8HikqKsrFalbuE4/Ho969e8v1ydbWltEbyOL1Fy1aRPh/t/BNmzYRAGrfvj2pq6sTAPLy8iJzc3NGTxEUFERqampyBnuxsbEEgPr160edO3cmHo/HaAm+58Z++PBhMjU1JQ6HQ+rq6uTh4UEnT56UO69yQgPZeR07diQjIyPGvR7/r9GQudfLnLu5XC65u7szOpCNGzeSvb098Xg84nA4JBQKaceOHURUkbgAAFlYWJBAICAdHR2ys7OT02hUdskGQNbW1iSVSqtoUvD/wvCOHTtScXEx8fl8Rssi21+53PHjxxOXy6VVq1Yxx+zevZtMTExIUVGRPDw8aNmyZQSAPn36RGVlZaSkpETDhg1jEjYAoODg4Cp6l9q1a1O9evWYcdO1a9cqbfXx8SEieYd0WdsqJwyonNCgch2y/ZU/rEbj74Xtw88B24efg/9aH1iNBgvLX4iSkpKctuLDhw+IiopC//79mW16eno4fPiw3Hl5eXly33V0dJi0ql+irKyMnTt3wsPDg/GQkKGrq4u3b99i+/btOHr0KGbNmoWJEydi6NChKC0tRWlpKcaPHw+gIo3woEGDcOTIEXh7e2PEiBFYs2ZNtXV26dKFSZOrrq4ObW1tuVUYWZ8KCgqgoqKCvn37yrXf09MT6urqsLe3Z/xAGjVqxOg6Tpw4AQBYvXo19u/fjxEjRiAwMBCjR4/G27dvAVSETtnZ2UEsFjPlmpmZAagwtzt9+jQcHBxgb28PFRUVnD17FmVlZcwxMoqLi6Guro6ZM2diwoQJGDFihFxI0v79++XOu3z5MlatWsWct2vXLjg4ODB6C1kfsrKycOjQIYSGhsqt4MjSRwcEBCAgIACFhYXIzs6Gra0tdHV1AQAbN26Eo6MjsxrQrVs37N69G3w+H05OTnKrbA8fPkROTg78/Pzg6uqKuLi4KvcrMTGRCXeysrKS0+48fvxYLkQrLS0NPXv2REhICLOtQ4cO6NChA4CKVMwODg4AKsLAysrK8PHjR5ibm+PJkycAKkK0OnbsyKQflqGhoYG0tDRmXISFhcntHzFiBONBIuPixYtMWJXs+pw8ebKKngYAxo8fLxeeVVBQAH19/SrHsbCwsLD8/LATDRaW73Dt2jXcvXsXLi4uyM/PR3R0NACgY8eOf0l933OXHzRoEGbMmAE1NTWcOXMGISEhjHg2NDQUrVq1wv79+3HkyBHMmjULCxYswNChQ79Z57cM7n5v278mAv6aQLmkpARv3rxhJlmlpaWMeZ5EIgGHw5FzY+fxePj8+XONRMpfnleZmoibv4dUKoWVlRU8PT2RlJSERo0aISkpCYMGDZJrQ/v27VG7dm2kpKRg7969zD5dXV1IJBJwudxqRfI/SnWhgkuXLkWDBg2grq4OX19fvHjxgpm8KSoqwtXVtVqH9j+DH0kYwIrBWVhYWP49sGJwFpYaMH/+fNjZ2cHb2xsfPnzA6dOnoaHxv43lruzA/vDhQzg6OjIPspqampBKpVBUVGScqs+ePYt69erVyF1eIpHg2bNnGD16NNTU1OTcspWVlaGnp4f9+/ejY8eOkEqlUFZWxtq1axnRsIzQ0FAoKSkxbt8AcObMGUagLftvZb1Qeno6Pn36hLNnz0JXVxdXrlwBl8vFypUrcerUKZw8eRIbN26EVCpFjx49UFZWBmtra5iamsLOzg729vZIT0+Hl5cXFBUVMWbMGBQVFcm1a9SoUSgrK8OwYcNgb28PLy8v3L59GyoqKhgwYACkUikeP36MI0eOyJ1XU+f5qVOnMgaOW7ZswZIlS/DgwQNMnDgRqqqqaNKkCYyNjXHu3DnEx8fj7t27MDU1hampKc6cOcNMpGSrMDJx/Y4dOxgn+BEjRjCu6zJWrlwJfX19WFhYAADWr18PVVVV2Nra4vTp03IZu+7fv4+OHTvCysoKN2/eBBEhPz8f9evXh6mpKVN3dnY2M4nu0aMH/Pz88PLlSwBAUVER0tPTcfnyZWZc+Pj4yK2u7NmzBxcvXgQAPH36FECFDqd58+YQi8Vo2rRpja4pCwsLC8s/H3aiwcLyHRwcHHDlyhUUFhbi7du3SElJgY2Nzf+8HZUd2G1sbDB16lTUqlULQEVYzvr16/H582f07dsXR48eRWxsLIqKimqUNax27dp4//49Dh48iFWrVmHUqFGIiopiwq7Cw8OxYMECZGRkYO3atfD19UVeXh5u3rwpV462tjYuXbqEK1euMGmRXVxcEBcXB2VlZea/lZMbfP78GSEhIdDS0sL+/fsBVLjU9+vXD66urnB1dUXHjh2RlpYGXV1dKCgoQCKRIDIyEomJiZgyZQq6desGBwcH3LhxA/3790dxcTHGjh2L169f4+PHj+Dz+RAIBLhy5Qpmz56NZs2aISAgAE2aNIGVlRWuXr0KOzs7nD17FvPmzcP9+/exePHiap2rv0Xnzp3x/v17DBs2DAYGBrh58ybOnz+P/v37IygoiAnfqlevHs6fP4+kpCQcO3ZMLqNVZSZOnMhcKz09PfTo0QOlpaUAKiYEAwcOxPDhw3HgwAEAwKpVqwBUCOYLCgrQvXt3XL58Gffv34ejoyNOnDiBoqIi2NrawtDQECYmJti/fz8aNmwIkUgEIkLHjh3x9u1bGBgYoE2bNsjIyEDnzp0BAEKhECKRiMnWFRAQgOLiYly+fBlXr17FuHHjkJmZCU9PT7l+LF68GOHh4UhLS4OxsTEAfLXPxcXFKCgokPsAFWLw2dde/yUfFhYWFpa/BnaiwcLyJ+Ph4YERI0b86eXa2dkhJiYGc+bMQaNGjXD06FHMmzcPAKCiogIiAp/Px+HDhxl9hpubG5OR6lvw+XzY29tDX18fvXr1wvTp0yGVSpk301ZWVswb8B49euD69etYtmwZLl26JJf619raGkOHDoW9vT3mz58PABAIBFBRUQGHw2H+WzlcycvLC6ampnBzc4O/vz86dOiAOXPmQCwWQyAQQCAQQCqVwsTEBHw+H23atMGIESOwdu1a9OnTB1OnToWmpiYiIiJgZmaGGTNmMNdKU1MTc+fOBQCYm5tDQUEBCxYswNatW/Hhwwfk5OQgICAAZmZmmDNnDgAgLi4OdnZ2OHLkCCZNmvTVa1ZeXg4OhyOXUlZJSQmtWrVCeXk5evToAWNjY1haWiIoKAgNGjTA2bNnweVykZWVBU9PT0RHR0NDQ+OroWvh4eFo27YtgIrVhaysLDx48ABAhe6hdevWCA8PR7169QAATZo0AVChuTl+/DgKCwvh7u4OJycnrFy5kglhSkhIQElJCR4+fIgRI0YgPDwcWlpauHfvHm7cuIGkpCQsXrwY169fx+3bt3Hu3DnmPkulUmaioaenBysrK3C5XDRs2BCHDh2CtrY22rdvL9eP3r17o23btjAzM2P0RM+ePau2z7NmzYKKigrzYfUZLCwsLP9cWI0GC8ufzI4dO6roLGrKl74OALBr1y7m3yNHjsTIkSPl9q9evRqKiopo0aIFLCwskJOTg27dusHHxwedOnWSE1p/C1dXVzkRuoWFBbZu3Yrly5cjIyMDhoaGePz4sdw548aNw507d9CgQQNERkZi2rRpEIlEGDRoEPz8/ODi4iJ3fHBwMIKDg6vUHRUVVSVFq4wvr4mLiwsmTpzIHO/o6IiOHTvKrTJFRUWhW7duKC4uBo/HQ2JiIrS1tcHlcpGWlgYiApfLZVaHgIrVGAA4ePAgbG1tmbJGjx6N4OBg5OXlyd0LLpeLnJwcaGhoyG3fuXMn+vTpg7i4ONy6dQve3t7w8/ODrq4uTE1N4e/vj127dslNUGRMnz4dvr6+jLhe1g4iwrt37zBs2DC8evUKaWlpcHBwYK5v3bp1QUSMZ4js3C8TFMhwcHBAv3795NrRtWtXLFq0CPr6+sxHNmGoVasW7ty5g6lTpzLXOzk5GadPn0ZYWBju3r0LoVCIYcOGoXbt2vDw8AAA1KlTBwDQrl07pm5zc3OmzdXBisFZWFhY/j2wEw0Wlj8ZNTW1v6VeJSUlXL16FampqThy5AimTJmCqVOn4tKlS9Vm9/mS3zs5kjF16lScP38eb9++xfXr1xEfH4/NmzejU6dOcseVlJT8obp+r1i6sghcJkiufF1+xNVcho6OTrXbExISMGzYMBw6dOgPubz/Xtf1vxI3NzcAwKNHj3Dq1CnMnDkTOjo6mD17Nuzs7KCnpwdTU1M5YTkrBmdhYWH5b8KGTrGw/MlUDp1aunQpTE1NIRQKoa2tja5du9aojPfv3yMwMBASiQS6urqIjY2tEpLF4XDk3qQDFalHnz59irlz5+L69evIzMxEmzZtoKioCA6Hw+gbZG7gIpEIWlpaOH36NJYtW4YmTZogKysLiYmJyMjIwLt378DhcDB8+HBkZ2czqU8B4Pbt28jLy4OVlRWAijfUR44cweXLl5GSkgI9PT0kJCSAw+Hg1KlTKCwshEQiwYwZMwAAy5YtQ3JyMvbs2QNzc3PGfVrGwoUL8fz5c7Rr1w5isRiWlpYoLi5Gbm4uPDw8IJFI0Lhx42qNJs+ePQszM7MqGaa+RGYwCIDROTRs2BDq6uqM8H/q1KlYu3Ytdu/ezbiN9+/fn3EfF4vFuH79OgoLC8HhcHDs2DE4OzujSZMm2Lt3LxISElC/fn0kJSUxbbt58yaUlJQQGhqKcePGVXHU/hYHDhyAtbU1rl+/jpkzZ8qll01NTcWHDx8YwX5lITfwmxM7AMZtfsSIEcwKhKWlJTIzM9GnTx+MHTsWampq0NDQkLvPsraOHTsWb968gY+PD9zc3HD58mUMHjwYderUgZGREYRCIeOEXl02K9k4YGFhYWH598KuaLCw/EVcvnwZw4YNw/r169G4cWO8ffsWp0+frtG5o0aNwtmzZ7Fnzx5oa2tjypQpuHr16jcfSPft24fi4mJkZ2cjKysLe/fuRWlpKXR0dHD48GEUFRVh6dKluHnzJvbt2wcul4sGDRqga9euuHLlCszNzeHl5QUOhwN/f39Mnz4db968wZ07d0BE8PHxQWBgIOLi4lBaWorBgwfD3d0dzs7O+PTpE7y8vHDjxg1oaWmhf//+GDFiBCwtLbF3717s2rULZWVlWL58OWxsbLB582YMHz4ccXFx8Pb2xr59+9CnTx/UqVOHybIEVPhYTJ8+HTExMYiIiMDevXuxbds2xMfHw8DAAH379kVubi4uXLiAadOmwd/fH+fPn8fixYtrpE2RkZOTg2HDhgGoCH3S19fH6dOnQUQIDw/HnTt38PLlS2ZicuLECcycORMfPnzA5s2bcf78eVy/fh1ARaiVtbU1Ro0ahbi4OHTu3BkvX75E7969sXHjRpw8eRIKCgrYsGEDzp07h6VLlzIai5oQFxeHefPmQUtLCz179sTTp09x//59HD16FHv27AFQ4VFRWlqKIUOGwN/fv9qQvLp16+Lx48fIzc1FSUkJiouL4e3tDalUivXr1yMkJAQrVqzAmDFj8ObNG7x79w4AcOnSJWhpaYHL5aJ9+/ZYuXIlMyF5+fIlCgsLsWPHDvB4PAgEAoSHh+PkyZNMmFdubi4AoE2bNtX27+9wBmfdwFlYWFj+GtiJBgvLX0R2djYkEgnatWsHJSUlGBoaMiZp3+L9+/dYu3YtkpKS4OXlBaAiFEdPT++b56mqqqKkpARz587F7NmzoaGhAV1dXSQnJzPhKp6enlBVVcXTp0/h7OyMwsJC+Pv74/bt21BTU0NQUBBTnoKCAjgcDhMetHfvXgwdOhRubm7gcrnw8fFBfHw8gIqwpI8fP+LmzZsoLi7GtWvX0LlzZ0RFRWHu3Ll49+4dWrVqhZEjR+LNmzeoU6cOgoODMXjwYAAVE6tff/0V8+fPl5to6OjowM/PDwAQERGBXbt2wcnJCa1atQIADB8+HH369MHWrVsxZcoUTJs2Dbq6uoiOjq5WC/I1+vfvz2RB0tPTg42NjZzmQyQSQVVVFa6urgCAjIwMRsBtYGCAq1evMsdOmjQJGzduRHh4OHJzc1FaWooJEyZgwIABaNy4MUJCQpCbm8voPkxMTGrcTgDw9/fH8OHDAVR4c0RFRcHOzg4ODg4oLy+HhoYGnJycAADr1q2DtbU1Ll26hAYNGsiV06VLF+zYsQPJyckoLi7Gpk2bEBwcDGtra9y/fx8bN27Epk2b4OPjA5FIhJYtW+LatWvMZLe8vBw+Pj7Q1NQEUDFxefnyJVatWsWMc5nWZPfu3RgzZgwAYOvWrQDw1UnzrFmzvqrXYWFhYWH5Z8GGTrGw/EW0aNEChoaGqFevHnr16oWNGzfi48eP3z3v0aNHKCkpkRNSq6ioMCLaL0lNTUVcXByaNm0KqVSKxYsX4+PHj/D398erV6+gpKTEhEqpqamhqKgIDx8+hJqaGoKDg9GqVSsoKSnByMgIOTk5TLndu3eHgYEB893AwAC7d+9mshxt3bqVEVALBAJs2rQJLVu2RK9evfDs2TPEx8dDKBQy5w8cOBCvX78GEeHDhw9MhiQZTZo0wZ07d+S2yTJXAb+JtSsLhbW1tVFUVIQWLVrg1q1b+Pz5M7KysuTS5wIVD7xf6iOCgoIYl+patWpBQ0MDSkpKmDFjBlauXMm8wa+O4OBgZgUDqNCnyFLLuru7Y+fOnXj+/DmTtWvAgAHgcrnIyMiAq6srtm/fjnfv3oGIGME1ETFhTTJxd+WHcVn4Ud++fZlt/fr1w9OnT5n7LZFI5MaJlZUVVFVVq1xXoEILsX37dgwcOBDu7u7MxEwoFKJ79+4oLCxEQUEBtm7ditq1a1c5f+fOnRg4cCDz3cfHByYmJsxkTNaPq1ev4tdff2WyTG3ZsgXR0dFyE8rKjB8/Hvn5+cyncrgeCwsLC8s/C3ZFg4XlL+KPirO/B4fDAZF8KEllg7bCwkI4OTlh48aNVc6VvYX+s0TLfxU1cRoH/rhAmsvlonHjxhg7diyOHDmC+Ph4TJw4ERcuXICRkdEfbvOfIeCuzu17/vz5aNGiBSQSCaODqbwq9SVcLvebY0ZGde70NaE6ob6DgwPs7Oywbt06tGzZErdu3WL8Uio7u8tgxeAsLCws/x7YFQ0Wlr8QBQUFeHt7y4mzjx8//s1z6tWrBz6fL+dPkZ+fj3v37gH4TShORAgODmaE4kFBQfj48SP69OmDXbt2wdHREffv30dxcTFMTU1Rv3592Nvbw97eHnp6ekxoVPPmzfHrr78iKSmJES2npqZi1apVuH79OuNsLROJR0VFIT09nRFGJyYm1uhavH79mkm3++HDB4SEhDArLVKpFCNHjsTjx4/B4XCqXb2RuXS7uroybXrx4sV365W5dl++fBm3b9+GWCyGn59fFYEyh8PB+fPnsWLFCty5cwe5ubmwsLCAVCrFxo0bsW/fPvD5fIhEIojF4ioP9DJzv2PHjsHS0hJSqZQJDZNhbm6OxMREWFpaQigUwsLCgtFVfI83b94AAJYsWcK4bE+fPh0eHh6wsbHB5cuXAQAxMTEAKjxNxGIx8vLyEBwcDKlUig0bNmDPnj1wcnLCzJkzoa2tjV9++QVZWVkoLS3FmDFjcPbsWaxatQoJCQlV2nD37l00btwYADBs2DCcPHlSbn9RURFat24NqVQKbW1t9OrVC69fv0ZoaCgSExPRoUMH1K5dGwsWLICGhgYTAsfCwsLC8u+EXdFgYfmL2LdvHx49egQ3NzfUqlULBw4cQHl5+VdDoGQoKSkhKCgIY8aMgZqaGrS0tBAZGQkulwsOh8MIxZs3b86Ivi9duoSHDx+Cz+czb6gDAwMxb948DB48GCKRCEOHDoWtrS0OHjyI06dPw9raGlKpFB06dMD27dvRrFkzfPr0CYGBgfD19UXTpk3x7t07rFmzBs+fP8fnz5/h7++Pmzdv4tChQzh69CiAirCumiDTa8ybNw9Dhw7FoUOHEBYWBm9vb6SkpGDu3LmIjo5G06ZN8fz5c/Ts2RNnz56Fr68vSktL0b9/fwAVMf4mJia4ePFijd+0P3jwAPn5+TAyMsLKlSsREhKCsrIyxqciNzcXx44dA4/Hw8aNG5GcnIylS5fC398fU6ZMwbJly7BkyRJoaWlh9uzZMDMzw+jRowFUXRGIj4/H+vXrweVyq2QZc3R0xLJlyxAWFoZOnTph1apV2Lx58w/5ROzYsQP9+vXD+PHjMXfuXFy9ehXv378Hj8eDnp4esrOzcfXqVcycORMTJ07E+/fvUVpaipMnT+L06dPo27cvbt26BUtLS3Tt2hUJCQnIzMxEu3bt4ObmBkdHR/B4PAwYMAAtWrRgvDAAYMyYMYiLi8Po0aMhFovRtm1bpKenw9jYGEVFRXjw4AE6d+6M2NhYfPr0CREREfDz88POnTsRHh6OT58+MSaMX2YKk/G/FoOzQnAWFhaWvw52RYPlH81f5cL9Z5Cfn49JkybBwcEBRkZGWL58OTZt2gRra+vvnhsTEwNXV1e0a9cO3t7eaNKkCSwtLcHlcrF27VrMnz8fGzZsYB64P336BCcnJzlzPrFYjFOnTqFu3booKipCTEwMpkyZgmfPnkEgEGDNmjUoKSnB2LFjsXv3bjx9+hQ+Pj7o3r078vPzMXz4cLRu3RohISEYOnQozp49C5FIBKlUCgUFBejo6EBHR6fakJ7qCA4ORo8ePWBiYoLt27cDANauXYs2bdpg165dWLduHSZPnozmzZsjMDAQAHDmzBkAFQ+b79+/BwDo6+szbtsy3cb3KCoqQqdOnSASieDm5ob4+Hg8fvwYRUVFACpChTgcDk6fPo02bdrg6NGjcHBwwOfPn2FiYgI/Pz8UFxfj9evXCAwMRGFhIeLi4gBUNRSMjY2Fs7MzHB0d4e/vL7fvyJEj6Nq1KzZv3oyOHTtCJBKhYcOGePv2LTIzM6s4jVdHz549cfLkSbRr1w7Xr1/Hu3fv8ODBA3A4HHTv3h08Hg9ubm7w8/PD06dPERoaCj6fj+nTp2P37t2ws7NDSUkJ9u3bB0VFRYSEhEAkEuHjx4+YMGECRCIRGjRoAIFAwFx/GU+fPoWxsTHi4+NRUlKCDx8+MCLzixcvQiwWY+bMmbCwsICDgwPWrFmDEydO4OXLl+jSpQt4PB4sLCwwd+5cmJubVzvpZp3BWVhYWP49sBMNFpY/GZk4e8+ePWjQoAEyMzORm5uL9PR0JoPS91BSUsLGjRvx4cMH5OTkoH///sjIyICSkhIjFNfT08Phw4dRWFgIe3t71K1bF3l5eXLl6OjoYO3atVBWVsbKlSvx8OFDODs74/HjxzAxMUFKSgoKCgogFovB4XDQpEkTaGhoIDg4GO3bt0dxcTGmTp2K58+f1yiL065du6qEUsk0AZXdtiUSCZSVlTFnzhx8/vwZGRkZKCgogJOTEzQ1NSGVSsHn85lMUDLhuqKiIiZPnoyFCxciJycHHh4eIKLval4MDAwQExPDPMTLBMvjx48HUJGxy9PTE69evUJRUREyMjLQrFkzvHr1CgDw8uVLKCgo4P379yAieHh4wMHBAVKpFDt27ABQ4aQuFovlMou5uLiAw+Ggbt26+PDhAx4+fIj9+/fj06dPICJs2bIFFy5cQElJCfT19ZGTk4P69et/sy9Dhw7F3bt3mesGgGmniooKjIyMUFhYiPHjx6Nu3bpQUlICUOFLkpiYCHt7e/j4+CAvLw8xMTGIj49HgwYNmCxbqampyM/PR3l5OVPuihUrAFSsptSvXx/t27fH/fv34evri44dOwIA1NXVUVRUJBcOZ2FhAQB4+PAhnj17Bm1t7SrZr76EFYOzsLCw/HtgQ6dYWL6grKwMHA6HSV/6e3n48CHatm0LQ0PDHz732rVruHv3LlxcXJCfn4/o6GgAFSs4stSfRISysjIoKMj/jH9WkXh1AmOZSHrz5s0IDw/HggUL4OrqCiUlJcybNw8XLlxgjv+rhevfat8fKUN2LwoLCwEAnTp1Qs+ePcHlcrFv3z4sXrwYK1euBI/H+6rT+Nfq+FJs/i2xd+UQt+raWZ1b+5f9V1dXrzLeZBQWFqJ9+/aYM2eO3HaZvig1NRVOTk7fdXZnxeAsLCws/yKIheVPwN3dnYYOHUpjxoyhWrVqkba2NkVGRhIR0ePHjwkAXbt2jTn+3bt3BIBOnDhBREQnTpwgAHTo0CGyt7cnoVBIzZs3p5cvX9KBAwfIwsKClJSUqEePHvThwwe5eocMGUJDhgwhZWVlUldXp0mTJlF5eTlzTFFREY0ePZr09PRILBaTi4sLUy8RUUJCAqmoqNDu3bvJ0tKSeDwePX78+Jv9LSsro6ioKKpduzYJBAKys7OjgwcPMvsByH1k14KIKCsriyQSidxHLBYTAFJUVCRHR0fi8/kkFApJKBRSrVq1yNvbm1avXk0ASEFBgYyMjIjP59OJEyfo7du3JBAISElJiYRCISkoKFBoaCjTTm1tbQJACQkJRES0YsUKUlZWJgCUmZnJtHfnzp1MG69fv07NmzcnoVBIampqpKWlRZ6eniSRSEggEBAA4vP5TPutrKyoY8eOFBQUxJSxZMkSMjExIUVFRQJAjRo1kruGKioqTJvCwsLI09NT7p7WqVOHuFxutfd03bp1JJFIiM/nk7a2NvXo0YPMzc2Z9nA4HBIIBMwxHA6HDh8+TADo/v37dOjQIeJyudSyZUuSSCSkoKBAenp69OLFC6YOS0tLUldXJyKie/fuEQDq1q0bubu7ExGRv79/lfuspKREb9++pYCAANLQ0CA+n08AaM2aNUREpKurS/Xq1SM1NTUSi8Xk4OBAycnJRPTb70QkEpFEIiGhUEgASCgUEpfLZcqqfJ++/B0tXbqUtLS0qLy8nCIjI8nOzo4CAgLI0NCQgoKCmHvUsWNH2rZtG9WvX58ZM/r6+lRYWEiRkZFV+rVp0ybm37Lf8dGjRwkA9evXj5ycnEhBQYGEQiHdvHlT7j6rqqoy90NHR4ecnJzIzs7uy5/UV8nPzycA9Pr16xqf87Px+fNn2rVrF33+/Pnvbsrvhu3DzwHbh5+D/1ofZH+H8/Pzf7geNnSK5U9j7dq1kEgkuHDhAiPsTUlJ+aEypk6disWLF+PcuXN48uQJ/Pz8EBcXh6SkJOzfv59JPfplvQoKCrh48SIWLlyImJgYxtMAAMLCwnD+/Hls3rwZ169fR7du3eDj44P79+8zx3z8+BFz5szBqlWrcOvWLWhpaX2znQsXLsSCBQswf/58XL9+Ha1atUKHDh2YMnNycmBtbY3Ro0cjJydHztdBT08PaWlpch9Zus9atWohIiIC6enp6NmzJ/h8Pu7fv4+UlBTGPVpZWRmfPn3CmjVrIBAI0KxZM5SWlsLb2xu3bt2Ck5MTVq9ejVWrVuHq1atQVFSUE00HBgaCx+NBRUUF2dnZePz4MQBg1apVePr0KW7dugVXV1eUl5dj9+7diIiIwOvXr1FQUIC0tDTMmjULHA4HPj4+OH78OC5evIgDBw7IXR+ZK3p0dDQT3vMtbYqpqSkuX76Mw4cP4+PHj1ixYgVevXoFMzMzLFy4EPPnz0ebNm1w/vx5ZGVl4dq1a+DxeJg8eTJ27dqFzMxM6OrqMtdz5MiRMDAwQFpaGgYOHAiRSITQ0FA4OjoyLuDKysr4+PEjTp48iZYtW+LDhw9VNBWV29exY0ccO3YM+fn5SE9Px5s3byAUChESEoKcnBzExcWBy+Vi8uTJuH37Ng4ePIjFixcDADQ0KgTH0dHRyMnJQWRkJK5du4a1a9ciPz+fyRQFVKzupKWlMWPY3Nwc69atY0K0pk6d+tXr6OHhgdzcXMydOxdv377F69evcfDgwSrHFRUVoUePHujbty/u3LkDe3t7mJiYME7ofn5+EAqFiIqKQk5ODhwdHZlzjx8/jrt37zIalStXrmDBggVISUlBWVkZ3N3dmeQEEREReP/+PVauXIkbN25AKBTixo0bX23/t1hy8y1mX3v9hz8sLCwsLP9DfsckiIWlCu7u7tS0aVO5bQ0aNKCIiIgfWtE4evQoc8ysWbMIAD18+JDZNmDAAGrVqpVcvZaWlnJvuyMiIsjS0pKIKlYPeDwePXv2TK5tXl5eNH78eCKqWNEAQGlpaTXur56eHs2YMaNKfwcPHsx8t7Ozk1vJ+BayazR79mxmW0lJCdWpU4fmzJlDRL9do02bNlFAQACJxWLS0dEhPp9PVlZWNG7cOCIievbsGdWuXZsUFBTI1NSU4uPjCQDNnz+fiCpWOXR0dKhhw4akoaHBrDi0aNGC8vPzaf78+cTn80lHR4cEAgEZGhpSjx49iMPh0IsXL6ioqEjuPNmqROUVjeTkZFJWVqaCggIiqrpiQiS/olFUVETBwcGkoqJCCgoKpKqqShEREcyb77CwMJJKpaSrq8u0acqUKVRWVkZERJcuXSIA9P79e+Ya8Hg8unDhAkVGRpKtrS1JJBJSVVUloVBIzZo1Iy6XS9nZ2UREFBQURJ6engSALl68SETyKxpERG/fviULCwvi8XgkEomoVatW1KBBAxo+fDgR/bYy1r59e+rTpw8REe3cuZMq/5kFQCNHjiR7e3sSCARUq1YtcnNzox07dlT5nXz5m5DtB0CfPn0ioqq/IyKiZcuWkb6+PvH5fKpVqxbNmDGjyoqGu7u73IqWu7s70w/Z9RCJRBQbG1ul7vr16zP34Mvf7IoVKwgAqaqqkkgkIqFQSHZ2dmRgYECxsbHk7u5Ourq61Y4HGUVFRZSfn898njx5QgAoKvUezbqa+4c/fwf/tbefPytsH34O2D78HLArGiz/OCqLfQFAV1eXEZP+njK0tbUhFouZN/mybV+W2ahRI7k39q6urrh//z7Kyspw48YNlJWVwczMTE6kevLkSTx8+JA5RyAQVGn/1ygoKMDz589r5Gz9o1R2VVZQUICzs3OVMps1a8YIxY8ePYqSkhLcvn0bMTExkEqlMDMzw6tXr+Do6Ih79+4hLCwMVlZWTKz+yZMn8ebNG+zfvx+5ublM5qXBgwdDWVkZz549Q5MmTZCTk4Pi4mJkZmZi2bJlICJkZGRAUVER1tbWGDhwIOPl8SVfuqJv2LABLVu2lDtG5u8AVMTlJyQkIC8vD02aNEGnTp0we/ZsRrzt7e2NoqIiPHnyBMXFxUhOTsbVq1cZsbO7uzsAIDs7G0DFqlHbtm2xZs0aABX3jMvl4tmzZ/j06RO6du0KAwMDJqNRYmIijh07Juei7eLigqZNmzLtrVWrFlq1aoWmTZvi48ePaNSoEW7fvs3sDw4ORl5eHgYNGoTNmzfD3t4e586dq5LG1c3NDdeuXUNxcTHevn2LkydPolOnTl8dE7JxKXPZBn4Tf6uqqjLidBkDBw5EdnY2JkyYAAMDA0yYMAGZmZnMfllfvby8YGNjg27duiEwMBCRkZFy9bZs2ZLJ6Fa3bl1m5Wv9+vUoLi5mRP+VfzfOzs4AgPT0dHz8+BFCoRCjRo3C5cuX0b9/f6SmpqJ79+5f7SvAZp1iYWFh+TfBisFZ/jS+JqaViaqpkki1OjfiL8uoTqD6owLdwsJC8Hg8XLlyBTweT26fVCpl/i0SiWrsyfB38/DhQ5w6dQouLi6MSZtEIsHx48ehpqbGHFdZUBsYGIikpCSMGzcOSUlJ8PHx+UPC2u85TP+VrugfPnxAq1at0KpVK2zcuBGamprIzs5Gq1at5Ez4QkND0atXLwwZMgRv376Fv7+/XPrfP9rHr9G6dWtkZWXhwIEDSElJgZeXF4YMGYL58+fXvJOV+Cucxnk8HlJSUnDu3Ln/iRO6LMlATRg/fjxGjRrFfC8oKIC+vj4rBmdhYWH5B8KuaLD85cgeMnJycpht3/MK+BEqZyYCKhykTU1NwePx4ODggLKyMrx69QomJiZyn5pk+KkOZWVl6OnpVXlTffbsWVhZWf3ufsjaLqO0tBRXrlyBpaVllePmz58POzs7jBgxAhwOBxMmTICLi4tc/yq/CQ4ICMDNmzdx5coVbN++nfGpqA5LS0ukp6fjw4cPcn3jcrmM74GmpiZzPzdu3AipVIqDBw8y/5ZKpVBVVcXw4cN/yBVdxrfu6d27d/HmzRtMmjQJy5cvh5WVFeMw7eTkBIFAwBgRlpaW4vLlyygoKEDfvn2hqqrKOHM/efIEFy5cgJ+fH1RVVaGiooK8vDxmIqSpqYl79+7BxcUFEokEqqqqWL9+PYqKihiH9A8fPmDhwoVVHNI1NTURFBSEDRs2IC4ujkkPC8g7pJuamjLO4EuWLAFQsSrA5XLRvHlzABWreK1bt5a7Hh07dmTaJHNtrwkyvYVQKISxsTGOHj2KyZMn49q1axAIBKhXrx5++eUXHD9+HHv37oWlpSXOnz+PBw8eMCsRQUFBcquBjx8/RseOHaGtrc2syMn8N8zNzXHp0iXUrVuX0XRUdryvDkVFRSgrK8t9WFhYWFj+mbArGix/OSKRCI0aNcLs2bNhZGSEV69eYdKkSX9a+dnZ2Rg1ahQGDBiAq1evIj4+HgsWLAAAmJmZITAwEL1798aCBQvg4ODAuEDb2tqibdu2v6vOMWPGIDIyEsbGxrC3t0dCQgLS0tKqTRn7IyxZsgSmpqawtLREbGws3r17h759+8odY2triytXrjDfJ02ahJiYGNSuXRtNmzZFfn4+zp49C2VlZQQFBQGoCH1p3Lgx44jdoUOHr7ZBFkYTFBSEqVOnIjc3F0OHDkWvXr0YgzxPT0+MGjUK+/fvh4WFBdq2bYsDBw6gRYsWmDt3Lo4fP44nT57A1dWVebtfE1d0Gd+6pwYGBhAIBPD398ebN28wcuRIbNmyhTEi9Pf3x6RJk2BqagovLy8cOnQIlpaWcmFp3t7eqF+/Ppo3b44WLVpg6dKlmDlzJnJzczF27Fj4+PjA3d0dc+fORevWrbFnzx4kJycjMTERHA6HcUhfs2YNDA0NsWLFCujo6KC8vBxTp06Fk5MTrK2tUVxcjH379slNFis7pMfHxyMwMBBZWVkIDAzE/Pnz0bVrV/j7+yMzMxOjRo0Ch8NhvCpKS0sBAA0bNsSOHTvw+fPnGjukv3z5ElevXsWqVaugpKSEffv24ZdffkFeXh4aN26M3NxcAMC0adPQrFkznDp1CrVr14a/vz+MjY0xaNAgXLhwAUSEsLAwREREAKhYNWzTpg1mzJiBhw8fwtfXFyEhIXBzc8PQoUPRr18/iMVi5ObmYvr06bh+/XqNxsCX/FFncNYBnIWFheV/D7uiwfI/Yc2aNSgtLYWTkxNGjBiB6dOn/2ll9+7dG58+fYKLiwuGDBmC4cOHo3///sz+hIQE9O7dG6NHj4a5uTl8fX1x6dIlGBgYfLXM7zmODxs2DKNGjcLo0aNhY2ODQ4cOYc+ePTA1Nf1DfZk9ezZmz54NOzs7nDlzBnv27GEyFn2NadOmYfLkyZg1axYsLS3h4+OD/fv3VwmBCQwMRHp6OuOQ/TUnarFYjMOHD+Pt27do0KABunbtCi8vLyaDEgD07dsXQUFB6N27N9q0aQMHBwd4eXlBWVkZJiYmsLKywunTp9GzZ09YWlr+kCs68O17qqmpiWXLluHGjRvIzc3F+fPnsWzZMuZcVVVVmJiYAKgIY/r8+TP69OkjVz6Hw0FwcDA+ffqEI0eOYODAgTA0NMSrV6+QlZWF1NRUxp/j119/RZcuXZgMU4qKioxDura2NoRCIdzd3WFgYIDs7GwIBAKMHz8etra2cHNzA4/Hw+bNm5m6Kzukz5w5E4WFhbh48SKzkjJu3Dh06tSJMf7r1asXjh49CgDMKpOnpyeMjY0Zh/RvjWUZ6enpMDU1RVBQECwtLfH8+XPG4XzSpEnMRK5Pnz5YtGgRrK2tcf78eTx58gQNGjRgdDABAQFybug2NjYYMGAA6tevz3jGGBoaYs+ePQgMDMT48ePx7t07LFiwAI8fP/6u8WNxcTEKCgrkPiwsLCws/1B+WD7OwvIf4MssPH8msuxElakuM9efiSzjUGVKS0spJyeHSkpK/pI6fy81ufZpaWkEgLKysuS2Ozg4MOcCoBkzZhCfz2f8MSpnugoPD2d8Kir7mXA4HFq6dCkREQUHB5OioiK1a9eO4uLi6Pnz50T02/0yMzP7ob4BoDZt2pCBgQHx+XzS1dUlPp9PMTExzDGLFy8mR0dH0tDQYHxAGjRowOz/Wpu+h4aGhlxfK3t1yLxpANDWrVuZc5KSkuT8NDQ0NMjFxUUu+8j79+9p9OjRZGFhQSoqKiSRSIjL5dKYMWOYcgwNDZkMVt7e3t/MOlWdjwf+hKxTfyf/tQw1PytsH34O2D78HPyvsk6xoVMsLP9RaupE/U+kuLgYQIUnRbdu3ZiQry8d0gEgJiYGLVq0kDv/ew7pv+e6vX37FgBw48YN/PLLL7C2tkZmZiY8PT0RGRmJjh074uLFi3+ZQ3phYSGioqLQuXPnKvuEQiHzb5m4u6SkhAnJ2rVrFxo2bIjnz58jNDQUQIUXh7KyMsLDw5GSkoL58+fDxMQEIpEIXbt2xefPn/Hx40csX74cnz9/xsuXLxEZGcmsznwNVgzOwsLC8i/i98yCWFj+7cicmGVuzBwOh3HCPnXqFGVlZVGHDh1IIpGQkpISdevWTc5VOi0tjTw8PEgqlZKSkhLp6ekxvgL44k2tiYnJd1c01q1bR05OTiSVShkn7JcvX8odc/PmTWrbti0pKSmRVCqlpk2b0oMHD6p9Q3zixAm5OsvKyqh27drMm3wZV69eJQ6Hw/gtvHv3jkJCQkhDQ4OUlJSoefPmNfYfiYyMJEtLS1JUVCQOh0MAiMfjyb1h79KlC6mrq1Pjxo1JS0uLVFRUKCoqikpKSig8PJxq1apFtWvXpiVLlhCfz6ft27dTcXExDRkyhLS0tBh37i5duhAA0tfXp6dPnxLRb+7elR3SAdDGjRuJqOqqUmWHb6FQSCYmJmRsbExDhw6tcj1lbuHfQrYSoKioKNdn/L/bu4+PD4WFhZGtrS2pqKhQaWmp3HkRERFMWSEhIczqgexaCoVC5t82NjZVVjqMjY1JRUWFFBUVydzcnJYsWcLsq+yTYWVlRYqKipSQkMA4gp86dYo5dsaMGQSATp8+TURE9evXp5CQEGratCkJhULS09MjgUBAgwcPpo8fP5Kjo2O1KxTNmzev0bhhncF/Dtg+/Bywffg5+K/1gV3RYGH5k3F2dsbt27fRp08fdOjQAdeuXcPYsWOxYsUKODo6omnTpowfR2lpKYYMGQJ/f38mdj0wMBAODg5YtmwZeDwezpw5Aw0NDRgbGyMpKQkLFy7EkSNHAADq6uqoW7dulVSqlSkpKcG0adNgbm6OV69eYdSoUQgODmYcuZ89ewY3Nzd4eHjg+PHjUFZWxtmzZ1FaWorw8HDcuXMHBQUFSEhIAACoqanh+fPnTPlcLhc9evRAUlISBg0axGzfuHEjmjRpwsTed+vWDSKRCAcPHoSKigp++eUXeHl54d69e3Kpdb9GVlYWHBwcMH78eBQWFmL8+PGws7NjnLGjo6Px+fNnODg4YM2aNTh79ixCQkJw7tw5uLm54cKFC9iyZQtGjBiBrl27YsyYMUhJScHu3bthaWmJjx8/wsfHB506dQKfz0d6ejpevXqFnJwcREREyKViDQwMRP/+/TFr1iy5DF1z5szBvHnzMGHCBBw9ehRz5syBmZkZzpw5g5kzZ8LS0hIXL16Ei4sLhEIh9u7dC0NDQxQXF8ulFK5MeXk57t69CwCIjY2VW0FxcHCAm5sbDh48CDc3N2RmZuL9+/fYtWsX0tLScP36dfB4PKSmpuLx48dYsWIFDh06hIEDB8Lc3BxhYWH49OkTHB0dER4eDi6Xi7FjxyI8PJxJTrBx40a8e/cOhYWFCAsLQ926dTFhwgTcuHED6urqzCoFALRr1w4DBw6EUCjEyZMn5fqRn5/PZA4TCAQAKjxLEhISMGrUKIwZMwZz587FixcvcOLECYhEIpw/fx7Gxsbo168f+vfvjzt37sDT0/OHM7T9ETE4KwRnYWFh+XtgJxosLNUgEolgb2+PRYsWAajIUrRt2zbcvXsX586dw40bN/D48WPmAXXdunWwtrbGpUuX0KBBA2RnZ2PMmDGwsLAAADmRuImJCXg8nlwWpO9ROfNUvXr1sGjRIjRo0ACFhYWQSqVYsmQJVFRUsHnzZuZh2szMTK4/xcXF3wz5kWU96tu3L5NNKT8/H7NnzwZQkbL04sWLePXqFfNAPX/+fOzatQvbt2+XE+ADFcZwI0aMQF5eHrOtuLgY27dvR+3atQHkmw55AAD74UlEQVRUTHjatm3LZG3icrlQU1PDokWLmHS6c+fOxcePHzFhwgQAFaE1s2fPRosWLcDhcLB69WpwuVx06NABnz59grGxMXr06AF3d3f06dMHzZo1g56eHhYuXCiXrUvmqaGhoYHOnTszouPPnz9DWVkZL1++hFAoxKRJk/DmzRvo6upi5MiRGDBgAGMM2KRJE3Tr1g15eXlISEj4qtA5NzeXKV9XV5cRqwMVIWz16tUDEaFZs2a4d+8e1q9fj169eiE4OBj6+vp4//49rl27BiLCtWvX8OzZM8TExEBPTw/e3t7Ys2cP1q1bB2NjYwAVE8/o6GimjsjISCxevBhqamqIjo7GihUrUF5ejg0bNjCTPBmurq5VEgm0bNkSPB5PLuWxbHypqqpCR0cHS5YswZYtWxAREYEPHz4gLS0NRUVFEAqF4PF4UFZWBp/PZyY13t7e1V6r4uJiJvQNACsGZ2FhYfkHw2adYmH5Cl9zOr9z5w709fXl3oJbWVnJuUqPGjUKoaGh8Pb2xuzZs+V8B34PV65cQfv27WFgYFCtE3ZaWhqaNWtWxeDwR7C3t4dYLEZGRgYAIC4uDh8/fkS3bt0AVGQtKiwshLq6upzL+uPHjzFmzBjGJ0GGv78/7t27J7fNwMCAmWQAFQ+15eXlTJ0AYG1tzZg8AhU+EjY2Nsx3Ho8HdXV1vH//Hhs3bsSFCxcglUqxdOlSpKWlMQ+penp6OHz4MAoLC3Hv3j20bt1azo1cxvDhw5Gbm8u0YfLkyVBWVsaIESOQm5sLLS0tDB8+HElJSYiKipJr2/z58/Hu3Ts5h/TU1FRwOBy5CZaMmJgY+Pr6ym3Ly8uDp6cngIpVApkGw9PTE0uWLMHbt29x4sQJWFpa4t69e+jduzf09PTw+fNneHh4YM+ePVBQUGAmGUDFWH358iU4HA4CAwPx8OFDhISEoEuXLkhPT2f6IBaL0a9fP+a8M2fOyLVPNjE9d+4crly5glWrVsHY2BjPnj1jsmQ9evQIr1+/BpfLxdu3bxEREcHcd5mbeGZmJoYMGYIuXbrA0NAQJSUlVa6DDNYZnIWFheXfA7uiwcLyFf6IK/nUqVMREBCA/fv34+DBg4iMjMTmzZvRqVOnH25HTZywRSLRD5dbHVpaWswD94EDB+QcxAsLC6GrqyuX2lSGzFyuMiKR6He1q7rrXt227OxsbNq0CS4uLti5cydGjx6NJ0+eYNWqVcjOzsb27dt/uO7K/JkO35qamnITUaBi5UQWfnTnzh1wOBxmpcPDwwNr1qxBeno6+Hw+LCws4OHhgdTUVLx7946ZaAIVq0Jv377Fp0+fmOstE70bGBgw3hsrV65Ew4YN5drF4/Hkvkskkmrbb2RkBFVVVZibm+Pt27fo3r07Tp06BaBiXAwYMADDhg2rcl7ltLuDBg3CkydPcPHiRSgofP1/PawYnIWFheXfA7uiwcLyg8hcpZ88ecJsu337NvLy8uTizs3MzDBy5EgcOXIEnTt3ZvQRAoEAZWVlNa5P5oQ9e/ZsNGvWDBYWFnj16pXcMba2tjh9+rRcVqXK1LRObW1tvHnzBleuXMGaNWtQq1YtAAAR4ebNm3j27BmsrKzg5uaGRYsWwcTEBKGhoXj69ClGjhwJDofDZCpKTExk3noDYDQGixYtQt26daGiooIOHTrIOY6XlJTgypUrkEgk0NXVRWxsLNLS0qpoBWTIHNJ9fX2hqqqKc+fOwcfHB8nJyRAIBDAxMcHq1auZ40+ePAkXFxcoKipCV1cXAKpcl8qmi5qamoiNjYWJiQnj8M3hcJhJTKNGjRh3740bN0IikTCTrlq1ajGTJBsbG4hEIiQkJKBfv37Q0NBAq1at0LdvX7Ru3RpLly5Fq1atoKamhpKSEvTt2xcFBQWIjY1lJhWyiUZqaio8PDyYNhoaGoLL5cLU1JRZZerZsyeAihCqHTt2QFVVFY8ePUK9evWwbds2tGjRAjY2NvD19ZWbkA0YMACtWrVi9EKysKWZM2cy93Ds2LG4ceMGdu7cCQDQ19fH+vXrYWtriwYNGmDIkCFQV1eHiYkJiAjDhg2DVCrF6tWroaysjEePHn1jBLLO4CwsLCz/JtgVDRaWH8Tb2xs2NjYIDAxEXFwcSktLMXjwYLi7u8PZ2RmfPn3CmDFj0LVrVxgZGeHp06e4dOkSunTpAqDCpbuwsBDHjh2DnZ0dxGIxoxeoDpkTdnx8PAYOHIibN29i2rRpcseEhYUhPj4e3bt3x/jx46GiooJff/0VLi4uMDc3R926dXH48GFkZGRAXV0dKioq1dYlFAqhq6uLkJAQEBFjsJecnIzdu3fD2toaRIQBAwbgw4cPOHfuHBwdHXHnzh2EhYXJheF8jRkzZmDp0qXIycnBiBEjYGFhwYToXLp0CW/evMHevXuhra2NKVOmMGlov6ROnTq4cuUKYmJioKurCwcHB4waNQqnTp2CqqoqLl26hKysLLx+/RpAxUN3mzZtEBwcjHXr1uHu3bvo1KkTtm3bxtybykyZMgVOTk4oLi7Gq1evcOXKFUYIHhcXB4FAgMGDB+P9+/cICAjArVu3cPXqVRw9ehRhYWE4cuQIpFIphEIh1NTUEBAQgBcvXmDXrl2YNWsWTE1Ncfv2bQwZMgQaGhpYsmQJAGDfvn0oKiqCjY0NNm7cyBglurm5wc/PDyUlJXIrGkDFRNLQ0JBZbWrXrh0yMjLg4eEBZWVleHp6YuzYsbhw4QLu3LmDiIgIFBQU4Nq1a+jZsycSExMBVJg/du/eHYsWLcLw4cMZ/cbYsWPl6uvduzciIyNRt25dpKamgojQpUsXdOvWDenp6di3bx8uXLgAHo+HpKQkfPr0CZGRkbhz5w5atGiB8+fPQ09P76vjsDp+VAzOCsBZWFhY/n7YiQYLyw/C4XCwe/duDB06FG5ubuByufDx8UF8fDyAinCUN2/eoHfv3nj58iUjNo6KigIANG7cGLq6umjXrh2KiooQGRmJqVOnfrU+TU1NJCYmYsKECVi0aBEcHR0xf/58dOjQAfPmzcPGjRuhrq6O48ePY8yYMXB3dwePx4O9vT2aNGkCAOjXrx9SU1Ph7OyMwsJCnDhxAnXr1q22PgsLC5w4cQISiYQJ7cnOzoauri5OnTqFqVOnYs6cOcjNzYWOjg7c3NzA5/OhpKQEZWVl9OrVCykpKXj//n2Vt9EcDgfjxo3DsGHD8PbtWxgbGzPhPu/fv8eDBw/g7OwMLy8vABWeEd/LZqWkpIS5c+fi3r17+PjxIxwcHLB69WqYmJjIia4HDhyIoqIiLF68GBwOh3Hr3r17d7UhcTKH74yMjP9j77yjorrat30NDDP0pggoSBFUVMReiApWbChorChgN/YaW1TsxiS2qDExCtg1scUSO6ACURSxIiqKmIhip6ggsL8/+Ob8GAE1yfvmNcm51jprMTP77LOffcZk9tnP/dzcuXOHNm3asHXrVpydnenXrx8ODg4MGjQIhUKBEILExETatm1LWloaAPXr19fa0dHT06NGjRp4e3szZ84c7t+/j6WlJWZmZgwcOBBnZ2cp5m7dumFmZsbFixel3QtLS0uqVavGgwcPpB2gomM9d+6clGKm2TUwNjbG1NSUESNGYGJiQr9+/VAqlUydOhV3d3fGjBmDkZERmzdvBgpT57799lsCAwO5f/++5N/xZqrToEGDWLVqFSNHjqRBgwYsWbKEadOmERwcjBCCSpUq4e/vz/z58/H19WXnzp3S9x8KNU1BQUHSAqcoshhcRkZG5h/E7y6IKyMj86d5/PixyMjI+FN9/Dfcy4v2WaZMGaGvry+EECI1NVXY29sLOzs7MXDgQLFz504tR3GN8/OqVauElZWVuHTpkli6dKmWA7qXl5dQq9Va11u8eLFwcnISQryf2/fb2LZtm9DV1S21JnidOnWEnp6e9DozM1NERkZqXbOog7UGDw8P4eXlJTw8PIQQ2u7ZaWlp4tWrV8LU1FSEh4cLIYSIiIgQgHj69KlWP15eXmLgwIHFxrV48WJRtWpVIYQQ9+/fF0qlUsu34m0UdXzv0qWLCAkJETNnzhRdu3YVQgjRuXNnERQUJIQo9FkBtDw8NM7jDRo00Oq3V69eAhDffPON1vua2Ozt7cWSJUuEm5ubmDFjRolju3DhggAkDxYNfn5+ol+/fqXG9J9yBv+Q+LfV3P9QkWP4MJBj+DCQfTRkZP7BvI/nxIeEvb09SUlJHD16lCNHjjBs2DC++OILoqKitITaycnJuLm5UaNGDc6ePVusH4VCoSWC/j0C+3fxe4XnxsbGWjsOUOgnIt7wMylJ96KJWZPy9b5xlCS2DgwMZPLkycTGxhITE4OTkxNNmzZ93zAk+vfvz4gRIwCkNKyiaFLQ9u/fr1X5C9Dy/3jx4gXnzp1DV1eXGzduvPWab5vz36NDKoosBpeRkZH5B/EHFkEyMjJ/kqI7B2PHjpUcnRUKRTG37Lf1MXLkSDFx4kRhYWEhrK2txcyZM7Xa/F4Hc2NjY9GzZ0/pyXXRo2jf165dE4A4d+6cEEIIV1dXyUVdcxSNqWvXrpJzt+YJ+48//iisra0FIBwcHMTcuXMlt28hCncXpk2bJpRKpVAqlaJixYpiz549Ij09XYrJ3d1dxMXFCSEK3a0VCoU4cuSIEEKIjRs3as2jrq6u9ES/WrVqYubMmaJChQrCxMRE5Ofni4iICGFkZCSUSqUwMzMTnp6e4tKlS0KlUhWbi5EjRwohCnc3du3aJczMzKR2Rdvr6OgIAwMDceLECemef/fdd8LOzk4YGBgIPz8/8dVXXwk9PT0xaNAgUaNGDTF//vy3fnd++uknUa9ePaFWq4VarRY2NjZCCCHy8vKEra2tMDQ0FGZmZsLAwECUK1dO+Pv7CyGEyMjIELq6usLe3l6rvyVLlggHBwfpdeXKlYWxsbEYNGiQ5LQ+bNgwkZubW+L3QvO/kdDQUGFmZib27Nkj3NzchI6OjtDT0xM6OjoiLS1NCFH4BK1ChQqiSZMmokmTJm+NU4PsDP5hIMfwYSDH8GHwb4vhz+xoyFWnZGT+h5w9e5Zly5bx1VdfERkZya5du5gyZQoJCQnS8TbCw8MxMjLi9OnTLFq0iNmzZ3PkyBGg0I26c+fOPHnyhKioKI4cOcKtW7fo0aOHdH5AQAB2dnbExcVx7tw5KlasiI6ODp6enlhYWKBWq0lLS2Pp0qVYWVlx+fJlbt26xcaNGzEwMJAcwx0dHfH09MTX15caNWoQExPD9OnTMTY2xtbWlsOHD+Ph4YGbmxvTp0/n3LlzdO/endq1a1OhQgVCQkKYN28ejRs3ZuLEiURERJCbm8uiRYtQKpX06dOHDh060LdvXwIDA+nTpw/x8fFUqlSJwMBAhBA4OjoSFBRE//792b17NzVr1uTbb79l/vz5JCQkSIJmPz8/li9fzrVr17h//z7jxo2joKAAPz8/qlevjoWFBV9//TXt2rVjwoQJqFQqGjduTPXq1SX9hUb7UpSxY8cC/7fLMWHCBLy9vTEzM6NWrVoA3Lt3j6FDhzJ69GgSEhJo3bo18+bNQ09Pj/DwcBITEwkKCir1fu/fvx9/f3/at2/P+fPnadOmjVQZTKPLsbOzY+/evcTGxgJw9OhRXr9+jYmJCZ6enty7d4/w8HCSk5OJj4/nxIkTWrsdN2/eRAiBrq4ugwcPRq1WExoaqqWnKF++PLNnz+bUqVOSKP7u3btkZ2czduxYvvzyS65evSppWD777DPp9YsXL7h69aqWCaWMjIyMzD+U378GkpGR+bNonm7v2LFDmJqa/iG9hpeXV7GnwvXr1xeTJk0SQghx+PBhoaurK1JTU6XPr1y5IgBx5swZIYQQJiYmIiwsrNi4hNDWaOzatUs0bNhQmJqaCiMjI9GoUSNx9OhR6bzY2FhRs2ZNaddAiP97wu3g4CDKlCkjGjZsKOkcevfuLVq3bq31NH3ixImiSpUqonfv3sLQ0FDo6uqKunXrigYNGojJkyeLtLQ0AYjp06drXReQnpi/fPlSjB07Vtja2gqVSiVcXFzEunXrpPEYGRmJ+vXrC5VKJYyNjYWVlZV4/fq1ePz4sQDE/v37RY8ePYSpqamwt7cXYWFhJWo0du3apfW3mZmZ+OKLLwQgvv/+ezF79mxhY2Mj7eokJiYKLy8v4erqKjp06KB1zwICAoSpqalwcHAQ7du3f+s9b9y4sQgICJBeF9VoXL9+XQAiOjpa+rxdu3ZCV1dX0pTMmDFDlC9fXlSpUkXo6ekJKysrUbVqVWFtbS3S09OFtbW1qFOnjnBwcBB5eXkiNzdX1K1bV1hYWAg9Pb1iGg0hhIiMjBSenp5CqVQKQHh6ekr6lJcvXwpPT0+hq6sr1Gq1+Oijj8Tnn38ujI2NRVZWVokxvnr1Sjx//lw67t69K2s0PgDkGD4M5Bg+DP5tMcg7GjIyf1Nat26Ng4MDzs7O9O3bl02bNvHixYv3Pr8093LgDzmYr127VnL4/vLLL6XcfT8/P3755ReeP39OVlYWsbGxUmUoKPSTuHDhAiNGjJBKrwYHB0vu2CYmJjRq1EjaoUlMTOSjjz5izJgxpKSkAIW7BLdu3WL9+vVkZ2djZ2eHv78/SUlJuLi4YG1tDaDlEq55z9XVFSgsz7t48WLu3btHTk4ON27coF+/flJ7pVLJmTNnyMnJYfz48ZQvXx6lUomlpSXBwcF06dKF7OxsZs+ezenTpwkKCiIhIUHLt0IIUaK798cffyzdk+nTp5OWlsbjx48BSE9PJzIyEiMjIxo0aAD8n4O4Jp6nT58yYMCAkm/0/ychIUFr3sPCwti9e7c0p0qlUsuU78CBA7i7u5OYmMjdu3f56aefSE9P59atW9ja2tKrVy/69OmDvr4+VlZW3L9/n6SkJAwNDdHV1UVPT4+zZ89St25dCgoK8Pb2Rgih5Y7u5eVFdHQ0a9asQaVScerUKUn7oq+vz65du9DR0SEyMpJTp05x6tQpunfvXqo5oOwMLiMjI/PPQRaDy8j8DzExMSE+Pp7IyEgOHz7MjBkzCAkJIS4urphQuST+jHs5/GcdzN/Gmw7UpSGEYOvWrTRq1IicnBypBG3nzp0lI8CiMWve+08QGhrKqFGjOHjwINu2beOzzz7jyJEjNGrU6Hf1U9L43nZPsrKyePXqFTY2NnTq1KnY50XF83/UAf7p06fUq1cPfX19HBwcOH78OFeuXGHixIk8ePCgWL9v3q/3nWcDA4NibcuVK4evry+hoaE4OTnx888/S34fr1+/LvYdlsXgMjIyMv8c5B0NGZn/MUqlklatWrFo0SIuXrxISkoKx48f/9P9/tUO5u+ioKCATz/9FEtLSxITE1m/fr30WWpqKuPHjycvL4/AwECqVKnCgwcPyM3N5eTJk/z222/Url0bAH9/f3R1dTE0NKRq1apA4Y91jSv52zxJNOTk5HDkyBGuXr2KWq2WHMRr167NlClTWLBgAUIIPvroI2xtbYmIiCAvL08639HRUdr50dC+fXut1wqFQorRx8dHcu6Oi4sjJSVFchCfO3cuubm5VK1aFaVSibe3NyNGjKB///4oFAoMDAzQ09NDqVTy7NkzBg8ejLGxMcnJyZQrV05yPndzcyMvL0/yvgB4/PgxSUlJREZGolKpGDduHJmZmdjb29OuXTuOHj3K06dPefr0KVDoPp6dnc3ly5e1XN41HDp0CDc3N1JTU1m9erWkWdGQm5uLm5sb+vr6VK1alVWrVgEwcOBAtmzZgo2NDeXKlWPq1Kno6+trubBrkJ3BZWRkZP45yAsNGZn/Ifv27WP58uUkJCRw584d1q9fT0FBQTFDtj9CUQfz+Ph4zpw5Q2BgoJaD+YgRI4iMjOTOnTtER0cTFxeHm5sboO1g/ujRo9+V0lUSRYXrU6ZM4datWwQFBXHt2jWaNm3K7du3mTlzJjExMdSqVQuVSsUnn3wixaBZVMycOZOlS5eybds29u7dCxQ+SU9LSyMtLY0JEya8cyyBgYFcvnyZChUqkJiYSEhIiCSgPn36ND4+PuTn5/PZZ5/xzTffEB8fz/Xr10lISODRo0fFSuCWxueffw7AunXraN++PefOnePAgQP8+OOPksGjubk5ZmZmbN++XWuuLC0tOXToED///DObNm1CCMGyZcvIz8+nX79+7N27l6ysLH777TegMH2sc+fODBo0iFOnTnHhwgX69OmDra0tCQkJDBs2jDZt2vDw4UMWLVpEcnIyO3bsQKlU8uLFC4QQ7Ny5U1rAaeZTQ0FBAV9++SUbNmygQYMG/PbbbwwbNkxyXo+NjeXVq1fMmzePxMRE5s+fz/Tp0wkPD8fHxwcTExMAXr58yejRo0lMTMTHx+e95lFGRkZG5m/K71Z1yMjI/Gk0ouuTJ08KLy8vYWFhIQwMDETNmjXFtm3bflcfRSlq0CbE28vb5uTkiJ49ewp7e3uhUqlE+fLlxYgRI8TLly+l84cOHSrKlClTrLxtaYwePVp4eXlpvefg4CAqVapUTLheqVIlUaZMGUlEPG3aNOkzjWh97NixQoj/E61TRIgtRGFJW0AYGxu/c2wacXpSUpIARN++fSWB9/3794Wfn5+wtbUVurq6QqlUiunTp4v8/HwhhBBLly4Vurq6wtzcXACiTJkyYsmSJVrjcXNzE4A4f/68EKJQKD5hwgQBiIiICJGVlSUAMWrUKFGhQgWhVquluDUlaoUovK+1a9cuNv5q1aqJzz//XOzYsUPUqlVL6OjoCLVaLbp06SK1efLkiejbt69U3tbHx0ds375da5zffPONsLe3F0ZGRiIwMFC0b99eAOLBgwdCCCGMjIxEjRo1tK7dunVrAYibN28KIQpF+BUqVNAqb2tlZSUMDQ21zpszZ45o3LixEEKIkSNHFoq6Z8166336M2LwD5V/m3D0Q0WO4cNAjuHDQDbsk5H5B6PJUX/z7z/ah4Znz57h6OgIFO5IjBkzhj179pR4vkqlYsuWLaX2HxYWxpYtWyRB9/vwZjoRQEpKCt7e3lSvXl3r/erVq1OmTBlq1arFkiVLmDt3rvSZRrSuKQurEa23bNmSa9eukZycTKVKlXB0dCQ0NJQxY8a8c2zBwcEEBwezfft2dHV1Wbt2raQPsLa2ZteuXQB06dIFMzMzZs+eLZ3r7e1Nfn4+Fy5coGLFitIciyI7GyqVipkzZ0pjBmjQoIFWG1NTU+rWrcuyZcuIjIykefPm3L17FxcXF62x1q1bt9j4Bw4cyHfffScJ6e3s7Dhy5AhNmzYlJCSE3bt3k5CQoJWSBkipVJpxDB06lKFDh0qfL1myhAMHDkivy5YtW0yU3rt3b6Kjo5kzZw7Pnj1j9+7dfP3113Tt2pWCggKys7N5+PAhBgYG6Orqoquri0qlIi8vDzMzMwAePHgAoCVmL4kFCxYwa9ast7aRkZGRkfl7IC80ZGT+ocTFxZVa2edNNIuSoj/Ye/ToUUx38Gf4M8L1/6Ro/V2C6kePHrFr1y6WLFlSqiD/9zqIa1AoFOzfvx8PDw8p5WnLli00adIEZ2dn6b3U1FSOHTum9aP8jzqIu7i4oFAoSExMLHG+EhMTsbCwwMrK6q39lBSLZg40Phxr1qyhSpUqKJVKjI2NAcjOzubUqVPSgvdd30lZDC4jIyPzz0HWaMjIfICkpqZibGxc6pGamvrOPqysrDA0NPzDYzAwMKBcuXLS65MnT751TH+U/5RovV27dqWObf78+VI/7u7uFBQUEBUVVeJ4KlasCGjvVkRHR2NiYoKdnR1QOLe//vqr9HlGRga3b99+r3hv375N69atJcM6AwMDHjx4wBdffEHFihXJy8vjzp07tG7dWiuGgwcP4ufnJ5nnFS3b+zbKlClD69atWbVqFS9fvtT67P79+2zatIkePXpIwu8/UgTA2tqa8uXLc+vWLerVq0etWrVwcXHBxcWF0aNH06ZNGwICAt6rL1kMLiMjI/PPQV5oyMh8gJQvX17LHfzNo3z58u/so2hlJCEEISEhVKxYEbVaTfny5Rk1ahRQmBZ0584dxo4dq1VpKCwsTOuJ/sGDB7G3tyckJAQzMzMUCgVeXl6cOnVK8sfIzMwkICAAIyMjbG1tWbJkCd7e3ty8ebPUcRYVrf/yyy8EBgZSq1YtFAoFPXv25JtvvpFE69u2bcPNzY2tW7dy/PhxJk+ejJ2dHVlZWQQHB2NiYsKwYcO05sre3p7nz59L13NycqJx48Z06tQJtVqNo6Mj8+bNY/v27aSkpEiVkCwtLVEoFLRo0YKZM2diaWnJqFGjGDNmDBcvXmTFihW0b9+eZs2aERQUJJWEff36tdYC7U2GDRsmeVlA4e7I/v378fHx4ejRo9SrV4++ffty9uxZKYYDBw6wefNmfvrpJ9asWcOVK1feuttUUFDA7NmzsbOzQ61Wk5qaSmZmJj4+Ppw4cYKYmBgUCgUNGjSgoKCA0NBQ6tevz/Xr17G0tGTOnDkYGhrSsmVLHj58WKz/WbNmERgYCBSmYuXm5jJr1iwWLFiAi4sLQUFBXLp0idDQUMqXL0+1atWkUsVTpkyRvF5kZGRkZP7ZyKlTMjIfIEqlslje/p9hx44dLFmyhK1bt1K9enXu37/PhQsXANi5cyceHh4MHjyYQYMGldqHnp4ev/76K7GxsRw6dIinT5/SvXt3fvjhB+bNmwcUaimio6P56aefsLa2ZsaMGcTHx7/1qbRCoWDPnj2MHDmSpk2bkp+fT+PGjVmyZAmZmZncv3+fx48fExAQwL179zAyMiIgIIBOnToxfPhw9PX1GTp0KMOHD+fx48dcvHhRa+7UanWxdKk7d+7g7e3NuXPnuHv3LtOnT2fZsmXY29uzY8cOunbtiru7O0lJSVy9epUBAwYQGxtLeHg4n3zyCadOnWLGjBlERUWRnZ3N0qVLpR2Nffv2vVeFLs2Y8vPzcXZ2JjAwkLCwMAwMDDA3N6dOnTpA4aKhW7duGBsbc/LkSXx9fXnx4gWjR48uVd+zbNkyvvrqK7799ltq167NunXrWLx4MWXLlqV79+48efIEKEx5Wr9+PTVq1KB///707t2bgoICypYty927dzl+/DgzZszQMgE8duwY+vr6zJ07l9GjR7Nz507KlCnDvHnzMDQ0ZMiQIWzatIm9e/fi7u6Ou7s7c+bMwcjICC8vL+7du0dwcLCWLqQoOTk55OTkSK8zMjIAWHn5CSrT0qt9Ta5d9p1zLiMjIyPzF/O75eMyMjIfLEUrUanVatGsWTMhhBAWFhbCysqq1OoSDg4OYsmSJVrvaao0af5Wq9XC0NBQZGRkSG0mTpwoGjZsKIQQIiMjQ+jp6YkffvhB+vzZs2fC0NCwWHWsktBUgzpy5EiJn0+dOlVUqVJFFBQUSO+tXLlSGBsbS9WhSorDw8NDq2IWID777DPptaYa1M8//yyEECIiIkIA4unTp1r9vKsalAZfX18RHBz8znhPnz4tALFz5863tjt8+LDQ1dUVqampIjMzU5iamoqlS5cKQJw5c0YIIcTMmTOlClpCCFG+fHkxb948rX7q168vhg0bJoT4v2pd33//vfT5li1bBCCOHTsmvbdgwQJRpUoV6XVQUJCwtLQU2dnZ0nUrVKgg3YOgoCBRpkyZt97vuLg4AYjMzMwSP585c6ZUzaro8a6qUx8y/7YKNR8qcgwfBnIMHwZ/VdUpOXVKRuZfwPHjx1Gr1Tg7OzNo0CB27dqlZUBXlJLM6Hr06MHIkSNxdHSU/BAAbG1tpTSYW7du8fr1axo0aCB9bmZm9t6eIAkJCejq6uLl5VXi54mJiTRu3FjLRO6jjz4iKytLSy/xPtSsWVP628jICFNT0xLTeSIjI1EoFFLlrdKqQWn0Ig8ePODnn3+W9BdvQ5TixREbG4uuri4dOnQACuPWpEDNmTMHc3Nzhg8fjrm5OYmJicXOz8jI4N69e3z00Uda73/00UccP35cKx2u6DxYW1sDhRqWou+9OS8eHh5a2h8jIyOysrK4e/cuy5Ytk/xONJw7dw5fX18qVqyIiYmJdH9L0xlNmTKF58+fS4dGuzO8hiWTa5ct9ZCRkZGR+fCQFxoyMv8CatWqxfXr11m1ahUGBgYMGzaMZs2alVgpqSQMDAwwMjL6U5Wj3ucafxYdHR2Sk5O1RNQXL15k/vz5WqL1PxpHSRWTAgMDuXXrFrGxsWzcuPG9q0G5urqiUCi4du2a1vtr165l5MiRnDhxgnv37gGQl5eHtbU1mzdvZt26dSiV/5f1mpqayvz587l06RLGxsaSfqdt27bvLBxQdB40Czg9PT1yc3Ol937P/TUzM9MaW3Z2Nj4+PpiamrJp0ybi4uKkMsKaa7yJLAaXkZGR+ecgLzRkZP4FODo68u233+Lr68uyZcvo2rUrsbGxGBoaUr58eZ4/f05+fr6WMLxfv36SiDosLIyFCxdK/YWEhFCrVi3i4uL49ddfJd8JPT094uLigEJheLdu3Th//jxr1qyRhOGleV68WQ0qJyeHSZMmYW9vj1qtJiIigoMHD0o7AVFRUXTu3Bko9KuYPHkyZcuWRalUkpCQgJmZGUOHDkWlUjF06FBJGF4UhULB999/T3Z2NoMHD8bV1VXynbh9+zbNmzcHwMLCgqioKA4fPgwUCuhHjBjBmDFjqFKlCmZmZgQHBzNr1iytalAaYfjatWuLxWtpaYmPjw8rV64kOzsbKNRMbNu2jU8++YTWrVsTFhaGm5sb9+/fJzU1lTlz5tC1a1etqlxxcXG8fv2aypUrk5CQwJYtW9DT05MqR/n5+XH27FkOHjzItWvXeP78OU5OTgCsXr1a+n5o/Dfs7e0ZPHgwANu3byczMxNDQ0OcnZ05f/48Fy5c0Kpe9eLFC4yNjbG3tyc4OJjLly9Ln61bt47Hjx+zd+9e/Pz8mDBhApcuXSrx/svIyMjI/POQFxoyMv8CsrKy+OWXX7h8+TKrVq1izZo1qNVqzp49y+7du7G1teXEiROsWLECW1tbZs+ezdKlS9/6NDk5OZnLly9jbW3Nvn37iImJoXr16kycOJGIiAj69evHgQMHMDQ0pEuXLpw8eZL4+PhS+3N0dCQoKIj+/fuze/duqYRtjx49SExMZPXq1Tx9+pSRI0cSFRVFmzZtePDgAcOHD2f16tWsXbsWlUrF1q1bSUtLQwjB4cOH0dPTw9LSEhcXF9RqdbHrzpo1C5VKxZw5c2jfvj2zZ89GoVCQkJDAunXrAEhKSqJx48ZaaV3h4eGoVCqio6NZuHAht2/fJjMzk7Zt20ptNMLwHj16lBjzypUryc/Pp0GDBuzYsYOvv/4aBwcHDh06RFxcHOvWraNly5ZSVa6UlBTy8vIIDAzEy8uLevXqSdWu1Go1Li4uTJkyhZo1a6JWq5k7dy5BQUGsWrWK5ORkpk2bhqmpKWfOnAGQKkcBbNu2DYATJ04wffp0APT19TE0NOTq1assW7aM69evk5WVxYABA7h69So3btzg/v37jBgxAh2d4v87MTIyQqlU0qNHD8LDw0lPT2fq1KmlfgegcIGZkZGhdUChGHzh+UelHjIyMjIyHx7yQkNG5l+Ajo4Ov/zyCx999BHjxo1DR0eHPXv24OHhQYMGDVi3bh3Hjh2jVq1apKWlYWJiIpWwLY2CggJ69eqFnp4eTZs2pW/fviiVSho3bkzHjh3ZsWMH3bp1o0aNGtjZ2REaGvpOf4ZvvvmGjz/+mMGDB3PgwAH09PSoXr06zs7O9OjRg0OHDnHmzBlatmxJfn4+o0aNYunSpfj5+TFr1iwSEhJo1qwZHTt2JD09nRo1alCpUqW3XjM4OBg9PT2sra2ZP38+L168oE+fPkydOlVyyC5XrhwqlUproeLq6sqiRYuoUqUK/fr1o3z58hgbG3PkyBGpTWhoqFQxqiScnZ2Jj4+nefPmjB8/nmnTpvHrr79y7NgxwsLCeP78OSdOnGDPnj1YWFiwcOFCsrOzcXZ2lhYGb5Kamsrw4cOZMGECX375JRMnTiQ+Pp6ffvpJMu/TmPMV1VrUrl0bKCz/q5mzTp06oauri6OjI76+vlSvXh0DAwNcXV1p1qwZ27Ztk0onA5w6dUpaGAD079+f9evXc/ToUT7++GOg9JQpDQsWLMDMzEw63tyFkpGRkZH5G/G75eMyMjJ/C4pWoCpajSk1NVXY29sLOzs7MXDgQLFz507x+vVrqf27KlAJUVgZqFq1alptFi9eLJycnIQQQiQkJAhAJCYmCjMzM9GvXz9hZmYmateu/V4VqLZt2yZ0dXVLrYbh7+9frLKT5pp37twpFrOGkipQbd++XauNqampCA8PF0IIsWTJEgGIlJQUrTZeXl5i4MCB0mtNNajg4GBRtWpVIYQQ9+/fF0qlUpw4ceKd8QohxLVr14RSqRT79u0TOjo6on379mL48OGiT58+Ups374MQQuzatUsU/U/5zJkzhVKpFC1bthQLFiwQN2/elD4bMGCAKOk/+w4ODmLu3LnF3t+6davw9PQU1tbWwsjISKjVamFlZaU1D/r6+tLrXr16ifbt20uvr1+/Lnr27CmcnJyEiYmJMDIyEoDYv39/qfPw6tUr8fz5c+m4e/euAMSjR49KPedD599WoeZDRY7hw0CO4cNArjolIyPzX8He3p6kpKRiwvDfK+ouSVD96tUrtmzZIlUKGj16NPB/T8vfl/+UMFy8UdmpJPH7nxGGFxQUkJ6eTkhICObm5ixcuPAPCcOhUASel5eHr68vQggOHDjAN998w44dOyStzPvEFBISwpUrV+jQoQPHjx+nWrVqkgD7XfFoyM3NJTY2loCAANq3b8++ffs4f/4806ZNe+uOhEql0ppPX19fnjx5wpo1azh9+rSkf3lbH7IYXEZGRuafg7zQkJH5F2JgYICvry/Lly8nMjKS2NhYsrOzKSgoICMjg6lTp2JjYyOlxEBhOdbOnTtjbGzMggULSElJ4cGDB9Lnv/32G48ePaJPnz74+voChSVvFy9ezKhRo3j+/Dnnz59n2bJlqFQqrcpQb6YWaYThffr0kcTgLi4ukqjazc2NY8eOUb9+fdRqNba2tkycOBETExPs7Oyk8ezdu1fqMyMjg8TExGImd0eOHMHf3x9DQ0NcXV2lsr8pKSmMHTsWKNSPKBQKgoODgcJSvBEREQwcOBBra2tWrFiBm5sbAwYMwM/Pj9DQUL777jvu3LmDQqFAX1+/WLxFq0Hl5eWxfv165s+fj76+Pnv27MHHx4cRI0ZQvnx5tmzZIl03IyNDEo8DxVKoLly4wJAhQ5gxYwa//PILRkZGLFmyhMjISGn+NA7wmvv766+/cujQIQIDAzE1NWXw4MHExMRgYmJCeHg4zZo1w8fHh507d771e3Xq1ClpMfH48WOSkpK4d+8eXbt2pUmTJm81hJSRkZGR+echLzRkZP5lhIWFsXbtWi5fvsytW7fYuHEjBgYG6OvrEx4ejoWFBZ6enkyePJlZs2Zx5MgRCgoKyMrK4smTJ0RFRdG3b19yc3O1RM4bN25EpVJx5coVrl+/TosWLXj58iV2dnZMmjQJXV1dDA0N6d69O3FxcSQkJGgdRXF0dMTBwYEdO3YQEBDA4cOH+eSTT6SKRf7+/ty9e5dXr16xa9cugoODOXr0KHXq1JFEyfr6+pw9e5aTJ09y6dIlgoKCStScbNu2je7du3Px4kXat29PdnY2WVlZ2Nvb89133wGwcOFCLl26JDmgQ6G/RdmyZbl27RoXLlxgxowZHDx4EH9/f8LDw7l58yYzZ87EwMCA06dPF4tXU4YWCkXjT58+xcTEhOrVq+Pr68uIESPYv38/Xbp0kRYIzs7OAEydOpXk5GQ2b95MRESE1M/Lly9p0aIFSqWS3bt3891336FSqahUqRKenp7SDtP27du5fPkyw4YNk86NiIjAw8OD8+fPM336dFxdXcnIyKBPnz78/PPPtGrVigsXLmi5dr8NCwsLTExMsLS0ZMeOHSxYsEDy/XjbjtEfEYPLyMjIyHyYyAsNGZn/Im8r5/q/wtzcnDVr1vDRRx9Rs2ZNjh49yt69e9HT06NmzZps2rSJhw8fMnnyZACOHTtGYmIiBQUFbN68mbp162JnZ0fFihWJiopiz549KBQKnjx5gr6+PlWrVsXV1ZXdu3fj5eWFv78/q1evRk9Pjxo1auDs7IyHhwcuLi5aR1GuX79OSkoKfn5+rF+/njZt2rB69Wo8PDwA2LVrF/b29hgYGODv709YWBitWrXi7Nmz0o9YMzMzXFxc6NixIx06dMDPzw+VSlVsPlq0aEGvXr1wcXFh/vz5QGFpW11dXVxdXQFYsmQJNWvWZNq0aVrzqBGDV61alfT0dKpUqcL58+fJzc3F09OTX375hR49epQYb1G/ibVr19KqVSu2bNlCnz59gEIfDE0p2rNnz3Lx4kWMjY0xNDTkwIEDuLu7s2XLFq3Fnq6uLhkZGcTHx9O+fXvGjx9Pt27d+Oabb1CpVNSqVQuVSsUnn3xCjRo1WLVqlXSuq6sr48ePp1KlSlSqVIlOnToxfvx4li9fTseOHcnIyMDX1/ed3iuPHz9mzJgx6OjosHPnTh4+fEiHDh1YuXIlYWFhAFJqXUnIYnAZGRmZfw7KdzeRkZH5EAkLC2PMmDGSa/WbFE0RSklJkf728/PDz8+vWPs5c+ZQs2ZNGjVqxIULFwDo3Lkz6enp1KpVC0dHR6ZPn86zZ8/YvXs3ISEhWFhY8PTpU9LS0li1ahULFiygVatWtGrVim7durFp0yZprKNHjyYpKUnyaHgbGpdwjSfEmyQmJtKyZUvJkRsKU4Zq1arFr7/+SsWKFdHR0SEwMFBroafx8ihKt27dpL81LuGaBY2Ga9euaTlq16pVS1qEFGXgwIGsXr0aExMTAgMDGTZsGMePHy81zpSUFJycnDh//jwGBgbUqFFD0lNoysLGxMRIuoz4+Hj09PS4ceMGv/76K87OztjY2Ej9qVQqpk2bxrx58/Dy8pLug76+vtTGwMCAR4+0dwHs7Ozo2bNnsfHVrVuX6OhokpOT2bdvH3l5eVhaWgKF36+oqChq1KghtW/SpAnp6enMmTMHAAcHBzw8PHj16hW3b98mICAAoMS50zBlyhTGjRsnvc7IyMDe3p7hNSwpU6ZMqefJyMjIyHx4yDsaMjIyEn9EGK2jo4ONjQ2zZ8/WEiFXrVqVcePGkZycTEpKCi9evACQTPbext9FDF6UgoIC2rVrx82bNzE0NOTp06d/SAxevnx5lEolSqXyrWLwsLAwunfvLs2rhv+EGBz4Q2JwKFzsmJiYALIYXEZGRubfjrzQkJH5L1NQUMCnn36KpaVlMYF1amqqJLA2NTWle/fuWgLrCxcu0Lx5c0xMTDA1NaVu3bqcPXuWyMhIybn7TWHv29iwYQP16tXDxMQEGxsbevfuTXp6ulabK1eu0LFjR0xNTdm3bx8///wzZmZm3Llzh/DwcClVSqFQ8OzZM8zNzSWDOxcXF7766iv8/f1p2bIl69atw8PDg0WLFpGXl8e2bdsoW7as5JGh6UepVGJoaCgJpd90CS9KSEgI0dHR/Pzzz9jZ2Um6j6NHj0pi8ODgYJ4+fcquXbuwtrbG3NycqVOncvv2bQ4fPoylpaUkGteQm5vLiBEjyMjIYNCgQTg4OLB161aAd/p/ADx69Ag3NzdUKhUPHjxgzZo19OvXj6dPn+Ln5yfFqqOjI4nDNQ7dtWvX5osvvsDZ2VlLx3HhwgUtMbiVlRWZmZlkZWURGhpK3759qVy5stY4pk6dSt++fRk7diyHDx+WjA89PDzYt28f+fn5xMXF0bp1a8qWLYuZmRn379/n119/1erH09MTS0tLzp49S7NmzWjfvj0nTpwACndiNK7ply9f1hLKnzp1ijFjxkhi8NGjRxMeHo6npyd16tQB4N69e++cTxkZGRmZvz/yQkNG5r9MeHg4RkZGnD59mkWLFjF79mxJYN25c2dJYH3kyBFu3bqllXMfEBCAnZ0dcXFxnDt3jsmTJ6Onp4enp6fk3J2WlkZaWhoTJkx451hev37NnDlzuHDhArt37yYlJUX6gQiFDuLNmjVDrVZz/PhxvL29cXV1pWHDhri7u1O2bFkaN27MgQMHqFmzJs2aNaNmzZpAoWD6xIkTtG/fntWrV3Pz5k2GDBlCVlaWtIuhVCp59OgRn3/+Oc2aNWPnzp0cOXKEoKAg1Go1kZGRJCQkFHMJv337NpGRkWzfvh2AzMxMHj58SJMmTfj22285efIk06ZNk8wIAV68eMG5c+dYvHgx48aNY8GCBeTm5kri7KFDhwJIaUTLly/np59+wsjIiAULFrBp0ybc3d1RKBTs27ePhw8fkpWVVerclitXDiGEJCC/ffs2QUFBTJ8+nZSUFHbu3ElERAShoaEsW7aMhIQEduzYAcCMGTNQqVQcO3aMGjVqaB1du3aVxOANGzbE0NCQwMBAMjIyePjwIcnJyQBkZ2fz8uVLUlJSOHPmDCdOnCA6Opq4uDisrKy4ePEi3bt3Jysri6ioKLp06cKRI0f45Zdf0NPT49tvvyUzM1MrpocPH2JnZ8fevXspX748R48eRQiBvb29NPaqVauSlpbGsmXLtM61sLCgTJkyDBkyhJiYGGbOnCmlTM2ZM6dUrYcsBpeRkZH5B/G7nTdkZGTeGy8vL9GkSROt9+rXry8mTZokDh8+LHR1dUVqaqr02ZUrVwQgzpw5I4QQwsTERISFhZXYd0nmbb+XuLg4AYjMzEzh5eUl6tWrJ5ycnCQDn86dO4ugoCAhhBB37twR9vb2QldXV5iYmIhu3bqJ+/fvi9u3bwtA+Pj4CHt7e6GnpycAERQUJF6+fCny8/NFhQoVRNOmTUWZMmUEIFQqlXj16pXWWCpVqiS+/fZb6fXLly/F2LFjha2trVCpVMLFxUWsW7dOzJw5U+jq6ooffvhB1K9fX6hUKmFhYSEAcffuXSGEEEFBQcLe3l50795dmJqaCnt7e2FjYyOMjIwkw768vDwBiHHjxgkhhBg5cqRo0aKFMDMzE6GhodI4Zs+eLWxsbIRCoZDmoqgZohCFxn+7du0SQghx69YtAUj33dfXV/Tr16/E+dfMXbNmzbSM7opy+vRpAYgLFy4IIQoN+oyNjYVSqRQdO3YU3333nQBEaGioyMnJET179hR6enpCV1dXlC9fXowYMUJMnDhRNGzYUAghxNChQ6X7oJkLBwcHoVarxd69e7Viaty4sShTpowwNjYWXbt2FYAwMjISQggREREhAGFubi46d+4szbtSqRS1atUSQhR+RzX3u2bNmiIyMlJ6/aZRooaZM2cKoNgxK/K6WBD/sMTjQ+ffZu71oSLH8GEgx/Bh8FcZ9slicBmZ/zKaJ/4abG1tSU9PJzExEXt7e62qOtWqVcPc3JzExETq16/PuHHjGDhwIBs2bJCEvZUqVfrDYzl37hwhISFcuHCBp0+fSlqE1NRUIiMjad++PdWqVZN0C7t375bOrVixIi1atJDE4Bo0QvOFCxdSq1YtAKpXr07VqlXR19cnIiKC9PR0evfuTUZGBrNmzWLUqFHFhL0vX76Uns5DYXnaxYsXs3jxYq12ISEhVKxYkY8//piPP/4YgOfPn2Nubk5ycrKUEuXu7q7lMeHl5UWNGjWkFDNdXV0qVqyIg4MDAMHBwbRu3Zpy5coRHx9P+fLladOmDfb29rx8+VJLt/GmF0dRNJoJjeD+k08+oWvXrsTHx9OmTRv8/Pzw9PTUOmfZsmXS3AFS9amhQ4eycuVKLa2Jt7c3eXl5/PLLL9StW1eKf+3atQQHB7Nlyxa++OIL1q1bR2JiIkIInJ2dJYG1tbU11tbW+Pv7s2nTJpYsWUJ+fj65ubla3h4AY8eO1RLLm5mZ8fXXX2u1adeunRRzWFgYN2/elL7zlpaWKJVKXrx4ga6uLlDox1K7dm2p1O2byGJwGRkZmX8OcuqUjMx/mT8qNoY/LuwtiezsbHx8fDA1NWXTpk3ExcVJfWnEuf8JETYUpnxt3rwZgM2bN9O2bVsMDQ2BwvQsW1vbYr4SSUlJTJw48T9yfSh53t92L+rUqcPt27eZM2cOL1++pHv37tJC5n3IyckhPT1d+iHu5eUFFP4Qv3PnDmPHjuXevXu0bNnynWlua9eu5dNPP2XLli28evVK67PNmzfz6tUrGjZsKInGJ02axKlTp7h+/ToAvXr1Iikpifj4eGJiYrh7965WSt7du3dJSEhg2bJlxMTEkJCQQJkyZYqJtP/Id1epVJZYRvh9kcXgMjIyMv8c5IWGjMz/CDc3N+7evavlKXD16lWePXtGtWrVpPcqV65cTNgLhdV93kekrOHcuXM8fvyYnTt30r17d37++WfJwA0Kf0SqVCpOnjwp5c+bm5tL3gdQuCA5c+YM5ubmWFpa0rlzZy0RcWRkJA0aNGDOnDlcunQJDw8Ptm/fToUKFZg1axYXLlxg8uTJ/Pbbb1SvXp1atWppHY6Ojlou4c+ePWPIkCFYW1ujr69PjRo1uH79Oqmpqdy7d48dO3ZQvXp1ypYtC1CslKxCodDafXkzpry8PMaOHcvOnTtp3rw5NjY2zJ8/n/79+7Nt2zZ27NhRquje0dGROXPmEBgYCMDSpUuxtrZmw4YNAJJPxsOHDylfvjxDhw5l9+7dCCH46quvMDY2pnr16kChi7mG27dvExMTw+TJk6lcuXIxN+65c+diZWWltUibMGECarWadevWAXDz5k2MjY1p2LAhLVq0wMTEhJcvXxIWFsasWbPIzMzk7NmzdOjQgbi4ONRqNY8ePSI6OppOnTpJFagKCgoYMGAATk5OGBgYkJmZyeHDhwGkxcSbC4+EhARJxO/m5kZeXh7Vq1eXChB07dqVpKQkre+4jIyMjMw/E3mhISPzP6JVq1a4u7sTEBBAfHw8Z86cITAwEC8vL+rVq8fLly8ZMWIEkZGR3LlzRxL2urm5AYU/dLOysjh27BiPHj0qVub0TTQi5U6dOrFu3Tq2b99OUlKSVpt27dqRkZFBz549OXv2LPn5+cTExJCUlMTr1685evQoGRkZrF+/nn379mFoaEhQUBBQ+KPdz88PLy8vLl++TJ06daT0rHnz5jF+/HiqV6/OvXv3qFevHo6Ojnz99dfs27ePdevW0bdvXzZs2CC5hGvKxUZHR7Nx40auXr3KwoULUSgU6Ovr4+/vT7du3WjUqBF2dnY0bNiQL774Qmth9L5MmzaNSpUqMXfuXGxsbPj444/Ztm0bNjY2LF68uFTR/Zdffil5bgQFBbFp0yYtIz4o3N2xsLBg7969/PDDD3h6elKzZk0SEhI4d+4carWac+fO8eDBA54/f05oaCgdOnTAzMyMPn36SEJwKPwRn5aWhqWlpZZg3NbWFiMjI8LDw3n16hV+fn40btyYMmXKYGRkRPfu3VEoFPTo0YPx48ejr69Ps2bNiIqKwsnJSfK30DibaxzYCwoKsLOz44cffuDq1avo6+uzY8cOtm/fjoODAwqFgl9//ZWcnJwShfKurq7UqlWLly9fsnbtWr744guOHz+OQqEotczx7xWDy8jIyMh8uMgLDRmZ/xEKhYI9e/ZgYWFBs2bNaNWqFc7OzpKuQFdXl+3bt+Pr60vlypXp3r077dq1Y9asWUBh+dGhQ4fSo0cPrKysWLRoUanXyszMZPv27YwePZozZ87g7+9PQUFBsdQYU1NTjh8/TlZWFl5eXlKFIj09PbZt24apqSmenp4EBATw0Ucf0b9/f+lpfHZ2Ns+fP6djx45UqlSJgQMHcvfuXbp06YKlpSXGxsYolUpsbW05fvw4Pj4+fPbZZ7Rp04YJEyaQmZlJvXr1JJfw7du388svv5CcnEy3bt1wdnamY8eOuLq64uLighAClUrF5s2bqVevHj///DMjRozgiy+++N33YsKECTRs2JANGzZw8uRJ7t27R2JiIgcOHMDCwgKFQoGNjQ02NjYYGxsTEhLCvXv3aNGiBePHjwcgNDSULl26FOv74sWLCCHo1KkTffr0wdTUlN27d+Pi4kLVqlVZsWIF3377LTY2NrRs2ZKwsDDJHbxnz56cOnWK27dvA4UpVVZWVloGfBoMDQ1JT0+XfDdGjhzJs2fPyMnJ4auvvqJixYoYGBhgbGyMvb09L168wMfHh0GDBjFq1CigMH2sX79+ODs7A4W7MrNmzaJevXo4OTmhp6dHkyZNtHap4uPjOXjwICNGjChxbo8fP46XlxeDBw9myJAhVK1alRcvXpCTk1Nie9kZXEZGRuYfxO+Wj8vIyPxlPH78WGRkZPzpfhISEgQg7ty5o/V+7dq1pepJFKmcpKFoBaYJEyYIXV1dYWRkpHUoFAqxatUqIYQQwcHBQq1Wi44dO4qlS5eKe/fuCSEKKwlZW1sLDw+P9x6zl5eX0NPTE9evXxcPHjyQ3p85c6bw8PAQtWvXFiEhIVrn7N69W+jp6Ym8vLz3iklT9UlT5UsIIZ48eSIAERUVJYQoubrXzJkzhZ6enpg7d64QQohnz56Jp0+fCiGEGDVqlPDx8RFCCHHu3Dmho6MjUlJSpHODgoKkKk0a8vLyRFpamti/f7+wtLTUqgLSoUMH8dlnnxWLvyhLliwRDg4O0uvS7kPR898cByA2btwo3mTFihWiTp06omzZssLIyEjo6emJ+vXrlxrPmxW5zp49Kzp27Cjs7e2FsbGxMDQ0FIC4cuVKsWsJIcSrV6/E8+fPpePu3bsCEI8ePSqx/d+Bf1uFmg8VOYYPAzmGD4O/quqUvKMhI/MBY2lpKbks/7dRKBRvddLOysqibt26xUTc169fp3fv3kDhU/3Y2Fg8PT3Ztm0blStX5pdffvlD43n27BkqlQpXV1fKlStXYpt3aVTeFZOGojs7CoUCKK49KAmNlsHMzAxzc3MABg4cyJEjR/j1118JDQ2lRYsWUmWr0tDV1cXGxoawsDCePHmCgYGBJPQ+cOAA4eHh0njex/H8j96HN93Bt27dyoQJExgwYACHDx8mISGBfv36vdMdXMP7FCB4E1kMLiMjI/MP4ncvTWRkZP4yij4dXrlypXBxcRFqtVqUK1dOdO3aVavtiRMniu02aA5dXV3J82Dx4sXCy8tLDB06VBgZGYnRo0cLQJiZmYmVK1dK/RkbG0v+DEIIsXDhQqGnpydMTU2FhYWF6NSpk7h9+7bUPiIiQtSvX18YGhoKMzMz4enpKWrXri1atWpVzBOhqE/Fm1SrVk0oFAqt9kqlUhgZGQlAtG/fXpiamgpdXV3h7OwshBBi1apVwtnZWejo6AiVSiXWr18vhBCiXLlyYuXKlQIQq1evFt7e3gIQNjY2IiYmRvKC0NfXF40bNxY3b94UT58+FYCIiIgQQggxbNgwyT9Cc2i8QqytrYUQxZ/qu7i4CCsrK+m8li1biqysrBI9IiIiIqSdFT09PaFWq4VarRaAUKvV0lwoFAqxceNGsWrVKlGuXDlRUFAg5syZI6ysrIRSqRTGxsZi0qRJJe4aNWrUSIwcOVIIIcS8efNEuXLlSvSq2LVrl7h48aJo3ry50NfXF2q1WpQvX15kZmYKIYS4dOmSAET16tWFEIU7boCoUKGCdC1HR0dha2srhBBi9erVAhCbN28WdevWFQYGBsLFxUUA4vz586V+B4qieZIm72j8b5Fj+DCQY/gw+LfFIO9oyMj8wzl79iyjRo1i9uzZJCUlcfDgQZo1a6bVpl69esV2GxISEmjfvj3W1ta0a9cOIyMjdu7cSVxcHEePHkVHR0d6gu/u7s6KFSs4f/48Z8+e5eXLl5L3wevXrwkNDcXAwIAqVapILtDNmjVj+PDhpKSk0KlTJxQKBWFhYfz44494enqSkpJCx44dGT9+PBUqVMDQ0JAjR47QsmXLUnP0Dxw4QGxsLE2bNsXS0hJnZ2eWL1/O3r17AYiOjmbp0qXs3LmTlJQUevXqxahRo/joo49QqVT4+/vTr18/IiIiaNGiBStWrABg+vTpPHr0CD09PWxtbenduzdTp04FYNOmTQghStQZaPwwVq1axfHjx4mNjWXo0KEolUoGDx5crH1aWhq3bt3iyZMnmJmZERkZSZcuXRBCMGHCBLp3707btm0lcXlRTw0zMzMuXbokCcCrVq3Khg0baNq0Kebm5nz99dd4e3vz8OFDevXqxZw5c2jTpg1GRkYolUq++eYbcnJymDJlCrGxsdy5c4fDhw9z48YNrSIC2dnZtG7dmhYtWpCSkkJaWhoAr169wsfHBwsLC+Li4hg4cCBpaWn4+/tz/fp1tm7dikKhkITfJ0+elCpWaXj27JnkZWJtbQ3A+PHjGT9+PIsWLdKqsFUS7ysGl5GRkZH58JEXGjL/OLy9vRkzZoz02tHRkaVLl/7h/sLCwqS0mP8VqampGBkZ0bFjRxwcHKhdu7Yk4NVgYGCAi4uL1mFtbc3u3btZtmwZ27Ztw8vLi/j4eF68eIGtrS1ubm6SsLhfv37Y29vTtGlTevfujVqtlkqYagTq165dw83NjXHjxnHo0CF+/fVXSaicmZmJSqVi9OjRdOjQgR9++IGRI0cycuRIjI2NsbS0pF27dnTr1o2KFSuyZcuWEmN1cHCgYcOGWFpa0qZNG7y8vJg+fTpt2rQBCu9vv3796NSpE9u3b2fPnj0UFBQQFRXFnDlz2Lp1K126dOHLL7/kq6++ksTE+fn5LFq0CJVKxfnz50lJSZEWEc7OzowePbpEI77WrVszdOhQxo0bR8OGDdmxYweWlpYoFAosLS2LtU9LS6OgoACVSkVAQABly5Zl+PDhUslZAwMD1Gq1JC4v6jnRokULXF1dqVChAgBfffUVAQEBjBgxgszMTE6fPo2TkxOrVq1i165dFBQUoKury6effoqZmRk5OTk8ffqUa9eu0bVrVypXrszgwYMZPnw4Q4YMAaBr1660bduWqKgojh8/TkREBDY2NgCcOHGCV69esX79emrUqMFXX31Fy5YtOXr0KA0aNODJkye4urpKC43IyEhcXFwoKCjg2rVrvH79moyMDGmhofl3I4SgX79+bN68WfJKkcXgMjIyMv8CfvceiIzMB86bYtT09HSRnZ39Xuc6ODiIJUuWaL334sULLTHyX4kmloyMDOHu7i7Kli0r+vTpIzZu3PheMb1NBD5s2DBhZmYmvv/++xJF05pUpadPn/4pIbgQJQuYNXTs2FESTxelc+fOom3btgIQFy5cEJmZmSUKli0sLERYWJjWe0uXLhVOTk7Sa0Bs375dCCFETk6OOH36dDER+PHjx997a1iTbqZJ/ymaOpWXlyc8PT0FIFq2bCnmz59falsNmtQpTRtNSld6errUJj4+Xutempubi/DwcK1+TExMRPny5d85/tLGMXbsWOHt7a01phMnTmiJ45ctWyYMDQ3F6NGjRe3atcXPP/8sOnfuLL755hsRHR0t9PT0pO/m+8TxJrIY/MNEjuHDQI7hw+DfFoOcOiUj8xasrKwkV+o/goGBQali5L8KExMT4uPj2bJlC7a2tsyYMQMPDw+ePXv23n2cP3+eLVu2kJyczIsXLzh48CAAnTt3LlE0XVRo/TYhuMY9+48KkAcMGCCJp9/k5s2b1KtXj5o1a0pGfm8KljW8S6CsEXyrVCrpfv5REXhpvH79mocPH+Lk5IS7uzsfffQR4eHhAO9MGXrbmP9T4/tP4O3tzYsXL3j69ClXr16lSZMmeHt7ExkZSVRUFPXq1Sv27+33xCGLwWVkZGT+OcgLDZl/PEVTp4QQhISEULFiRdRqNeXLl5dSkLy9vblz5w5jx46VXKCheOpUSEgItWrVYsOGDTg6OmJmZkbPnj3JzMyU2mRmZhIQEICRkRG2trYsWbKkWErX28jJyWHSpEnExsby9ddf4+LiQnh4OK1atWLRokWsXLmS5ORkrKyssLW1ZfLkyeTl5RWL2dnZGT09PeLi4iSzNg8PD5KSkrh16xZjxoxh0KBBCCEYMmQIP/30EwARERG8evUKAAsLC1avXk1CQgLlypVj4MCBLF26lBUrVtCoUSO6d+9O//796dixI7Vr12bKlCnExMRQvXp1WrRowdq1a0t0Md+0aRPGxsb06dMHIQSVKlXC2NhYcszOy8sjJSWFAQMGSPNelODgYPz8/DAxMeGTTz6hSpUqAMTExDBz5kzu3LlDvXr1JGdwTYpXZGQkTk5OUj+a+3vmzBkAKlSoIGko3pfc3FzOnTtH2bJlsbW1Zfv27XTr1o1Zs2axf/9+ANavX4+xsTGbNm3ip59+kvQxOjo6VK5cWau/hQsXAvD1119ja2tLmTJlWLBggVYbZ2dnZs6ciYGBAU5OTmzatElrsfW27zqU7Czv5ubGhQsXyM7Olt5LSEhAR0dHml93d3eUSiVxcXHUqlULY2NjvL29iYqKIjIyUlp0NGjQgLZt2wLg4+PDnTt33ns+ZWRkZGT+GcgLDZl/FTt27GDJkiV8++233Lhxg927d+Pu7g7Azp07sbOzY/bs2ZJQtzSSk5PZvXs3+/btY9++fURFRUk/DgHGjRtHdHQ0P/30E0eOHOHkyZPEx8e/9zgDAwPZsmULrq6uBAYG0q9fP06ePElCQgKnT5+mU6dO0pi/+eYb1q5dy9y5c4v1Y2JiQlBQEBMnTqSgoAA/Pz/atm0rlcxdu3Yt3bt3p0OHDuTl5dGzZ0+OHTvGnDlzJIfrpKQkkpOTsbe3p3Pnzjx79ozQ0FDu379Pu3btCAkJoX379hw4cIC9e/dKAuSrV6+Sn59Pjx49cHR05Pbt2yQkJPDo0SNycnLo1KmTtDMyYMAAbGxsOH/+PAkJCRw4cIB79+4hhKBXr16lztOxY8dwcnLi9evX9OnTh/Pnz9OqVSsyMjJYu3Ytc+bMYdKkSe+c7xcvXkg6lAMHDpCamqrlAP4uzp8/T0ZGBseOHWPnzp306dMHIyMjUlNTpZ2jhg0bkpCQwPDhwzEyMmLZsmXs2rVLcjsvidu3bxMREUF4eLi0CNSQl5fHnTt3mDBhAosXL2bKlCnk5ORIfb3tuw6Fi9GLFy+SlJTEo0ePeP36NQEBAejr6xMUFCS5xi9atIi+fftKwm6FQoGZmRnXrl3D29sbgJo1a5KTk8OxY8do0qSJ5BCvEbUHBQWVGuObyGJwGRkZmX8QvzvZSkbmA+dNjUZR3cVXX30lKleuXGpOYkkajTcN22bOnCkMDQ21jPQmTpwoGjZsKIQQIiMjQ+jp6YkffvhB+vzZs2dSXvu7SEpKEoA4cuSIFMvJkyeFl5eXsLCwEEqlUqjVarF161bpnJUrVwpjY2ORn59fLI6MjAzRu3dvoaOjI4yNjcXixYtFgwYNBCAZwf3222+iZcuWUqnSAwcOaGk0hBAiLS1NWFtbCx0dHaFQKISzs7MYNGiQeP78ubh//74wMTERJiYmQqVSCQcHB1G5cmURFBQkhCjMu+/ataswNzcvsbxtYmKiVklZIYQoU6aMVL5WM+8U0ZIEBQUJa2trkZOTI5W31dXVFTo6OmLt2rXSeWvWrBGAWLx4sRDi/3QD/H9NRGhoqKT90MS7cuVKqXRtSbyp0bCzsxMVK1YUQghx9epV4ePjI6ysrIRarRZOTk5abdPT00Xr1q2l8sERERGib9++Wm18fHyK6RJat24tAHH79m3pOzJkyBBRtmxZYWxsLLp06SIAybjvXd/1ksYhhJDK22pK7Hbp0kUqb6uhUqVKAhA///yz9F7nzp2FUqkUd+7cEYCIjIyU5lrzHRJCiPPnz0txlERJJYABMSvyulgQ/1A6/k782/K5P1TkGD4M5Bg+DP4qjYa80JD5x/G2hUZqaqqwt7cXdnZ2YuDAgWLnzp3i9evXJbbVUNJCo1q1alptFi9eLImP38eF+21s27ZN6OrqlvqP39/fXwQHB2u99+Y1S4rDw8NDzJw5U2RlZQkzMzMtgbQGU1NTSWBc0o9ELy8vUaFCBTFw4MBi41q8eLGoWrWqEEKI+/fvC6VSKU6cOPHOeDW4uLgIPT09IYQQN27cKLbweFNQHhQUJFq1aqXVx5gxY0Tz5s213rtw4UKJQmtNXKGhocLQ0FDrnJ07dwqFQlHqWIuKtzX9GRgYCA8PDzFx4kQRHR1dYlsN7+O23b59e61rjho1StjY2AhA9O3bVyiVSmlhuWvXLslvpG7dukKId3/X30VJ49bw5r+xN3lbYYB3IYvBP0zkGD4M5Bg+DP5tMchicBmZ98Te3p6kpCRWrVqFgYEBw4YNo1mzZiW6Rb+NouJWKEwn+U+JdA0MDP50H0XdozUi8OzsbNLS0ggICJDa/dE4ShJkBwYGcuvWLWJjY9m4cSNOTk40bdr0vcfctGlTXr9+TWZmJqGhoVSqVAkvL6/fPY4/QknzIN4Qx7+LixcvMnbsWO7du0fLli2LpV5pvmPv67Zd2pj09fXZuXMnQgiWLFnClStXJCF9Xl4e9evXB37/d/3N62tE2M+fPy/W9tmzZ5iZmZU6F3/GIV4Wg8vIyMj8c1D+rwcgI/NXY2BggK+vL76+vgwfPpyqVaty6dIl6tSpU6JA9vdSVIBdsWJFoPDH2vXr14uZ7JWEu7u75AvRqlWrYp+7ubmxY8cOhBDcvXuXatWqST8eq1WrBsDLly+ZNGkSXbt2BeDzzz/n5s2b/PrrrzRp0oSTJ09Ss2bNt45D4+9Q0nycOnUKS0tLVCoVQ4cOJSQkhDJlytCmTRt69epFamoqenp6dO/ena+//lrK779w4QJjxowhNjaWnJwcdHR0UKvVCCEk8bnmh2WLFi3emddfUFDApEmT2Lx5M+np6ZiamvLq1StycnJQq9VERUURHBwMQKtWrRg4cCCtW7eWznd0dNQyzAOoVauWJBw3NjYmOzsbtVpNXl4e+fn5WFtbM2fOHADu3btHhw4dAHB1dQUK9QhLly5l+PDhvHr1ihcvXgDwySefULNmTY4fP46npyfDhg0D/s8MUeNl8S5atWrFlStXuH37Ntu2bWP+/Pla4m2NaNvAwICcnByEECgUCpRKJffv38fMzIxDhw7Rt29fBgwYIOk3unTpQlZWFjY2NqxYsQJLS0sMDAzw9vYmMTGRqlWrkpubi7m5OUIIKleuzMGDB5k7dy6XL19GV1eXxo0bs2zZMipVqkTt2rUZP348derUQQjB5s2badSoEQ8fPqRChQr8/PPPtGzZ8r1ilpGRkZH5eyLvaMj8qwgLC2Pt2rVcvnyZW7dusXHjRgwMDHBwcAAKf3ieOHGC3377Tcvt+PdQVIAdERHBlStXGDBggJYL99twdHQkKCiI/v37s3v3bm7fvk1kZCTbt28HYNiwYdy9e5eRI0eSkZHBl19+iZGRESNHjpTE1YMGDcLMzIzk5GSUSiVOTk4YGxszadIkjhw5oiUKLg0HBwcUCgX79u3j4cOHkknb/fv3USqVnD59mkWLFjF79myOHDlCQUEBiYmJpKamoqOjw44dO7h16xY9evSQ+gwICMDOzo7o6GiOHDnC0qVL2bZtG+fOnWPatGkolUpMTU3R1dVl9erV7xzjuXPn2LJlC8uXLycxMVESHw8ePJjIyEh8fHykEsDTpk1j7dq1bNiw4Z39ahaECQkJQGHlrS+++IKjR4/i7+8vVQ+ztrZmx44dAKxcuZKYmBiGDh3Kvn37MDQ0JDw8XNqZ+Oyzzxg4cCCpqanExcVx6NAhrl+/Tu/evXn9+vV7m0Lq6ury1VdfoaOjw8uXLzlw4ADz5s0D/m837Ny5c7x69YoWLVrw7bffMmHCBAoKCtDT05NK0AJ8+eWXeHh4cP78eaZPn46Xl5eWaaG5uTkKhYJFixaRnJxMeHg4r169wtrami5dupCdnc24ceNo3rw5nTt3RkdHhw4dOjB58mRiY2Pp3Lkz4eHhWs7k8+bNQwghLYjeRBaDy8jIyPxzkHc0ZP5VmJubs3DhQsaNG0d+fj7u7u7s3buXMmXKADB79myGDBlCpUqVpKfBf4TFixczdOhQOnbsiKmpKZ9++il3796VXLjfxTfffMPUqVMZNmwYjx8/pmLFikydOhUoLL964MABJk6cyJo1a7C0tGTw4MHMnTtXqhS1aNEinj17hp+fH2ZmZsyZM0d6Sv++VKhQgVmzZjF58mT69etHYGAgUJiu1KhRI1xdXRk0aBDlypXj2LFjQGGVpAoVKlCzZk06duyIs7Mz1atXJy4ujvr165OamsrEiROpW7cugNaOjYuLC2q1moyMDNq3by/tEJREZGSk5E9x5MgRqR9nZ2cOHTrEJ598QsuWLSkoKGDdunUEBASQnJyMWq2WqksNGzaM9PT0EvvXpGS5uLgAMHDgQPz9/XFyciImJkZaBOnq6kru4MuXLyclJYWcnBzat2+Pm5sbr1+/ZsqUKXz33Xc4OjpSq1YtqlSpgpGRET169JAqOLm7u6Oj8/7Pffz9/alVqxYPHz7Ey8tL2gXS+IMsXrwYDw8PsrKymDhxIvn5+ZQrVw49PT0pterZs2e8fv2a8ePHS/16e3szevRoFAoFt2/f5tGjR7Rv356dO3eybds2lEollpaWREZGYmBgIO2YLV++HDMzM9atW4eVlRVxcXGsX7+ex48fk5eXh4+Pj+RMvnfvXvLy8rTKMRdlwYIFzJo1673nQkZGRkbmA+Z3qzpkZGR+NxoB9vfff/+/HsqfwsvLSwwbNkzrtbOzs+jXr59YtmyZqFixojA1NRU7duyQ2hR1sJ45c6ZQKpWiZcuWYsGCBeLmzZtSuzdF929DI8B+m2i+U6dOomfPnmLjxo1CT09PTJ06VVSuXFkSzQcFBQkDA4NSRfMa+P+i+aLi6NJE80X/9vLy+o+L5ou6eUdFRQldXV1x9epVSQyuoXbt2iIkJETr3N27dws9PT2Rl5cnhCh0fq9du7ZWm4KCAlGmTBmxZs0asXv3btGwYUNx/vx5YWNjI4QorHw1depUqf3169dFz549hZOTkzAxMZEqle3fv19qM2rUKMn5/dy5c0JHR0ekpKSUGmNpYnC56tT/FjmGDwM5hg+Df1sMshhcRuYDo6gLd3x8vCTA7ty58/94ZH+eN0XKUKjjyMzM5NmzZ5ibm0s+H28SEhLClStX6NChA8ePH6datWrs2rXrPzq+9evXc+rUKV69esWDBw+YNGkS3bt3L3HcJYm+SxJLf0iieQ3NmjXDx8eHKVOmvFf7onGK/6+J8fX11WqjUCho1qwZCQkJnDhxAm9vb8kj4/Lly8TExGgJ9H19fXny5Alr1qzh9OnTnD59GtAWlg8cOFByfg8NDaVFixZSqmJJlCYGH17Dksm1y0qHjIyMjMyHj7zQkJH5L6HJf2/VqhXZ2dmcPHmSsmXLcvLkSckBu6Tj74YQgtjYWD777DMyMjKoV6+elML16aef8uzZM4KCgtDR0UFPT486deowffp0YmJiyM/PZ/DgwVhYWDBkyBAyMzM5cODAe1+7oKCAKlWqoK+vT6NGjbh8+TL379+nT58+HD16lIiICD7++GO+++47ALKzszExMcHOzg4oFLxrjBkPHjxIo0aNuHr1Kp9//jkdO3YkOTm52DWvXbtGVlYWgwYNokaNGly5cgUoWTQPhcL5pk2bYmBggL29PbNmzaJjx46EhoYSFhZGv379So1v1apVuLq6oq+vj7W1tZZ+oqCgABcXF/bs2cPHH38MwI8//ggUFgzYt28fCoWCn3/+mbp169K1a1esrKxQKpUkJSVhZ2eHhYUFAEuWLKFSpUoAlC9fnpUrV3Ls2DG8vb3R0dGhRo0a0ve4e/fu+Pj4kJycTFJSElOnTuXMmTO0b9+eOnXqAIXu7Bo016lcuTIrVqzg0qVLhIaGvuPOysjIyMj8E5AXGjIy/wVq167NuXPnyMrK4smTJ1oC7Hr16kmi7ZKOvxt3797F0NCQpKQkKlasyM6dO1m1ahVnzpxhy5Yt1KxZk4iICNasWYOBgQENGzZk//79rF27Fj09PYyMjDhx4gQbN26koKBAcqrWVGt6G6ampmRlZfH5559jZGREq1atsLOzIyUlhS+//BIoLPmamprKtWvXuH//PuPGjZP0EFZWVmzYsIGTJ09y9epVhBAYGRlJCyN/f/9i15w4cSJqtZpZs2bRuHFjJk2aJInmNcJzDc+fP6dt27Z07dqVixcvsm3bNk6dOkVWVhbh4eEkJiYSFBRUYmxnz55l1KhRzJ49m6SkJA4ePChV74JCLcPhw4dp2bKltLDr06cPUVFRjB8/XnKiHzt2LC1atEClUjFlyhTq1avHpk2btK61adMmevfuDRRW3YLCBVWTJk1ISEggJiaG9PR0atasSXR0NL6+vpiYmFCmTBlGjx7N999/z9ChQ6latSpQuHCJiooCYPr06RgaGpKXlyfpOMqWLX1H4n3E4DIyMjIyfxN+d7KVjIzMO3mXodnflaJxaTQLZmZmkgP4nTt3hLm5udDT0xMmJiaiW7du4v79+0IIIXJycsRHH30kdHR0hEqlEuXLlxdlypQR06ZNk/ofOnSoKFOmjAC0dBJvotFCrF+/XowdO1bY2toKlUolFAqFGDp0qBCiUPNhZGQk6tevL1QqlTA2NhZWVlaSaZ3GFK9Hjx7C1NRU2Nvbi7CwMEmj8fDhQ8mVeteuXVK8CxcuFGZmZpKjeJkyZUTr1q2FlZWV1F6j0ahevboYPHiw1thPnjwpFAqFqFixYjFTvqLs2LFDmJqaajnQazQar169EoaGhiImJkbcvn1bqFQqAYgBAwaIXr16CSGECAkJkUz8KlasKL744gshhBBLliwRlSpVkkwdNS7jiYmJQgghjh07JgDh7u4uANG2bVvh4eEhADF58mStMe7fv18oFAqhUqlEzZo1RWRkpABEy5YtpXH4+vqKPn36CENDQy19T2m8jzP4341/Wz73h4ocw4eBHMOHgewMLiPzN+a/udD4PaLp/xRFRcga8vLyROPGjaUf9ho6deok+vXrJ4QQ4siRI6JFixaifPnywtjYWOjr6wtAZGdnCyGEWLNmjVAqlcLT01PMmDFDXLhw4b3Go1lovOm+XqtWLUkEXZKj+5vO4kVjepewWbPQiIqKks4BRMOGDUVwcLDIy8sTO3bs0HIdr1evnlCpVMLIyEg6DA0NpR/PX375ZakxZmRkCHd3d8k9vKQf35pDqVRKDuMNGjTQmqNff/1Vq9+0tDShq6srYmNjhRBCzJgxQ9SpU6fY3Goc1Z2cnMSMGTNKHKOtra0AtOIzMjISOjo6ktv6gQMHhFqtFoAIDAzUck0vifcRg//d+Lf9KPlQkWP4MJBj+DCQxeAyMjIfNLq6uqhUKtRqtdb7GqF0SkoKHTt2pGbNmuzYsYNz586xcuVK4P/EwgMHDuTWrVv07duXS5cuUa9ePb7++uu/PBZ4P2Hz2yha6lZDVlYWQ4YMkdLi4uPjOX78OD179gR4q/O5iYkJ8fHxbNmyheDgYBwcHHBycmL9+vVSmx07dhATE8OZM2dISEjg6tWr/Pjjj1qC9jcF6TY2NrRo0YLNmzcDsHnzZi23+Dd5W0lm8f8F5vv379dK/xs+fDgODg68fv2a2rVr07FjR1xcXMjPzy/RNb0o7yMGl5GRkZH5eyAvNGRk/ksUFBTw6aefYmlpiY2NDSEhIdJnqampdO7cGWNjY0xNTenevTsPHjyQPr9w4QLNmzfHxMQEU1NT6taty9mzZ4mMjKRfv348f/4chUKBQqHQ6rc0NmzYQL169TAxMcHGxobevXsX85C4cuWK5PthYmJC06ZNSU5OJiQkhPDwcPbs2SNdMzIykpSUFKKionj48CEFBQXY2dnxzTffSP2dO3eO/Px8li5diq2tLZUrV+bWrVsAVKpUCVNTU1q0aMGTJ08YOnQoO3fuZPz48axZswagmGhepVKhq6uLvr4+zZs3B6BHjx48f/4cgKdPn3L58mX27dvH/PnzGTVqFM+fP2f27Nnk5eVx+PBhLl++jJ2dnZYYOTc3l4EDB5KUlERERIRklPj06dMS5/KXX37Rep2cnIybmxspKSnSuDTjefnyJatXr8bd3Z127dqxZ88eGjVqxNatWwGoX78+CoUCb29vUlNTixUGMDc3x8/Pj7CwMA4ePMjdu3clPxS1Wk12dja2trbUqVOHc+fOMWDAAFxdXdm0aZM0L25ubhgaGuLu7s6WLVuAQuPEbdu2ER0dTXJyMsuXL0etVlOxYsVihoaurq4cO3aM/Px8+vfvT9WqVUlNTQUKq3EplUpSU1NxcXGRDo1rfHR0NLa2tpw5cwa1Wi1VGFu6dCl37tx5yzdWRkZGRuafgLzQkJH5LxEeHo6RkVGJDtqdO3fmyZMnREVFceTIkVIdtOPi4jh37hyTJ09GT08PT09Pli5diqmpKWlpaaSlpb316bCG169fM2fOHC5cuMDu3btJSUkhODhY+vy3336jWbNmqNVqjh8/zrlz5+jfvz95eXlMmDCB7t2707ZtW+manp6eWv3r6OjQq1cv6Sk5FJrd5eXl4eTkRH5+Phs2bJAE2j/++CPnzp3j+fPnNG3alPPnzxMfH09ERITkIP2maH7o0KGo1Wpq164tOWHHx8fTpUsXLl++THBwMGq1mmvXrnHv3j2mTJmCgYEBM2fOpGPHjhgYGODq6srQoUMZMmQI2dnZQKHZ3KFDhzAzM6Njx458/vnnkuN1SaxcuZJdu3Zx7do1oHDXon///sXaTZ8+HX19fXR0dOjWrRvjx4/H1NSU3bt3061bNwCOHj1KWloaO3fupHz58lrxLl68mLFjx7J582b279/P0aNHKSgowN7eHoARI0YwduxYyZl87NixuLq6MnfuXHx8fKSdmO3bt3P58mUGDx5M3759OXPmDF26dCEzM5MuXbqgq6vLrFmzuHr1Kps3by62K9O/f3/i4uJwdXUlNjaWdevWsX//fh49eoSOjg7Nmzdn7NixhIeHS+WcT58+zZMnT/D29mbatGk8fvyYRo0a8eOPP9KoUSPJdb4k3iUGl5GRkZH5G/EH0rpkZGTegZeXl2jSpIn09+jRo0X9+vXFpEmTRLly5YSOjo5ITU2V2l+5ckUA4syZM0IIIUxMTERYWFiJfQ8YMED82X+6cXFxAhCZmZlCCCGmTJkinJycSs3VLEmjodEs9O7dWwghxPnz54VCoRBt2rQRQUFBIj8/X5iZmQkzMzNhYGAgGjRoIGk0NBqGESNGCKVSKZRKpbCyshJ9+/YVjx49KnEMM2fOFLq6uuLXX3+VdAQawbNKpRINGjQQvr6+wsHBQeTn50sajSpVqoimTZtKGo28vDxhZGQkmjVrJjp37ixGjhwpWrRoIQ4fPizc3NyEWq3WEjbv2rVLK97NmzeLBg0aSALs2bNna32uic/X11f069dPnDlzRrRu3VoYGxsLIyMjUbNmTTFhwgTJ/K80Tp48Kby8vISFhYUwMDAQNWvWFNu2bZNif/LkiVi6dKlwdnYWgDA2NhY+Pj6ShqSoeaCGDh06iPHjxwshhOjSpYsARHBwsDS/Hh4exTQaJ0+eFHXq1BEmJiZCrVYLc3Nz4ePjI54+fSocHByEnp6eJMTXxK9QKESlSpWk7xYg1Gq1sLS0FB999FGxcb15nzX9FD00Go2/I/+2fO4PFTmGDwM5hg8DWaMhI/M3p2bNmlqvbW1tSU9PZ/To0djb20tPpgGqVauGubk5iYmJAIwbN46BAwdiYGBQzM+hQYMGUt76+3Lu3Dl8fX2pWLEiJiYmkjZAkwKTkJBA06ZNSzS1excTJ04ECsuiurm50bx5c8LCwoiKiuLFixckJyfz4sULAgMDyc3NxcjICDs7O4yNjQkNDaWgoIBx48aRnp7O+vXrKVOmTInXSUlJIT8/HyMjI7y9vRFCMGbMGAAOHz7M6dOnsbS0pHr16ujo6BAcHMyzZ8+wtrbG3d2dkJAQEhIS0NXVpUyZMnTt2pXdu3cTHBws6QpatWrFTz/9RO3atfH29mbBggX4+fkB4OjoyK5du+jduzenT58mJycHQCpbrOH8+fOYm5vzySefsHXrVgYNGkStWrU4dOgQWVlZXLhwgeHDh79zXps0aYKjo6OUgnXx4kV69OghpWdZWlpibm7OsWPHgEIfkIMHD9KsWTMAmjZtyuzZs2natCmWlpYYGxtz6NAh6Z5PmjQJgBkzZmhdVzO3mu9Yr169UKlUPHjwgFevXvH06VMOHjyIubk5UOiVcuXKFa5fv86NGze4ceMGI0aMkDxh5s+fL+2eeXp6SuVzS2PKlCk8f/5cOu7evfvOuZKRkZGR+TCRFxoyMv8lSnOTNjY2LjVtRIPGQdvAwIAbN25oOWirVKp3nl+U7OxsfHx8MDU1ZdOmTcTFxUl9adJrDAwMfk9opRIQEKAlMm7btq20cMjKysLW1raYb0hSUpK0WPlPoKurq/VaoVC81dm7Tp063L59mzlz5vDy5Uu6d+9OZGQk+vr6fP7556VqNd5Fu3btuHPnDmPHjuXevXvvFEGXxLJly6R0Nc2hSZWyt7enQ4cOUts3Rd9ffPEFy5YtY9KkSURERJCQkKCVUvW+97x9+/ZcvHiR2NjYEj8vW7aslj5Do9EoSmhoKLGxsXh6ekqmg3FxcSX29y4xuIyMjIzM3wd5oSEj8xczb948UlNTuXv3LkIIQkJCsLW15dmzZ4wbN45Ro0YBMHjwYJ4+fcr169fJzc2lS5cuAMTGxkpCXyhclNSqVYsNGzbg6OiImZkZPXv2JDMzEyg0Xnv8+DHZ2dm0bduW5s2bEx4eDhT+GIXC3ZeTJ09qVSsqiq6uLpcvX8be3h61Wo2Liwvbtm2TPo+KiqJBgwaEhIRw6dIlgoOD+fHHH6VqRo6OjqSkpHD//n2USiUuLi58/PHHbNy4ERcXF8qWLYtCoeD777/H398fpVKJjo4OBgYGGBsbY2RkJI3ZwsIChUJBcHCwJMwOCwtjzJgxbN26lZiYGPr370/Hjh21Ynj9+jXlypVj7dq1xeIzNTWlR48erFmzhm3btnHnzh2aNWuGjY0NCxYseOv9vHr1Kk2bNqVKlSoAksYDYNu2bXzxxRds3LiRpUuXsmrVKhQKhSQG9/T0RKlUolKpSnSINzMzw8bGRuvYv38/UGiyV9T4bufOnbi5uaGvr0/VqlXZtGkTnTt3pk+fPnh4ePDdd99x+PBh9u7di7OzM5s3b8bAwEDaEXmTCxcuSDEUFBTQunVrSaiv4c6dO/zyyy/4+/tjaGiIq6srP/30k1abAwcOULlyZTw9PTl8+LC02NK4mMvIyMjI/HORFxoyMn8x+vr62NraEhAQwBdffMGXX36JsbExjRo14sCBA1SpUoURI0Ywbtw4bGxsGDBgAI6OjlK6jebH5bFjx3j06BGvX78mOTmZ3bt3s2/fPvbt20dUVBQLFy4EoGLFiujo6BAREcHq1auZOnVqsR+DI0aMICMjg549e3L27Flu3LjBhg0bSEpKAuDMmTOkpKQwadIkoqOjWblyJYaGhgCkp6fTvn176tevz8WLF6latSobN27kxYsXdOrUSbpG5cqVady4MX5+fhw+fJjc3Fzu3r3LtGnTOHv2LACzZs2ie/fuREdH07dvX3R0dIiMjCQ+Pp527doBhSLxo0eP0qNHD0aNGoWVlRU//vgjKpWKdu3aUatWLQYOHMjBgwdJS0uTrr9v3z5evHihJboHWLx4MVu2bOHatWtcv36dH374AQMDA/T19Zk/fz5ff/01v/76a6n3c/bs2XTt2pWDBw8ChalTI0aMYMaMGRQUFHDlyhVOnjzJvn37MDU1pWzZssTHx6Ovr8+gQYNQKpUsX778vRzi9+3bJ1XMejNl65tvvmHevHkkJiYyf/58bty4we7du4mJiSExMZHjx4+jUqlo2bIly5YtIzQ0lI8++ohPP/2U9evX8+TJE7Kzs6WFmGaxFBoaSnx8PPXr12fIkCEcPnxY67oHDx6ke/fuXLx4kfbt2xMQEMDLly+BQtd4f39/zM3NCQ0Nxc/Pj7Fjx0rfh5KQxeAyMjIy/xzkhYaMzF+MQqFgwIABWFhYMH36dF6+fImHhwe7d++mQYMGbNu2jSNHjjBixAju37/Pjz/+SMeOHaWKTa6urqhUKnr06IGVlRXR0dEUFBQQFhZGjRo1aNq0KX379pWeVOvr66NQKFCr1QwaNIgtW7YUezJdpkwZjh8/TlZWFl5eXtStW5c1a9agp6fH9evXuXz5Mh4eHkyZMoX69eujVqvx9fUFCqsa2dvbs2LFCqpWrcqoUaPIz8+noKBAy2NDoVBw4MABmjVrRr9+/bh27Ro//vgjd+7cwdraGoDg4GB69epFw4YNWbVqFS9evODRo0dUqVKFcuXKAdCzZ08CAwPp0qULNWvWxNXVFVdXVxYtWoSZmRnGxsZ4enpSpUoVrVKtoaGhdOvWTdot0GBiYsKiRYuoV68e9evXJyUlhZYtW6JQKPD396dWrVrMnDmz1Pvp5eXFmDFjcHJyAgq1D+vXr0dHR4fVq1cDhelHGp+N8ePHc/LkSb7++mu2bt1KTk4OmzdvLpZ+9CbXrl0jICCgVM+LcePG0aVLF5ycnOjSpQvjxo1DCIGPjw/e3t60a9eOrl27YmhoiK+vLxMmTODJkyeMHz+eGTNmsGLFCm7evCmVPdZUFnNycsLNzY2YmBhUKhV+fn7ExMRI123QoAG9evXCxcWF+fPnk5WVxW+//QYULn4cHR2pUKEC48aN49NPP5V2zTQ7dG+yYMECzMzMpKOolklGRkZG5m/G75aPy8jI/C7edAl3cHAQS5YsEUIIkZqaKuzt7YWdnZ0YOHCg2Llzp2jWrJnUvmhbDSU5XlerVk2rzeLFi4WTk5MQQoiEhAQtF23N+bVr134v9/Jt27YJXV3dUitT+Pv7S5WLNLx5zZLi8PDwEDNnzpReA2L79u1abUxNTUV4eLgQQggfHx8BiJSUFK02Xl5eYuDAgcXGtXjxYlG1alUhhBD3798XSqVSnDhx4p3xCiFEpUqVBCAWLFggoqKihK6urrh69aqYPHmyVsWvtzl/X716VZqf4cOHi6dPnwqVSiWeP38uLCwsRGJiopg3b57w9PQsdRxBQUFvdQQPCwsTWVlZAhAGBgZa41Cr1aJcuXJSX1u3bhWenp7C2tpa+tzKykprHvX19aXX9+/fFwMHDhQuLi7C1NRUGBkZCYVCIVauXCm1edc98/Pzk1ziNcyZM6fE+6jhXc7gf0f+bRVqPlTkGD4M5Bg+DP6qqlPKv3hdIyMjUwR7e3uSkpI4evQoR44cYdiwYbx48aJYxap38Tax85/lPyEU19HRkVykNZSkB/mjcRQVQufm5qJSqQgMDGTy5MnExsYSExODk5MTTZs2/V1j/vzzz7l16xY+Pj5MmTJF8vjQoHH+1uhqilKxYkWgsIrTd999x8mTJ6lduzampqY0a9aMyMhIoqKi3uoOvmzZMubPn09gYCCpqakcOHAAY2Nj+vbty82bN+nQoQNZWVkArFmzhoYNG2qdrxHGx8bGEhAQwKxZs/Dx8cHMzIytW7fy1VdflXrtoKAgHj9+zLJly3BwcECtVtO4ceNiTun/6e+eWq0u5jYPhWLw0iqSycjIyMh8mMgLDRmZ/zEGBgb4+vri6+vL8OHDqVq1Kg8fPuTTTz/l7t27TJ8+nWfPnmk5gAsh6Ny5M8eOHSMnJ4e8vDyMjIykalS5ubm8fv0ahUIhVbnaunUrDRo0oF+/fkChlkBTivVt7uLu7u4UFBTQp08fYmJiSE9Px97enilTpjBgwADc3NzYsGGDpNGwtLTE3d0dExMT7OzsgEJDwL1790r5+RkZGSQmJkoViDR069YNIQT5+fkoFAqEEAwdOpRnz55x6NAhoFBYDoU/hMPCwkhISODp06eMGTOGjRs34u7ujpOTE+np6fj5+UkVjwIDAylXrhwLFixgwIAB77wvxsbGPH/+HGtra5RKJS9fvmTfvn0AVK9enStXrlCnTh1iYmI4f/48Z8+epWzZsvj7+7NgwQJUKhUrVqxg+fLl3Lp1ix9++IHy5cujUCj4+OOPOXr0KNHR0aSnp6Ojo8PSpUtLHEdubi5qtZr4+HhcXFyYN28esbGxREdHS3qd8uXL88MPPzB37lxu376No6Mjo0aNYtiwYQDExMRgYmJCeHg48+bNw8bGBjMzs7fGf/LkSZycnAgMDOT169dUrVqVR4+KaySOHDlCeHg4hw4dokKFCuTl5Umfubm5sXnzZipXrszdu3dp1KiRpO2RkZGRkfnnI2s0ZGT+h4SFhbF27VouX77MrVu32LhxIzo6Ouzfvx8jIyMaN26Mq6srs2bNkqr0FBQUkJWVJTmLBwQEoFarqVGjhiQkNjMzw8DAgIMHDxIfH0/z5s1Zvnw5ubm5TJo0CaVSibGxMYMGDXpnyVVHR0ccHBzYsWMHAQEBHD58mE8++YRLly4B4O/vz927d3n16hW7du0iODiYo0ePUqdOHXR0Cv8To6+vz9mzZzl58iSXLl0iKCioxBK9xsbGfPHFFxw9epS+ffsChZqH4OBgvvvuOwAWLlzIpUuXJHdwgMTERFQqFdHR0axevVoSg/v7+xMeHk5iYiK2trYlisFLQ19fnxUrVqBQKDh06BCdO3eW4jlw4AAAvXv35ty5cwBs3bqVL7/8kn379lGvXj2gUL+RnJyMubk5mzdvRghB2bJlycjIYPfu3eTk5JCUlIS3t3cxMXhCQgLz58/n9evXLF68GBMTEzZs2MD06dNZsmQJ1tbW0m5Gu3bt2LNnD56enuzfv58hQ4bw6aef0qtXL6BQ15ORkUGfPn34+eefadWqFRcuXJC8QEpCsygKDw/n22+/5c6dOwC8evVKq922bdu0xODZ2dnSuDp16sSdO3cwNTVl586dVKtWTRLNl4YsBpeRkZH5B/G7k61kZGR+F2/TaOzatUs0bNhQyoFv1KiRqFmzpuQqHhsbK2rWrCm5LgshJFdpjbP4zJkzRZUqVbScxdVqtShTpox0zYyMDNG7d29haGgozMzMhL6+vmjQoIGYPHnyW8fr4OAgOTt37dpV2NraCpVKJVxcXMS6deuEEEJMnTpV2Nvbi/r16wuVSiVsbGxE69athZGRkVi7dq0wMzMT9vb2onbt2sLU1FTY29uLsLAwoa+vL7y8vKTrAqJbt27Sa432YNy4cUKI/3O6tra2FgqFQgQFBQkhhDAzM9PSGmioVq2aWLhwoXBwcBDt27cXvr6+xbQkpVGpUiVhY2MjhBCiUaNGon///uL27dtCqVRqaTQGDBgg/Pz8tJy/K1WqJBQKhXj58qUoKCgQZcqUEfXr1xdKpVK4u7uLBQsWCGtra2FhYSGqV68u9PT0RHZ2donj8Pb2fqtGQ6NxqVSpkhg+fLioVauWUKlUwsLCQjg6OorKlStLfU2cOFGUKVNGGBsbix49eohOnToJXV1d6XMzMzOt1/Hx8aJevXpCX19fuLq6im3btgmFQqGlh3nXPZsyZYqwt7cXLi4uQq1Wi6ZNmwoXF5e3ajRkZ/APEzmGDwM5hg+Df1sMsjO4jMwHTGRkpFZaTEpKiuRo7efnxy+//MLz58/JysoiNjYWCwsLSaPRqFEjLly4gK+vr5TyZG9vj6Ojo1SNJyQkhGvXrmk5i0+ePJnnz5/TqlUrFi5cSHp6Ops2bSI7O5ulS5eiUqlISkoqsbpRUeLi4nBzc0NXV5ctW7Zw7949cnJyuHHjhjSexMREWrZsSXp6Op9//jlpaWl88cUXZGdn06RJE65fv46Ojg6BgYE8f/6c1NRUgoKCqFKlCt7e3lrX69atm/S3kZERpqameHh4aLW5du2aVGULCh3JO3fuXGzsAwcOZN26dTx9+pSuXbvy888/079//7fGq6FJkyaS3uHzzz8nPDycly9f8sMPP2i1u3DhAgcOHCAmJkbSoKSlpSGEwMDAgOfPn9OsWTMaNGjAw4cPSUpKYtiwYeTm5hITE0Pv3r2pX79+qelEERERCCF49uwZVapUwdfXl4KCAoQQkgdLQEAAycnJrFu3jhs3bqCnp0dubi5paWk8e/ZM6qtu3bpUqVIFIyMj9u3bx6FDh7SM9czNzbGwsJBely9fnlq1amFnZ8eDBw+kuatdu7bWGN92zxITE2nVqhU3btzg1atXnDhxgrp16wKUmrolO4PLyMjI/HOQFxoyMh8gf1Zgq3EW79ChA8ePH6dq1aqMGzeO5ORkUlJSePHiBUCJP9CLYmVlhbm5+e8evwZ9fX3KlSv3l4rBoTC9rF27dty8eRMDAwMePXr0u8XgGpo1ayaJwd9EIwYvmu504cIFNm7cKLXx9vYmMjKyRDF4RETEW8Xgmlh69+6Njo4OmzZtKpZyptFErFmzRmscly9f5pdffiE3N1cSg7dv3559+/Zx/vx5pk2bVkzYXZSgoCASEhJYtmwZMTExJCQkUKZMmb9EDC47g8vIyMj8M5AXGjIyfzPc3Ny4e/eu1pPeq1ev8uzZM6pVqya9V7lyZcaOHcvhw4dp2bIl69atw8PDgy+//BIhBCdPnqRs2bKcPHlSy5H65MmTrFq1CmNjY3R0dIiLi6OgoIDIyEhCQkKoWLEiarWa8uXLM2rUKNzc3CQ37bFjx6JQKKhVqxYmJiYcPXoUc3NzrKysSEtLk1zMv/vuOxITE1mwYIGWizlAZmYmAQEBGBkZkZGRwaFDh/D29mbVqlUA5Ofnv3V+cnJyGDZsGG5ubhQUFJCRkcHy5culHZjt27ejq6uLQqFAR0enmCu3nZ0dV69e1erz5s2b/PTTT8TGxgJILuZZWVmsXLmSdu3acfXqVVxcXFAqlfTp0wcodDEfPXo0V65c4YcffuDevXuMGDGCp0+fMnr0aI4fP865c+fe6mL+2WefERMTw549ezAxMSkWr8Zc8NatW7i4uDBw4ECWLl3KihUrqF+/Pj4+PsTExGBra8upU6fw9vamSZMmhIeHF1v8FSUqKopHjx7Ro0cPWrZsyfjx47XE4Boh/8WLF6lXrx6GhoZ4enpqLTLc3Nw4cOAA1tbWmJiYMGDAAEnrISMjIyPzz0deaMjI/M1o1aoV7u7uBAQEEB8fz5kzZwgMDMTLy4t69erx8uVLRowYQWRkJHfu3CE6OpqbN28yZMgQsrKyOHz4MPn5+aSnp/Po0SOqVaum9SS8Xr169O7dm4SEBGxtbbG0tCQoKIhevXqxaNEiZs2axfr16xkxYgTu7u4MGzYMhUKBkZERI0eOJDQ0FEtLS8aNGyeJp1u0aMGGDRu4c+cO169fJyQkBAMDA3r37q3lYg6FxnPR0dH89NNPGBsbc/36deLj4zE1NUWhULBv3z4ePnwoCY7fJDAwkAMHDrBz507Cw8PJy8sjLS2NoKAgfvvtN8kU8ODBg6xcuRJjY2P69+8vxa8pCVsUAwMD3N3dWb58ufTerFmzGDFiBCqVCkNDQ3r27ElcXBznz5+nbdu2ACQlJXHv3j0sLCzYvHkz5ubmhIeH4+joSH5+Pjo6Onz66aelupjr6emxcOFCli5diomJCffv39c6NHNQtWpVFixYwPLly3nx4gXr1q0jKSmJgQMHsnr1amxtbfn1119Rq9Xs3LmToKAgUlNTpZ2tkihXrhwWFhbs2LGDefPmERERId3PomzcuJGvvvqKs2fPolQqtfrUpF3Vrl2b7du38/jxY06fPl3qNd/GystP/tB5MjIyMjL/O+SFhozM3wyFQsGePXuwsLCgWbNmtGrVCmdnZ7Zt2wYUeic8fvyYwMBAKleuTPfu3WnXrh2zZs0CCh2fhw4dKjmLf/3111qO1AYGBpibm+Pi4iKlxXzzzTdUr16d3Nxchg4dymeffYatrS2DBg2iQoUKHDhwgNevX7Nq1SqmTJnCoEGD+Oyzz6QxT5kyBS8vL7Zs2cKrV6+YMWMGrq6uODg4aLmYv3z5kvDwcL788ktatmyJjo4OAwYMID8/H2NjY2bNmsXkyZOxtrZmxIgRxebm+vXrbN++nXXr1uHv70/fvn0pX748bdu2pXz58qxatYqKFSuyYcMGfHx8+OSTT5g7dy6hoaE4Ozvj4uJSYjUsgObNm2s9rQ8ODmbSpEmcOHGCsmXL8vLlS5o1a0ZISAgVKlQACn+s29ra0qxZMxQKBWZmZri6uhIaGoqpqSn16tWjZcuWpbqYh4aGIoQgODgYW1vbYofGLd7BwYHvv/+e0NBQzp49S25uLi9evKBhw4ZUqVKFW7du4ejoyKlTp+jatSupqalMnTqVvLw8rl+/XmK8u3fvRldXl86dO/P5558zbdo0CgoKiI6O1kqn69OnD15eXlSrVo3JkyeTn58vpcVt3LiR9u3bk5ycjL+/P0+ePJEc1EujtKpTMjIyMjJ/Q363fFxGRuYfzZtVp97mYv769WvpvP+Gi/nMmTOFh4fHH3Yxz8zMFKampmLHjh1CiL/OxXzSpEkCEE+fPtVq899wMbe2tpZczN+8Rvv27QUgqlWrJvT09LScw42MjAQgDhw4IJ1XdI7Pnj0rOnbsKOzt7YWxsbHkeH7u3Dnx4MEDqQpYenq6dE58fLzWXJqbm0tzomHMmDHCw8Oj1HjeVnXq78q/rULNh4ocw4eBHMOHgVx1SkZG5oNC42K+atUqDAwMGDZsGM2aNStR1P02/goX84KCAtLT05kzZw7m5uZ06tTpvfv4q13MoTDd69atW8TGxrJx48bfLVw3MDCQqnBprvHbb79x7NgxbG1tyc3NxdfXt5hPx40bN2jWrFmx/rKzs/Hx8cHU1JRNmzYRFxfHrl27gML5KVeuXInzoNkN+jP3s7SqU8NrWL7jTBkZGRmZDw15oSEj8y/nbWLw1NRUNmzYgJGREba2tqxevZqvvvoKHR0dIiMjiY2NlXQLKpWK/Px8zM3NtX70CiHo3r075ubmfP7559y+fZuUlBTp85s3b5KWloaRkZGUYnTgwAHCwsKYNWsWFy5c4Pz58yxbtkyr35LQuJi3bdsWa2trFi1ahEKhkEziNOJkHR0dSQyuKbdarVo1jI2NuX37NidOnJD6zMjI4OrVqyQkJABIY4+NjaV58+YYGhri4eEhidQjIyP5/PPPgUIxuEKhkJzXf/nlF06fPk1gYCCmpqYMHjyYFi1aMHPmTMnFPCwsjO7du6NSqaSUsndhbW3No0ePiI6Olt4LDw+nTZs2lCtXDhsbG65cuSKVRV69ejVeXl54eHjQokULSdidl5dH9erV6dOnD48fP2bhwoWUL1+e+vXrS6V9f/rpp2KVyPbu3Uv9+vVp0KABAIMHD5bm+8SJEwQGBmJhYYGhoSGhoaFvNQosreqUjIyMjMzfD3mhISPzL6devXqlisENDAy4ffs2P/30E8OHD2fDhg3ExcXx/PlzqYSrlZUVUOggfuLECQoKCqQqUvn5+WRlZWFiYsLJkyfp378/Ojo6tG3bltzcXPLy8li7di36+vpcvHiRX375haZNmzJ//nxsbGwICgrC1NRUcjF/l6t3xYoVKVu2LNHR0cycOZPIyEiGDBki/QBv0qQJ6enpuLu78/3339OnTx/y8/Np2bKlFD8UVlwq6mJeEps2bWLChAkkJCRQuXJlsrOzyc/Px9PTU1pYLFu2jEuXLjF06FDpvPj4eDw8PDh//jzTp09n4MCBbN68mcDAQMnFXKlUUqFCBVq0aPFe91BHR4eAgABCQ0Ol98LCwiTviwYNGvDkyRN69epFjx49iIiIYNy4cbRr146uXbvStm1bXr58iVKpZNOmTezfvx+lUsmyZcv4+OOPqVGjhtbiqyiHDh3C39+f9u3bs3XrVqDQ2wRg9OjRhIaGcvToUVauXEnfvn3Jysri1q1bv3snTBaDy8jIyPz9kBcaMjL/cgwMDEoUg1tbW/PixQs6d+5My5YtqVGjBrq6urx48YJNmzZx9OhRAOmJ8+zZs0lJSSEzM5NRo0YBSBWGvv/+e9zd3bGysqJixYqkpqYSGRlJRkYGr169wsDAgEqVKuHm5sa+ffto2rQpXbt2ZceOHRgbG1OtWjXKlCkjpUaVxtGjR3n06BEBAQF89913tGnThnXr1lG5cmWgUJxct25d1Go1w4YN48iRIzRo0IB79+5J8QNUr16djh070qFDB/z8/EqstuTn50eHDh2oXLkys2bNQghBeno6KpUKBwcH1Go1CxYsoGbNmkyePFk6z87OjvHjx1OpUiUqVapEly5dgEJPDltbW3x8fNi1axfBwcGlCtNLon///mzfvp38/Hx+++03nj9/LpXNNTExITo6mszMTPbs2cPVq1f5/vvvsbe3Z+LEiTRp0oT79+9z+PBhQkJCmDdvHgYGBnz33XckJCSQn58vCc/f5KuvvqJnz57MmjULZ2dnAIYNGwZAnTp1KCgo4OXLlwwZMkQqPfz69etS/VlkMbiMjIzMPwd5oSEj8y9E42dREhon81u3bgFI1ar8/PyIi4ujdu3aDBs2TPKU0KBxMTczM5OerJuZmaFQKDAxMcHY2Jgvv/yS5ORkXr16RXJyMpaWlgQHB/Ps2TN8fX1ZtmwZWVlZkov5+PHjsbS0lFzMw8LC3mogmJCQgL29PaGhoaW6mPv6+nLmzBlycnJIS0tj6tSp3Lx5U8ufY/z48dSuXZu7d++iVqsxMTHBz88PgHXr1gFo7XTY2toC8NFHH0nv6evrk5aWpuVibmNjU8ydXF9fn759+7JmzRqePn1K8+bNuXz5MsHBwUCh4Z9CoSj1sLGxwdfXFw8PD1xdXRk4cCBGRkb07dsXpVIpXcfV1ZWRI0cChZXJ7t69y5o1azAxMSEqKopGjRpJqU/jx4/H3d2dzMxMfv75Z86cOYOvry9CCCpWrCiNSwjB5cuXadmyJVC4kyGEwNHRUZpvpVLJo0ePyMzMJCwsjOXLl2Nvb1+qH8qCBQswMzOTDnt7+1Lvt4yMjIzMh43y3U1kZGRkSkahULxVOJ2VlUXdunXZtGlTsXM1KVehoaGMGjWKgwcPsm3bNqZMmcLkyZMJCAggLS2N1NRUFAoFnTt3Zt++fW8dj2bHIzc3F5VK9adj0tfX57PPPnunGPz3iKBLcjH39/dn+fLlVKhQgdu3b9OiRQscHBwA2LlzZzE37tzcXDp06IC+vr7WLk///v1ZuXIlV69e5cyZM8WunZWVha6uLufOnSvmF2JsbCztvKSnp3P9+nV0dXW5ceOG5AtSEu/aZfq9TJkyhXHjxkmvMzIysLe3l8XgMjIyMn9D5B0NGZm/mKLO17a2tixZsgRvb2/GjBkjtVEoFOzevVvrvDdF1nfv3pVE1paWlnTu3FlLZB0ZGUmDBg0wMjLC3Nycjz76iDt37miJrDVPxUsSWTs7O6Onp0dcXBwAz549o1+/fiQkJLBixQpq1KiBmZmZZDS3Y8cOXFxcePHiBRMmTOCrr76iTp063Lhxg3LlyuHq6srly5elFCUzMzMpptq1a9OrVy9iY2OxsrJi7ty5uLi4sGbNGl6/fs3Jkye5fPky/fr14/nz59K4Na7eOjo6qNVq9u3bR2pqKj169KBFixbFvDacnJyYNWuWlsg6OjqaypUrSz+8NS7mAL169eLx48dvNbYD2L9/PwBt2rTB2dmZvXv3Sk/sJ0yYoOX8HRUVpSVQT01NpXnz5ujq6tK8eXO2bt0q7XqkpqZSsWJFrdQ2FxcXKlWqxJUrV1ixYoWU1lVQUMCDBw84e/YsL168oFevXvz444/SdfPz8/nhhx/Iz8+nZs2adOjQ4f+1d99xTZ3t/8A/SUgCSQgoyFKGAxAUcKKoiAMFJ2grKijgrFqkLqrWgaOO1tli9VFURMW968aBIqIiQ6sgIgIuXCBTkHX9/uCX8yUCKlYttvf79crrKcnJyX2dpH1y55zPfeHYsWPcPvX09LhtR44cCSsrK0yZMgWTJk2Curo6tLS00LdvXzx//pzbLjU1FZmZmdiyZYtSMF5xtsvCwgIlJSWYO3cujIyMIJFI0KdPH6Snp1fZGBFgYXCGYZh/EzbRYJgvrGLn69DQUISHhyMmJqZG+yguLoaTkxMXso6IiIBMJlMKWbu6usLBwQE3b95EZGQkxo4dCx6Ph8GDB2Pq1Klo1qwZ0tPTkZ6eXmXIWl1dHV5eXvDz88PZs2fh4OCAAwcOQE1NDZ6enli6dClsbGywZs0ahISEYNCgQSgrK4NQKISrqyvmzJmDsrIyaGtrw8XFBQDw7NkzhIWFwdfXF48ePUJZWRn27t2LyMhIPHr0CADw+PFjjBkzBomJiWjbti0KCwvx5s0bmJmZYcmSJZDJZLh8+TIuX76MqKgoroO5SCRCz5490a5dO8THx6Ndu3bYtm0bjhw5wn2pNzExAREhIiICd+/eRXBwMNasWYNp06ZxdXfr1g1r1qxBbm4uCgoKuDMv1a2UFB4ejvHjxwMoD2CvX78ely9fRl5eHs6ePYuWLVsiPDycm3jcu3cP2tra3EpPijMj8+fPx549e0BEGDBgAADAwMCg0pK006ZNA4/Hw65du7gVs4DyS4727t2LvXv34ubNm5g8eTKGDRvGdQ8vKytDs2bN4OzsDB0dHfTq1QszZszA4sWLsWTJEm6ypFhmNzg4GO3atUOHDh1gZGSEkydPgs/nIyAgoNIxuHjxIvT19bF//37o6uqid+/eKCkpgampKTp37ozFixejT58+2LVrF1JSUlBaWqp0WdeHYGFwhmGYr1CNO28wDPPRcnJySCgU0t69e7n7srKySCKRKDVLA0AHDx5Ueq6GhgYFBQUREdG2bdvI3NycysrKuMffvHlDampqdOrUKcrIyCAAFBYWVuU4FI3w3sXBwYHGjx9P7u7uJBaLCQDNnDmTbG1tacaMGURE9PjxY+rZsyepqKiQRCKh48ePc+P08/MjS0tLSk9PJ09PTwJAQqGQGjVqRGPGjKHs7GxSV1enVq1akb6+PolEIgJA/fr1o9LSUiIiio2NJQAkl8sJAI0aNUqpAaCCsbExubq6EhFRRkYGjRgxgrS0tAgAGRoa0tGjR4mIyNramtzc3LgGdkZGRrRs2TKlfSlq4vP5pKmpSYcPHyYej0cDBgwgIqI5c+YQAIqNjSUiou7du3P3nT9/nnt/JBIJNwYAFBUVRcbGxiSRSGjJkiXUrl07IiLavn071a9fn3Jzc0kikdCECROqfU8uXLhAQqGQAgMDld4nHx8fkkgkdPnyZaXtR40aRRKJhMRiMXdfUVERzZ07l0xMTIjP55OqqioNGDCAbt68Sa6uriQQCGjHjh3c9q9evSJDQ0P68ccf6cWLFwSA1NXViYgoJSWFAND48eOpRYsWJBQKuXoTEhKIiOibb76h+vXrk4aGBqmpqZGTkxP17t27yveRiKiwsJCys7O528OHD1nDvlqA1VA7sBpqh/9aDX+nYR+baDDMF/R2F2qFtztfv2+iMW3aNBIIBJU6PfN4PFq7di0REXl7e5NYLKa+ffvS6tWr6cmTJ9y+PnSioRjTL7/8QkZGRpSXl0caGhq0cePGSuOfN2+e0n2HDh0ioVBIJSUllWpSdAyvWJPiS+u1a9e4fWRmZhIAunDhgtLz3mZsbEw///xzpft9fX3JycmJiIiio6OJz+dTamrqO+uuqv7g4GCSy+V06NAhbvKioK2tTaqqqkrvg6qqKgGg/Px87vgsW7aMbty4QXp6epSRkUEikYhyc3NpzJgx5O7uTikpKcTn8yk6OpqIiLy8vJQ6Y2toaJBIJKLBgwdXGuutW7cIQKXPg2Jipzhma9asoVatWpG2tjb3eNu2bbn9eHl5kYuLC/f33bt3aciQIdSwYUNSV1fnuokfO3aMiCq/Z2/evKGEhASl96xFixY0f/58pfGuXr262okG6wxeO7EaagdWQ+3wX6uBdQZnmH+ZDw1Zv31Zzd27d+Hu7g6gPGQdGRmJDh06YPfu3TAzM8OVK1dqNI7nz59j586dyMvLQ1FRETw8PACAuxTqU9ak8KlC1gAwevRohIaG4tGjRwgKClIKWdfEsGHDYGxsjG3btlV6LC8vD/Pnz1d6H6Kjo5GUlARVVVUA5Ss0hYWF4cKFC3BwcEDdunVhYWGBS5cuISwsDC1atMDs2bPRvn17tGrVitu3s7Mz0tPTcf/+fRgYGEAmkyk15as4BqA8K1JxHPHx8dxSs7t27cK0adMwatQonD59GnFxcRgxYkSloHlF/fr1Q2ZmJgIDA3H16lVuueK3nyMUClFcXAyRSMRlPT62OzjrDM4wDPPvwSYaDPMFvR2wBoDs7GzcvXtXabuKgWQASEpKUgokVwxZvx0U1tDQ4LZr2bIlZs6cicuXL6N58+bYsWMHgP/r4v0+RITJkydj4cKFePr0KWJiYhAeHg5tbW08ePAALi4ukMlk+Ouvv7Bu3To8e/aMe+7BgwchFAqhqakJuVwOgUCAK1euICwsjAt1v379GiNGjOAa3L3Lmzdv8Ntvv3FhcD6fD1VVVa6D+YIFC2BrawuxWAx9fX3MmDEDFhYWaNOmDQIDA7F27VpuGVqFFi1aKL02j8fDxo0bMWDAAISHh2PLli04cuQI+Hw+Jk2ahP379wMoD+LzeDx4e3ujVatWWLVqFVavXo01a9agffv2+P7777F48WL0798fAODg4IBLly4hNDQUx44dw6ZNm9ClSxfs3LkTSUlJ+PHHHxEVFYX//e9/SuPLy8tDkyZNYGZmhjt37uD169d49OgRpFIpZDIZwsLCwOPxYGBgALFYjAcPHiAvLw+mpqZQUVFBkyZNoKWlBaA89N6hQwdMmDABx44dQ4cOHbBp0yY8fPgQM2bMUFruOCoqCg4ODkhMTMSlS5ewYMECFBQU4NWrV0rHStG00c7ODosWLUJYWBjq1KnDbZORkYHMzEwsXrwYEokEVlZW2Llz5zsnvCwMzjAM8+/BJhoM8wVVDFifP38et2/fxqhRo8Dn85WasykCybGxsbh+/TrGjRun9Eu/h4cHF7IODw9HSkqKUsg6JSUFM2fORGRkJNLS0nD69GkkJSXBwsICQHkoOiUlBXFxcXj58mW1Qefjx49j/PjxuHv3Lpo2bYqHDx/i2LFjSE5ORteuXZGcnIwLFy5g48aNePbsGdq3b8+FrLdu3QobGxtERUUhOjoatra22LdvHyQSCaZMmQKBQAChUIjVq1crhbGr4+npyQXGly1bhoCAACxcuBBxcXHQ1dVFbm4u2rZtixs3bmDdunXYtGkTfv75Z4wePRpLly4FAFhZWb33debPnw83Nze0adMGDRs2hIeHBzIzM+Hl5cUdv/r16yM9PR2//fYb5s6di2fPniEwMBA5OTnYunUr+vXrh7KyMpw8eRLp6eno3LkzcnNzcezYMZSWlmLw4MHo0qULQkJCoK+vDyJCYmJipfFpamri+++/BwD88ccfcHJyQv369XH69GmEhoYiMzOT+1xNmzYNkydPxpEjRwAAt27dQkBAAC5dugSgvI/G9evXMX36dCxcuBDt2rWDmpoaRCIR1q1bp/S6ubm5GDVqFDQ1NdG9e3fo6urC0dERP/zwg9J2q1evBgDs3bu3Un8QACgsLET//v1RXFyMH374Aa6urvDw8OCC5zXBwuAMwzBfoRpfbMX8q1W8Lv3fTHFtuSLQ+yXl5OSQu7s7SSQS0tPTo5UrVyoFrIn+L5AslUrJ1NRUKWStoAhZa2trk1gsVgpZP336lFxdXbmQtbGxMc2dO5cLWRcWFnLX9AOgZcuWVToeDg4O1KlTJ+7vjIwM0tbWJjU1NS64XXE8q1atIgCkoqJCRkZGJBaLacuWLVXWpKurSxKJpMqMRsUxvHr1igDQ1q1bCQCFhobSuHHjuJC1v78/EZXnV+rVq6cUjv/jjz9IJpNRdnY2SSQSkslktGrVKqXPuI2NDbcPovIcyezZs7n6J0yYQADoxIkTRFSeccD/z2hU3I+VlRVJpVJSU1MjuVxOtra2tGHDBhIKhdS3b1/utcRiMXl7e3PHk8fj0ZAhQ6r8nHh5eZFAICAej1dlZqHi7dWrV1RWVkarV68mExMTAkBaWlrk5OREM2bMIA0NDSosLCRvb28SCAQkFotp/PjxNGPGDLKxsaGOHTuSjY1NpYxGaGgoWVhYkFgsJj6fT4sXL+ayNgBoxIgRSu/Z+fPnuTEpgvFERJs2baIGDRqQmpoa6ejokIODAwuDf2VYDbUDq6F2+K/VwMLgzCfzuSca1YV5P6e3vzwREZWUlFB6ejoVFxd/0bFUpbqA9eem+MJIVPXxUHzRrqh///40aNAgAkAGBgaV9qmpqUnBwcFEVB7qVVFRoe7du1P37t2padOm3HaKz8GHTvh2795NAoGg2v8gDhgwgPsCr6AI3l+6dIn4fD7p6enRqlWrKCMjg3Jycoio/Mu/hoYGrVq1ijsme/bsUdqPXC7nalJ8kX716pXSvysODg40evToSuOqU6cO6ejoEBHR06dPSUVFhS5evPjOWhW8vLzI0dGRkpKSaNu2bWRnZ8dN8Jo0aUJTpkyhPXv2cONRUKzUlZKSQkSV/52r+B4pTJ48WWlxgKdPn9Lo0aOpSZMmJJfLuYUG/vjjD24bALR9+3al/VQ8PkTln6sFCxZQ8+bNqU6dOlxIXrFCWFVYGLx2YjXUDqyG2uG/VgMLgzNMDQkEAujp6dV4Lf9PITY2Fjt37kRycjJiYmL+VsD6U6nueFS8XAsovy7/Q0O+8+bNw+3bt9GnTx+kpKQgMTERBw8e/KjxfUz3aUXQfPny5Wjfvj3U1NRARKhbty7U1dWVtqnoY2uuKowulUqRkZGByMhIbN++HQ0bNoS9vf0H1yCVSnH27Fl4eXmhadOmOH78OCQSCezs7JCdnY29e/cCgFLIvqqaasrLywtxcXH47bffcPnyZcTFxUFLS6tSCLyqmitatmwZfvvtN0yfPh3nz5/Hxo0bAVQOk1fEwuAMwzD/HmyiwVRSVlaGH3/8EXXr1oWenl6loG7FELBcLoebm5tSCPjGjRvo2rUr1NXVIZfL0bp1a1y/fl0pBKzo7PwhIeBt27ahTZs2UFdXh56eHtzd3ZW6EwPA7du30bdvX8jlcqirq8Pe3h7JycmYN28egoODcfjwYe41w8LCkJqaCh6Ph7i4OJSVlaFBgwaVrlOPjY0Fn89HWloagPLO2KNHj0a9evUgl8vRrVs33Lhx44OO6bx589CiRQusX78ezs7O8PDwgLm5Obp37478/HyEh4dj2rRpcHV1xeLFi6GrqwtNTU0sWLAAJSUl8PPzQ926ddGgQQMEBQVx+y0qKoKPjw/09fWhqqoKY2NjLFmy5IPGVNHq1avB4/EgkUggk8kgk8lw8eJF/Pbbb+Dz+TA1NeVeVxGIfvLkCXg8Hrp06QIAiI+PR1ZWFiwtLbn9mpmZYfLkyRg+fDg0NDS4fbwrjH7hwoUqQ91lZWW4cOEC9u3bBysrK6ipqUFLSwuOjo5o3LgxIiMj4eXlBVdXV8yfP5/7Qn/+/HkEBARwAfsuXbpg0KBBkMlkiI+PR3Z2NiZPnsxlZBTdwIcOHYr69esjOzsbs2fPxs6dOyESiQCAG3tJSQl8fHxw6dIlrF+/HnPmzFH60i8QCGBlZYWgoCBs2bIFQ4YMqdFnqKCgAL6+vvD19cXmzZu5DuL16tXDxo0bMXXqVABAeno69u/fj2bNmsHOzg4AEBgYqLQvExMTLF68GEKhEKNHj4aRkRE2bNgAoDz8XVRUBB6PhwMHDuDMmTO4ceMGZs6ciZycHIjFYrx8+RIAcOnSJe7Yjh49Gr6+vsjPz1d6LX9/fxgaGuKnn35CUVER3rx5Aw0NDQwbNgxAefZHEaZ/GwuDMwzD/HuwiQZTSXBwMKRSKa5evYpff/0VCxYsQGhoKIDySYiLiwsyMzNx4cIFhIaG4v79+0qdpT08PNCgQQMuBDxjxgwIhUJ06NABq1evhlwu5zpSf0gIuLi4GAsXLsSNGzdw6NAhpKamKn1Befz4MTp37gyxWIxz584hOjoaI0eORElJCaZNmwY3NzdumdD09HR06NBBaf98Ph9Dhw7lVmRSCAkJQceOHbnlUAcNGoTnz5/jxIkTiI6ORqtWrdC9e3cukPs+9+7dw549e3Dq1CmEhYWhYcOG6N27N0JDQ7kQ8Llz5/DkyRNcvHgRK1euhL+/P/r27Ys6derg6tWrGDduHL777jsuFP3777/jyJEj2LNnDxITExESEgITE5MPGk9Fjo6OAMqXQI2Li4OrqytUVVXRp08fXLx4EevWrYO2tjYAoE+fPgCAxo0bo127dvD398e1a9fg6ekJBwcHtGnTBgUFBfDx8UFYWBjS0tLw4MEDvH79WimMnpeXxy3VWlBQAKD8vezdu3elUPf27dvh5eUFLy8vDB48GC4uLggKCsLMmTMxcOBAjBkzBg8fPsTVq1cRGhqKM2fOQE1NDUOHDoVIJML+/fvRrVs3bNu2DVlZWRAIBLCzs4OamhqkUil++OEHXL58GQCwcuVKFBYWonXr1jh27BjU1dXRpUsXDB8+HJmZmeDxeDh69CiKioqwZcsWqKiooFWrVnBwcMDKlSu5X+0V2rdvj+DgYCQkJCAsLKxGn6EHDx6gqKgI3t7eSEhIwMSJE5GXl4d+/foBKF99zNDQED/88AMGDRqEli1bwsjICACwYsUKbNmyRWl/K1asQO/evSEQCNCuXTuMGzcOkyZNws2bN7mJ1qxZs2BiYgJbW1vo6elh4MCBcHd3h5qaGl6+fAlnZ2d88803AIBp06bh0qVL8PHxUXqd/fv34/fff8eIESOgqqqKx48fIy8vj/ucde/enQvTMwzDMP9iNb7YivlXezsATETUtm1bmj59OhERnT59mgQCAT148IB7/Pbt20pNu9TV1ZVCwBV9ioxGVFQUAaDc3FwiIpo5cyY1bNiw2usMq8povJ0NiI2NJR6PxzXSKy0tpfr169O6deuIiCg8PJzkcjkVFhYq7adx48a0fv36947Z39+fBAIBPXr0iLvvxIkTxOfzKT09nRunsbExF9gmIjI3Nyd7e3vu75KSEpJKpbRz504iIpo4cSJ169ZNKQT9oVAho/H28ejXrx/p6elVyuu4uLjQN998QwDo+PHj1L9/f5JKpaSurk6DBg2ip0+fElF547YhQ4aQoaEhiUQiUldXJwAkkUi4ZnIqKirc9fffffcdERH99NNPlTqeK0Ld+fn55OHhQQBIJBJRkyZNaPPmzdx2YWFhXEhcV1eXpk+fTsXFxbRu3TqSyWT06tUrGjx4MAkEApLJZLRly5YqMxrVNUrs06cPTZ06lRYsWEB6enpcE72ysjIurzF9+nSysLDgnmtsbEwrV64kY2Njat++fY0+Q2837FNXV6e2bdvSvn37lLa7dOkSaWpqEp/PJ3t7e9q7dy8BoLFjx5KlpSX375yxsTENGzaMiIgWLFhA2traxOPxqEOHDuTr60stW7YkALRx40aKiYmhNm3acB3hV69eTcbGxtSuXTsaO3as0rEKDw8nPp9PBQUFXGhfcQwzMjLIxcWFZDIZ6ejo0PDhwwkA9e7du6qPJBFVHwZ/+fJltc+p7f5r13PXVqyG2oHVUDuwjAbzj7G2tlb6W19fn7tUKSEhAYaGhjA0NOQet7S0hKamJhISEgAAU6ZMwejRo+Ho6IilS5ciOTn5b40nOjoa/fr1g5GREdTV1eHg4ACg/NdeAIiLi4O9vX2la+trokWLFrCwsODOaly4cAHPnz/HoEGDAJRfDpaXlwctLS3u0iKZTIaUlJQPrs/IyAj169fn/razs0NZWRkSExO5+5o1awY+///+tdTV1VVa8lQgEEBLS4t7P7y9vREXFwdzc3P4+vri9OnTH30MKho/fjyys7MRFhaGH3/8kfu1/9ChQ1i+fDmA8s/F4cOHkZeXh5ycHOzZswe6uroAyi+N2rlzJx48eICZM2dCIpHAwsICN27c4JrJKX7hB4Bx48YBKP982dnZKS3127FjR+Tl5eHly5cIDg5G9+7dIRaL0aJFC5SUlHC9HRwcHNC3b1907doVT58+xdKlS6GiogI7Ozvk5eUhOzsbu3btQqdOnTBq1Cguh6Cpqcm9FhHB1dUVpaWlGDhwIAQCAfh8Pnx8fHDq1Ck8ePAAc+bMQXp6OhwcHDBw4EDucrzVq1fDzs4OSUlJSpeFFRUV4dWrV2jevPk7P0P37t3DyJEjYWRkBLFYjNDQUNSvXx8SiQTFxcXIycnBtWvXuLMJFY9Pw4YNMXfuXFy8eBHffvstiAi9e/dGUlIShg8fjqysLAD/9+/2nDlz8OLFC1hZWcHJyQnx8fHcmTtra2u0bNkSUVFRXC+Xli1bIjU1FaWlpdiyZQtkMhmkUimGDRsGJycnlJWVISUlBWKxGAKBgDvrVbduXRw6dAi5ubl49uwZtwRuSEhItZ+9JUuWQENDg7tV/G8NwzAM83VhEw2mkr8TAAaUQ8Dnzp2DpaXlR4eA8/Pz4eTkBLlcjpCQEERFRXH7UgRKPyYoXBUPDw9uorFjxw44Oztzzc7y8vKgr69fqRN3YmIi/Pz8PsnrA1Uf+3e9H61atUJKSgoWLlyIgoICuLm54dtvv/3b4+jVqxfS0tIwefJkPHnyBN27d/+gy9zeRSQSVWouWNMu3QKBAKGhoThx4gQsLS0REBAAc3NzpKSk/K2xvW3ZsmUIDQ2FWCzG+fPnERcXBycnpypDzNUFm8vKylBaWorTp09DU1MTDRs2rPYz1L17d7Rq1QoJCQn4448/cOvWLYSFhaFr1654/fo1NyH7GBXHJxQK8fr1a6xcuRK3b9/GmzdvcPbsWZw5c4abwLyrM3teXh6+++47pfHfuHEDSUlJaNy48Sf5d7G6MDjDMAzz9WETDaZGLCws8PDhQ6X/839XCPj06dMYOHDgB4WAq3Lnzh1kZGRg6dKlsLe3R9OmTSsFwa2trREeHl7tajsf+pru7u64desWoqOjsW/fPm41KKD8C/3Tp0+5bssVb4rswvs8ePAAT5484f6+cuUK+Hw+zM3NP+j51ZHL5Rg8eDACAwOxe/du7N+/X+ma/9zcXHh4eEAqlUJfXx+rVq3iAtxA+ZfJt8+EaGpq4tixY/Dy8sL27dsxd+5c/Pbbb9DU1OQ6SFf8DISFhcHW1hZSqRSampro2LEj0tLSsGXLFsyfPx/Pnj3DjRs3wOPxKuUGACAmJgYymQxHjx5FcHAwZDIZhEIh+Hw+WrRoAT6fj7i4OG68T58+xb59+3Dnzh1kZmYqNZJTvM6hQ4e44yyTyWBtbc29dk5ODhd8fv78Ofz8/GBjY4PIyEgAwJEjR5CXl4eCggK0aNECpqam3GMmJiZYuHAh7ty5g+DgYIwdOxbdunWDj48Prly5AlNTUwgEAsTGxuLRo0e4evUqNm/ejLZt23KfIZFIhBYtWnA3Z2dn5Ofn46+//sLQoUMhFothamqKxYsXQyQS4ejRo1x9Dx8+hJubGzQ1NaGpqQkXFxcYGRlxeRdvb2+4urpi+fLlICJYWloiNTUVaWlpiI2NhaOjI1fv3bt3cfv2bTRq1Ahjx44FAKXPTkxMDIDyFdE0NDSQkZGBq1evKn3+TU1NERYWhsGDB2PQoEEoLS3lFiQgIjRp0oQ7C6YI08fFxYHH4+HevXuVPgssDM4wDPPvwSYaTI04OjrCysoKHh4eiImJeW8IOCIiAlFRUZVCwGfPnsXLly/x+vXrd76ekZERRCIRAgICcP/+fRw5cgQLFy5U2sbHxwc5OTkYMmQIrl+/jqSkJGzbto27JMnExAQ3b95EYmIiXr58We2ExMTEBB06dMCoUaNQWlqK/v37K9VtZ2cHV1dXnD59Gqmpqbh8+TJmzZqF69evf9CxU1VVhZeXF27cuIHw8HD4+vrCzc0Nenp6H/T8qqxcuRI7d+7EnTt3cPfuXezduxd6enpKlwNNmTIFEREROHLkCEJDQxEeHs59gaxOYWEhYmJicO/ePcTFxWHx4sXQ1NREeHg4wsPDIRAIMHLkSDx8+BAZGRlwdXWFg4MDbt68icjISIwdOxY8Hg+DBw/G1KlTUa9ePTRr1gzp6elKCwcoWFpaIi4uDufOnYNYLIaqqioMDAzg4+MDDQ0NDB48GEKhEFevXsX333+PQYMGwdnZGcuWLQOPx8OpU6e4SYTiF/yHDx/i+PHj8Pf3h4+Pj9LlWAqzZs1C06ZN0blzZxgaGsLNzQ0lJSVo27YtNDU1IZFIcOHCBbi7u6OkpIR73vLlyyGVSqGmpgY+n4/evXtjy5YtCAgI4CY9Fy9ehEAgwMKFC9G9e3elz9Dt27dx9OhRbN68Gb169QIRYcWKFdxZAgMDAwCAoaEhVq1ahd9//x2jRo3C2bNn0a1bN7x+/Ro9evSAq6srZDIZ4uLicPbsWSxcuBDZ2dk4efIkIiMjMW/ePKVJysmTJ+Hv749bt26hbdu2UFVVhUwmw9atW7mlciuuvpaXlwcACAgIwJUrV9CpUydcu3YNY8eORVxcHJKSkgAAkyZNgpubG27dugULCwvMmzcP27ZtQ2pqKrp06cJ1EDc2NgaPx8PixYvRvn37v/XZZxiGYb4CNU51MP9qVTXsc3FxIS8vL+7vtLS0Dw4BGxgYkI+PDxUUFHDPr6qz87vs2LGDTExMSCwWk52dHR05cqRSk7cbN25Qz549SSKRkLq6Otnb21NycjIRET1//px69OhBMpmM61hcXaO4tWvXEgDy9PSsNI6cnByaOHEiGRgYkFAoJENDQ/Lw8FAKxlfH39+fbGxsaO3atWRgYECqqqr07bffUmZmJrdNVaH1qt4PY2NjLry8YcMGatGiBUmlUpLL5dS9e3eKiYlRGrNQKKS9e/dy92VlZZFEIlHq8Lx+/Xql4yEWi8nAwIDU1NRIJpORTCbjjicR0bp164jH4xGfz6eOHTsSAAoLC6u2dl1dXaWGcApVvQ+KLuVCoZD09PS4UDcRUXx8POnr65NQKCSxWExmZmYUEBBAfn5+ZGlpyR1D/P/wtEwmozFjxlBhYSEX6nZwcOA6Wm/cuJEiIyPJ2tqaa4aXkJBAGRkZXDhaR0eHZs+eTZ6enuTi4kLGxsbk6urKNTQcN24cyeVy4vF4NGDAAC7Ibm1trRQ0V7wfb3+GOnXqRACU3rdnz55xoXmpVEoTJ04kJycnrnFe06ZNadq0afTkyRN68+YNqamp0ezZs8nS0pL4fD7x+XxasmRJpeM8ePBg7r6dO3cqfdYV2xgbG3PbKDqzK7p8l5aWkkQioRYtWpBMJuM6y3fp0oV7zsuXLwkA1a1bl0QiEZmYmBCPx6OrV69ynwcej0c8Hk/pvysKLAxeO7EaagdWQ+3wX6uBdQZnmFpOMdH43CpOTIyNjWnatGkEgFtNS6Fly5bcdkDVKy2NGjWKNDQ0aNq0aSQQCJS++Cq+8K5du5aIiLy9vUksFlPfvn1p9erV9OTJE25fNa39l19+ISMjo2ofb9myJc2bN0/pvkOHDpFQKOQmA9XVFBQURET/96VasVIaEVFmZiYBoAsXLhBR9SukGRsb088//1zpfl9fX3JyciIioujoaOLz+ZSamvreenft2lVpolFSUkJJSUmUlJRE9evX5yYr1b0XAKh+/fpE9H8dxSuqqt5z584RAHr+/Dl33+bNm6lOnTrc3x/aIfxd3dSJyjvKK1YW279/P6mrq1N+fn6Vx6O6zuBsovHPYjXUDqyG2uG/VgNbdYphmEqioqIqrVBUFR6Ph7Fjx3KXtwDlvUtsbW1x9+5d5OXloXXr1pVCzHfv3oW7uzsAICgoCJGRkejQoQN2794NMzMzXLly5aPG/SkCxTweT6lxnqKmt1UVfI6JiQGPx3vnZX1VdcQePXo0QkND8ejRIwQFBaFbt27vDbt7e3tjyJAhAMpzQFpaWnB2dsbt27e5DETFbu3VvRcTJ05EnTp13jm+6up9+76KCz98aIfw9y0gMXr0aOzatQsFBQUICgrC4MGDIZFIqhwjC4MzDMP8e6i8fxOG+XzCw8PRq1evah9XXCNe2zVr1ozrIP629evXf+HRlC8f+t1333F/m5ubQyAQACi/7v/hw4fo3LkzAKBevXpK+YOkpCS8fv0aIpEIOjo6aNWqFXbv3g0dHZ1qg7kymUzp74KCAnTu3BkikQju7u41WgDA2toajx49wt27d2FmZlbpcQsLCy74rBAREQEzMzPuy7OiC/jbNdWEUCh857iLioq4cDMAWFlZoU2bNggMDMSOHTuwZs2aD3odJycnJCcnQyKRICgoCHPnzkXfvn255Zsrqu69qFu3Lvf+fkoRERFYu3YtevfuDaA896LoEF4TvXv3hlQqxbp163Dy5ElcvHix2m3FYjHEYvFHj5lhGIapPdhEg/lHtWnThltN6Gt2/PjxakPmurq6UFdXx7x5877YePr3748ff/wR3t7eSEpKQmRkJNq0aYNLly7hzp074PF4uHDhAoDylYEyMzMxefJkTJ48GUD5l+xLly5h0qRJePLkCZYtWwYbGxsIBAJMmDABv/76K169egUnJycsWrQIw4YNQ/fu3SGTyTB//nxcvXoVEokEEydOxP79+5GSkoK4uDg0aNAA6urq1X6RfPPmDY4fPw6hUIimTZtCT08Pvr6+sLGxAY/Hg5qaGuLi4hAfHw91dXUMHToU7du3x5o1a7B27VrMmzcPkyZNgpqaGtasWQM7OzsMHjwYJSUl3K/uPB6PWxWpffv2MDQ0xIoVK7iJl+IYKFZhcnJyQkhICAYMGAAbGxtkZmZi1qxZOHz4MBo2bIjnz59zgevRo0fDx8cHxcXFyM7O/qD3SlVVFdu2bUOPHj3w/fffw8XFBceOHcOlS5dw69YtvHjxAkePHsXatWvx8OFDlJSUwNraGkFBQTAxMUFaWhpOnDiBoqIibNu2Dfv27cObN28wZMgQBAYGQl1dnXstb29vpKamQiAQVJrEpaamYsSIEZBIJLC3t8f169fB5/Oxfv16iMVi+Pv74+7du+Dz+ZV+APD398fo0aNRXFyMFi1aKE3QiAgLFy5Ebm4upk6dChUVFezcuRN2dnYfdHwYhmGYr1iNL7ZiGKbWejujsWrVKsrJyeECx3Xq1KE5c+ZQs2bNyNnZmYiIbt26RWKxmEQiETVq1Ii2b9+ulNEgIkpPTycbGxsCQHw+nxo0aED9+vUjHR0d8vX1JVdXV9LX1yc+n08CgYCGDx9ON27coAEDBpBMJqMmTZqQpqYmAeByElVxc3MjQ0NDCg4Opm+//ZbkcjkJhUJq3rw5BQcHk0QioQkTJtBvv/1GhoaGXHfuZcuWKdX8+PFj6tmzJ0mlUhKJROTu7s5lNABwnb0PHz5Mvr6+JJPJ6P79+wSA5s+fTwAoMTGRPD09qW7dulxIWiaTkVwup5kzZ9KdO3coIiKCBAIBl0nJzc0lsVhMKioqXOf6d6m4AEBiYiK5u7tzmQsNDQ3q3LkzrV+/nubNm0cRERGUkpJCwcHBpKqqSlKplMRiMTVq1IhatWpFUqmUBg4cSP3796dOnTqRnp4e/fTTT0T0fxmN5cuXU1JSEsXGxpKdnR0BoIyMDKVt+Hw+nTx5kuLj48nKyookEgn3nv/666+koqJCHTp04GoAQD/88AMlJCRQfHw8jRo1ing8Hq1bt46IiPbu3UtyuZw2bdpEAMjHx4c2bNhQ7TFhYfDaidVQO7Aaaof/Wg0sDM4wn1lVqz/VRlVNNIiIVqxYQWZmZlRUVER5eXmkoaFBGzdu5J5XcVsFRRg6PT2dHB0dSUVFhQBQTk4Ot42fnx+1a9eOiN69wtWHHLvExEQCQKGhoVU+/tNPP5G5uTm3qhMRUe/evYnP51NpaSkREUmlUmrevLnS82xsbJRWNwNAs2fP5v7Oy8sjAHTixAnuyzYAevXqldJ+HBwcqGXLlpXGZWlpSb/88gsR/d+X9X79+r23XqLyiUbFcDcA0tfXp+jo6Hc+b9myZdS6dWvub39/f5JIJNW+N1V58eIFAaC//vpLaewVPxeKlanOnj3L3bdkyRIyNzevcp/+/v5kbW1N6urq9OeffxLR/332zp07R0KhkFuhrjosDF47sRpqB1ZD7fBfq4GFwRnmMztw4ECl/h1fi9jYWIhEIuTm5qJOnTqoU6cOiouL0adPnw96/qpVq5Ceno5x48bB3Nxc6VIcfX19roHi/fv3uRC5goaGxgc3JIyLi4NAIICDg0OVjyckJMDOzk6pH4ahoSHKysrw6NEjAOVZBUVA/V2sra25xnZSqRRyuRzPnz+HoaEh9u/fX+3zWrduXem+0aNHY/PmzXj69CnXPb0m3eK7du3KhbqvXbsGJycnrjO7wu7du9GxY0fo6elBJpNh9uzZlTIcJiYmVb43qamp4PF4OHz4MIYOHYpGjRpBLpfDxMQEACrtx9ramvtnXV1dAOX5k4r3VWya+ezZM4wZMwampqZYunQpbt26hby8PG6//fv3R25uLnr16gUjIyNcvnxZKRP0NhYGZxiG+fdgEw2G+QB169ZV+hL3tQkKCkJOTg6XI1FTU8PAgQOrzZVUlJycjNatW0NLSwuqqqpKjylWF/qQ/SiEhIRAJpNVunl5edUoNF4VFRWVSmN832pTwP/VIRAIULdu3Wr3X9VqTp6enkhOToa+vj4uXrwIIyMj2Nvbc4+Hh4dXWa9MJkNISAikUim3wlTbtm2xceNG5OfnIzAwEAAQGRkJDw8P9O7dG0ePHkVsbCxmzZpV45WfJk2ahMzMTAQGBuLq1au4evUqALxzPzVdmWrkyJEwMzNTWpnq0qVLePbsGRo0aIDOnTtjwoQJ6Ny5c7WfGdYZnGEY5t+DTTQY5gN06dIFkyZNAgCsXbsWpqamUFVVha6uLr799tsP2kdubi48PDwglUqhr6+PVatWKe0XKP8Sd+jQIaXnaWpqcl2vgfKVf9zc3KCpqYm6devCxcUFqamp3OOPHj2Cra0tHjx4gJkzZ8LHxwcHDhzAmjVrUFRUhOLiYmRkZCAyMhKLFi0CAIhEoiq/5Ofk5GD//v3YunUr5s+fz/1KzePxsG7dOmzcuBEPHjzAokWL0KhRIwgEArRt2xYikQjm5uZYv3497t69q1Tfy5cv0bZtW5SUlEBXVxdBQUE4fPgwd+bDxsYGycnJlcZiYWGByMhIpWVrHz58CD6fjwYNGnDHeO3atdzjW7duRUJCAn7++WdoaWnB0dERALBr1y4EBwfj8OHD4PF4yM7Oxp07d5CamoquXbsCAEpLSxEWFgYej4ezZ88iOjoaa9asQYcOHbiu8wCgpaWFpk2bQlVVFRkZGdDR0cGMGTPQokULAP+34EFVt379+iEmJgaurq6YP38+6tWrB01NTRQVFXGB68uXL8PIyAjPnj1D7969YWVlhTVr1ii9XwUFBUhLS0O9evWgpqYGU1NTbiLRsGFDAOVh79OnT2PhwoWwsLDAq1evAAATJ06EWCxG27ZtlY73gwcPMGvWLADguqY/e/ZMaZulS5fi9OnT+Ouvv7B//37I5XLuPVYoKSmBmZkZHj16hMuXL2Ps2LGIjIzEX3/9Vek9ZhiGYf5d2ESDYWrg+vXr8PX1xYIFC5CYmIiTJ09yqxW9z5QpUxAREYEjR44gNDQU4eHhiImJqdHrFxcXw8nJCerq6ggPD0dERARkMhmcnZ1RVFQEIsKff/4JBwcHGBgYYNKkSRg7diz27duHgoICeHl5wdTUFJMmTYKqqipGjx4NoPyym4sXL+Lx48dKXxLV1dXh7OwMNzc3TJ06FfXr1+cemzdvHqysrGBgYICRI0fizJkzKCsrQ2lpKTZu3AgXFxeMGzcORKR0udOyZcswfvx43Lx5E9bW1vjxxx+xePFi/PLLL3B1dUVycjIGDRqElJQUhIWFYc+ePQCACRMm4OHDh5g4cSLu3LmDw4cPIywsDPXq1QOfX/6fMj09PTx8+BDh4eE4d+4cvL29IRKJ4OPjg7CwMAwcOBAA4OLiAjc3Nzg7OyM9PR1yuRxNmjThxsjj8XD06FFkZWUBAGbNmoXGjRtj6NChUFFRwciRI7ltQ0JCkJiYiJKSEvB4PDg4OGDdunXc42pqatwZi7dvcrkcZWVlCA0NRUxMDDZt2gQHBwcUFxdz74OpqSnS0tKwfft2LF26FFOmTEF2djby8/ORmZkJADh//jwKCwtx4sQJJCQkYN26ddzZl2vXrgEA5HI5vvnmGyxfvhznzp3DsGHDAAA9e/bEX3/9hY0bN3JjLisrg4uLC3JycgAABw8exP379zF48GBumz179mDevHkwNDRE69atIRQKERAQgAcPHnC9UEJCQjBt2jR07doVhw4dgq+vL3799VeIRKJqe4y8efMGOTk5SjeGYRjm68QmGgxTAw8ePIBUKkXfvn3h5eWF4OBg+Pr6vvd5ubm5CA4OxvLly9G9e3c0b94cQUFBNb5UaPfu3SgrK8PGjRthZWUFCwsLBAUF4cGDBwgLC0NpaSmKiorQt29fqKioQFdXF15eXmjcuDGCg4Oxa9cuJCcn48qVKzh69Ch3JmDBggVITU1F48aNUa9ePe71iAgnT55EQUEBZDKZUq8Gd3d3tGvXDioqKjAyMsLy5cvh6ekJJycnjB8/Htu2bYONjQ2EQqHS5UwjRoyAm5sbzMzMMH36dKSmpsLDwwNOTk7YuXMnHB0dERsbi6ZNm2LMmDHIz88HANSvXx/Hjx/HtWvXYGNjg3HjxqFly5ZcjgAozxJoa2ujb9++cHd3BxGhUaNG0NTUhJWVFSZMmACg/Mu/mpoaxGIx9PT0wOPxlBrjjRs3DjNmzOAmJr1794ampiaEQiHCw8Nx+fJlFBYWAgACAgIwZswY1K9fH05OTli+fLlSpuF9Hj9+jNevX+PIkSMYNmwYnj9/jjFjxuDw4cMoKytD9+7dAZRPMn/44Qfcv3+fOxO1adMmAEB2djYkEgnatGkDExMTODo64ubNm3j+/Dn3furq6uL8+fPo1KkTJk+ezJ0x6devH8zMzGBjY8ON6ezZs/jrr78wZ84cAOVnZXx8fHDhwgXEx8cDAFavXo1Ro0bh0KFDKCoqQnBwMMrKyqCtrQ0dHR0A5cvejhw5EjExMRg8eDB+/PFH1KtXD02aNIGWllaVx2PJkiXQ0NDgboaGhh98LBmGYZjahU00GKYGevToAWNjYzRq1AgJCQm4c+fOBzWCq2lQesuWLdDU1Kx0/40bN3Dv3j2oq6tz1/nXrVsXhYWFSE5OxqVLl+Dt7Q0nJydYWVmBx+MhPT0drq6uuHLlCmbMmAErKytERkZyX2CB8n4SLVu2hLOzM3dpkre3N9crQ1NTE/PmzVPqedKmTRtMmjSJu2wrISEBXbt2RUhICPLz85Geng53d3fk5uYqnS14V9hYVVWVC1S/ePECSUlJGDFiBLe9g4MDrl27hjdv3iA9PR2Ojo5KZ0tEIhHatGmD7OxsPH78GN27d8ejR49w+/ZtBAYG4tWrVyAiuLq6Kh3XrKwseHt7c3+PHTsW6enpOHfuHADA2NgYYWFhCAwMxOnTpwGAC0QnJibCxsYGr169wqhRowAAtra2KCoqAo/He2efmC1btsDLywtdu3YFEWHgwIEwMDDA999/j7y8PDx8+BDJyckoKyvj/t61axemTp0KFxcXJCQkACj/0l9QUIAWLVrgxx9/xOXLl2FpaYmePXtyrxUYGIjU1FQUFhYiNDQUGRkZOHfuHHcsTExMQERo0aIFxo8fD6lUCjc3NxARNDU14e7uDg0NDTRr1gxZWVlISEhAu3bt0LJlS0RFRaGgoADjxo2DpqYmUlNTMWbMGCQnJ+N///sfbt26xU2qnz9//s6mfywMzjAM8+/BJhoMUwPq6uqIiYnBzp07IRKJcOXKFdjY2HCX2PxdPB5PKYMAKIeZ8/Ly0Lp160rX+t+9e5dbbSkoKAiRkZHo0KEDdu/eDTMzM1y5cuWjxiMQCKCqqspdmlRRVcHotLQ07Ny5E8nJyYiJicG2bdsAlF+qpPAhYWMASoHjjx17aGgoTpw4AUtLSwQEBMDc3BwpKSk13pfibIdAIODOEJSVlXG3w4cPQ1NTE/379/9bY/5YilWqJk+ejCdPnqB79+6IiopS2kZDQ4Nb0EBxaVNNiEQi8Hg8pYnduyjOmAQGBip9Vm/duvXOzyMLgzMMw/x7sIkGw9SQiooKHB0duWv279+/jwYNGkBPT0+p+/eDBw/g4uICmUyGTp06gcfjITQ0lHv80qVLuHHjBtauXQu5XI7WrVujTp06uHDhAkaMGIHs7GzweDy8fv2aC4i3atUKSUlJ0NHRqXS9/5EjR9CmTRuoq6ujV69e+Ouvv3Do0CE0b94cO3bsAAC8evUK9+/fh1wuh7q6Ouzt7ZGcnIx58+YphaN5PB7CwsKQmpqKw4cPIzMzE2VlZWjQoIFS/gAoXz6Xz+ejUaNGiIuLwy+//IKmTZuiTZs2uH37NtTV1fH48WOEh4cDAIYOHcqdjWnWrBkAoEOHDgDKcx+K3EizZs0gkUjg5uam1GVbsSzt4sWLsWzZMvz1119YsGABSkpKcP36dRw/fhwNGjRAUFAQeDweOnbsiFmzZqFTp07IyMiAqakpjI2NER8fX+NL11JTU9GyZUvu77/++gs5OTk4fvw40tPTuUvZoqKiuLMNLVu2BI/Hg0AgUFpxquKysjdu3EBBQQH395UrVyCTyWBoaIjGjRtXWlFqzpw5OHbsGLKzs2FoaAiJRILvv/8erq6u2L59O1avXo2kpCQA5RMEABg1ahS38IC6ujq0tLTwzTffVFrUwNvbG8nJycjJyeE+C6mpqdiyZQuysrK4S5m0tLQwZswYnDp1ChYWFpDJZAgKCuImxrq6ujAwMEBAQADatGmDdu3aITAwEAsXLuS6rzMMwzD/bmyiwTA1cPToUfz++++Ii4tDYWEhtmzZAiLCnj178Ouvv2LBggUIDQ3lwrSZmZm4cOECzpw5Ay0tLfj4+OD8+fO4ffs2+vTpA4FAgKFDhyI6OhozZsyAra0tTp06hWnTpkEqlaJTp04QCoVwdnYGAHh4eEBbWxsuLi4IDw/nAtO+vr549uwZvv/+ewwbNgwLFy5EYmIi+vTpg6SkJFhYWODx48fYtGkTXr9+jXXr1iE0NBTDhw9HSUkJpk2bphSOTk9P5778K/D5fAwdOpSbtCiEhISgY8eOmD17No4ePYo3b97A3t4eP/zwA/h8PpycnNC9e3c0atQIALBy5Uru1+1jx44BKF8FSuHx48fcfSdPnkRsbCyXrVA4d+4cnjx5ghEjRqB+/frw9/dH3759IRKJ0LlzZ4wbNw5jxozB9OnTcf36dcyfPx979uyBQCDAxo0bERISgoYNG+LmzZtITEzEy5cva7REr0JgYCCMjIwgFouxZMkSzJo1C2fPnsXNmzdhamoKAAgODsbly5dx9epVpV/2DQwMuP0UFRVh1KhRyMrKwrNnz+Dv7w8fHx/w+XxIpVLuTMmZM2cQHx+PP//8E8XFxXjx4gX+/PNPDBo0COHh4Rg+fDhu376No0ePQkNDAwCgo6MDNTU1ZGZmIj8/H9nZ2bh+/ToyMzORl5eHGTNmYMOGDWjYsCECAgLw22+/oX379tDS0kK7du1w6tQppKenY8mSJQDATbR69OiBoqIiTJkyBT///DN3mdyTJ0+4umxtbXH16lV8++232L59O1JSUrBnzx7cu3ev2mPKwuAMwzD/IjVu8ccw/0GKjtvh4eHk4OBAderUIT6fTxKJhHbv3s1t17ZtW5o+fTqdPn2aBAIBPXjwgHvs2rVrBIBUVVVJT0+PxGIxNWrUiGbMmMFt8/jxY+rZsyeJxWLi8/l0/Phx0tDQoKCgIG6b9PR08vT0JG1tbW4fY8aMoezsbHr69Cm5urqSvr4+CYVCAkAzZsyg0tJSmjlzJpmYmNCAAQNIU1OTACjt18vLi1xcXJTqfrvTdWxsLPF4PAJABw8epNLSUqpfvz6tW7eOiIimTJlCPB6PhEIhmZmZ0datW4mIqHHjxrR+/XrueW/vPzY2lojKu0Lz+XylztwnTpwgPp9P6enp3DiNjY2ptLSU/P39ycbGhszNzcne3p6roaSkhNTU1Mja2prq1atHAoGAJBIJ/f7779xrP3/+nHr06EEymYwA0Pnz5yuN5/z58wSAtm/frjReAJSSkkL9+vWjESNG0IIFC0hbW5tkMhmNHDmSfH19qWXLlkr7qo5izHPnziWxWEwCgYDGjBlDhYWF3DanTp0iAKSlpUVisZgMDQ2Jz+fTo0ePiIioRYsWpKamRgCoTp065OLiQgMHDuTez8DAQBKLxcTj8cjBwYH2799PcrmcVq9eTebm5iQUCklfX58mTpxIROWf9xEjRlD//v1JKpWSuro6OTg4EAAaN24cEZV3jle8nkwmIy8vL+rRowcB4LrM6+rqkru7O7Vo0YJEIhHVqVOHxGIxtW3bttrjwTqD106shtqB1VA7/Ndq+DudwdlEg2E+koODA02YMEHpvv79+9OIESPot99+IxMTk0rP0dTUpODgYCIimjlzJgEgCwsLWrJkCd27d4/bLigoiDQ0NGo0nuvXr1Pfvn3J0NCQZDIZSSQSAkC3b98mIqJevXqRp6dntc9/10Sj4pdlS0tLWrJkCRERnTt3joRCIfclcM2aNcTn80kqlZJQKOT+mc/n048//vjeGvz9/alhw4ZK92VlZREACgsL48bZu3dvpW06d+5c6b0wMjKi3377jYiIoqOjqW7dumRqakoTJ06kU6dOVTuGt499xcnR28fj+PHjpKamRjY2NuTn50cRERFEROTo6Eiurq4fNNEYMGAAGRoaUv369YnP55OamhoNGTKEoqKiuG0UEx7F5Ovt46Q4Jm8fp4rvp2KyTESUk5NDVlZWpK2tTcOGDaPt27dTfn5+ldu+PYaKEw2JRKK0zYEDB4jH41F+fj73vl24cKFSvW9/zioqLCyk7Oxs7vbw4UM20agFWA21A6uhdviv1fB3Jhrs0imG+Rve1425otjYWBQVFeHZs2eIiYlBfHw81NXVMXToUJw7dw6WlpY4ePDgR40jPz8fTk5OkMvlCAkJQVRUFLcvRYfmjwkAV8XDw4O7fGrHjh1wdnbmlirNy8uDvr4+4uLiMG7cOJiZmSEuLg6JiYnw8/P7JK8PVH3c3/VetGrVCikpKVi4cCEKCgrg5ub2wY0Wq1NUVIRevXohISEBFhYWiI+PR9euXWFnZ4czZ87gm2++ee8+rl+/jqNHjyI/Px/r16/HsGHD0KxZMzRt2hRTp07ltsvKyoJAIKgygP8xKi5qoK+vj7lz537UogZVHXMigkQi+eixsTA4wzDMvwebaDDMJ/DgwQPIZDIcPXoUISEhXH8IqVTKBX/v37+P169fw9/fH46OjsjPz0dERATmzJmD06dPY+DAgQgKCgJQfafu6ty5cwcZGRlYunQp7O3t0bRpU6SlpQEA7OzsoK+vj/z8fOzZswcTJ04EUP6lcPLkyVw4OSQkBIcPH4aqqioX1FZcb29vb891Ie/cuTNu3bqF6Oho7Nq1C7dv34ZUKoWmpia2bt2Kp0+f4tChQwgICMCdO3dgamoKU1NTHD169L11FBYWIjU1Fdra2lBVVYWqqirXk6F3795QU1PjQuva2tpYsWKF0vPf1VldLpejXbt22LhxIyZOnIj9+/dDTU0NNjY2iIyMBACEhYUpBfErrrBkYmKC33//HQDQsWNHjB07Ft26dcOSJUvw4sULbh/Xrl2DQCDgvoR36NBBKQRe8TZo0CDI5XJ06tQJffr0ga2tLdLS0jBjxgwcPnyYe+2TJ09CJBJBLpdDS0sLf/75Jx48eKCUh3j16hX4fD7Mzc3x5s0bXL16FSdOnICqqio6deqE3NxcbtuwsDAIhUKUlpYiNDQUjx8/RnJyMg4ePIgTJ04gKioKa9euhbu7e6Xlm0tKSuDj44Px48cjJycHc+bMqbRS2urVq6GhoQFdXV2ur4hUKkWDBg1w5swZlJSUvPezwDAMw3z92ESDYT4BAwMDxMXFoUuXLujXrx9u3rwJCwsLWFpaIiQkBI8ePcKSJUvg4OCA169f4/HjxzA3N0dGRgbS0tIQERGBqKgoWFhYACj/UpuXl4ezZ8/i5cuX7+3VYWRkBJFIhICAANy/fx9HjhzhziCsXr0aoaGhEAgEePPmDU6cOIHr168DKA/eHjhwAHFxcVzjQR8fH5w7dw779++Hp6cnAGDz5s1cF/LRo0fDzs4OI0eORF5eHldvZGQk/Pz80KpVK2zduhXffPMNTE1NceTIEfj6+ir10qhKWVkZtm/fDh6PByMjI+zfvx+TJk1CnTp10KdPH4SEhODNmzewsLCAnZ0dFi5ciDlz5mDLli3vfX9OnTrFLbsLlDfZq1OnDmJjY2FmZoahQ4eipKQEHTp0wOrVqyGXy7lQfEWBgYEAyoPqc+bMgaamJrZv347ff/8dFy9eRM+ePdGgQQMYGhpi4MCBUFNTw7hx43DmzBmEh4crhcFDQkKQmpqKgIAAblLh4eEBHo8HT09PJCcn4969e1i3bh02bNgAc3NzREVFYe/evbh//z54PB68vLxw48YNPHv2DDdv3oSbmxv09PTw448/Ii0tDa1atUJMTAyaNGmCmzdvck0GFZMiPz8/zJ49G1OmTAERYe3atVi9ejWcnJzQuHFjnDhxAkuXLlU6S7dz506oqKhg7ty5UFNTw8qVK5W6ilc0ceJEnDt3DoMHD+ZWRcvPz+ea/lWFhcEZhmH+RWp8sRXDMERU9XXsLi4u5OXlRUREaWlpSmHaQYMG0dOnT4mI6M2bNzRkyBAyNDQkkUhEBgYG5OPjQwUFBdy+xo0bR1paWgSA/P393zueHTt2kImJCYnFYrK1tSWBQKCUEcjKyiJVVVUyMjLi8huWlpaUnJxMROXhaBUVFVJVVSUA9NNPP1GjRo2U9vHmzRtSU1MjHx8fLqSryAQo5OTk0MSJE0ldXZ14PB4ZGhqSh4eHUjC+KorAc9OmTWnt2rVkYGBAqqqq9O2331JmZia5u7tTjx49lLIHfn5+ZGlpyb0XqJCnMDY2plWrVpGGhgZ5e3tTixYtuLotLCwoJiaGiIhu375NACghIYGIqs9oGBsbc2Hnt8PrIpGI6tatSy4uLtS0aVOaN28eEZWHsBXBbQcHB6V6d+/eTQC4cSgkJibSgAEDyMDAgKRSKTVo0IAkEgnl5uZy27i7uxMAWrp0KRkYGJBAICADAwPKzMykvLw8EgqFZG9vzx2noqIiEolE1KlTJyIi+v333wkAqaurc6H5oUOHEgBKTk6mxMREat++PamoqHDBd0VGw8zMjMrKyrjjNH36dLKwsCAiooMHDyqFwYuLi8nHx4fkcjnVqVOHpk+fTnZ2diQSiar9HLAweO3EaqgdWA21w3+tBhYGZxhGSVxcHAGgtLQ0pftbtmzJTY4qfilXqLjC1bRp00ggEJBUKlW68Xg8Wrt2LREReXt7k1gspr59+9Lq1avpyZMn3L4UK0J9qF9++YXkcnmVz/H39yc1NTXuC7zCoUOHSCgUUklJyQfVpAhzX7t2jXs8MzNTKbRcXRDf2NiYfv7550r3+/r6kpOTExGVh875fD6lpqa+c19ERLt27apyovG2yZMnU5cuXZTumz59utKYvby8uEnp27fi4mIiInJ1daURI0YQ0f8Fu58/f87tc/PmzZXC3XPnzqWWLVtyfytWo6ro0KFDpKKiwr0HigmeQmhoKHXr1o2bOClWLasYPq+IhcFrJ1ZD7cBqqB3+azWwMDjDMDVW27qQf4qw+vtqUvjYTuRVhbFHjx6N0NBQPHr0CEFBQejWrRuMjY3fuy8zMzMA5fkaRWD/7xozZgzOnj0LoDwrkp6eznU1r0hxTN4+DjVZ3OBDXLp0Cb169YKhoSF++eUX9O3bl+syX13NLAzOMAzz78EmGgzzFQgPD682UCyTySpt36hRIwiFQkRFRXH3ZWdn4+7du9zf9erVU8ogJCUlKWVBKnYh19XVhb+/P2xsbGBvb4/NmzejS5cumDRpElq2bImffvoJP/74o1IX8qVLl+Lly5fc/h4+fAgNDQ0uZK2iosKF5WUyGa5du4acnBzcvHkTmpqa6NixI9LS0rBlyxbMnz8fBQUFmDdvHng8HpfLiIiIgJmZGQQCQaWasrKyMGTIELx+/RpjxoxB8+bNuS/hALB//340aNAAderUAVDegE4mk2HcuHFcGPztYPnMmTO5105NTQWPx0NSUhKkUikaNmyIdevWoVOnTgCqDpaLRCLIZDLw+Xy0b98eAODu7g6pVIpWrVrBx8eHe62srCy8ePECv//+O6Kjo5Gfn690LAHA3NxcaXwSiQTt2rWDSCRCUlIS9PT0AADGxsY4d+4cbty4AblczoXo/f39YWZmBolEAj8/PxQWFipNzMLCwpCYmIht27bBxMQEly5dwv79+5WC5ZGRkahbty7Mzc0hFovx6NEjhIaGAgBu376N0tJShISEYPjw4di3bx/q168PhmEY5r+BTTQY5ivQpk2bSmcWKt7epq6uDi8vL/j5+XGdyEeNGgU+n8/9gt+tWzesWbMGsbGxuH79OsaNG6f0i3bFLuTu7u4ICwvDggUL0K1bN5w+fRrXr19HREQEFyyOi4vjupAD5Z3EX758ibi4OKSnp6NHjx5wdnbG0aNHceLECfTu3Ru6urq4du0arl+/jiNHjsDQ0BCmpqZYsWIFBgwYgLCwMNSpUwdTp05Fo0aNwOfzucB5cHAw1qxZg2nTpnFjVtQUHR0Ne3t7HD16FCoqKli0aBGWLl3KTUji4+Ph5uYGb29vHDhwAED5r/dz5szB1q1buf3l5OS8N4g/a9YseHl5gcfjgc/nY/PmzdUGy6OiohAXFwd9fX2IRCJ4enpCTU0NZmZmcHBwwLZt23D9+nUsWrQILi4u2L59O+rXrw+ZTAYvLy/cunUL58+fx5UrV+Dl5QVdXd1K45FKpRg/fjz8/Pxw8uRJxMfHIyMjAzk5OXB1dUVsbCyGDx8OAJDJZNiyZQvi4+Ph4eGBoqIirFq1Sml/RUVFOHToEI4ePQorKyvk5ubC0dERiYmJ2LlzJ1auXIm8vDzMmTMH8fHxqFevHtTV1QEArVu3BhGhdevWOH78OBYtWoQXL15w+60KC4MzDMP8i9T4YiuGYapUVTj8n5STk0Pu7u4kkUhIT0+PVq5cSba2tlwnckUXcqlUSqamptV2IVeEhIVCIRkZGREAOnHiBKmpqVHjxo1JX1+fAFC9evVo7ty5VFpaSkREcrmc2rRpw3Uh19PTo7KyMm7fimD5qVOnKCMjgwDQkSNHaMSIEaSlpUWqqqrUvHlzOnr0KJf32LdvH1laWnJjWbZsmVLNipoUgfYNGzZUmdHo1asX9ejRg4iIXr16RQBo8ODBZGlpSUTlQXz8/4yDIohvbGzM7ffgwYNKXcIjIiJIIpHQkCFD3hksVzA2NiZXV1ciKg9/e3p6Kh3HoUOHUkxMDFlbW9O8efPo5s2b1LVrV1JVVaW6devSmDFjlMLhioyGUCgkqVRKEomEVFRUSE1NjcRiMYnFYqUw+tsNABVjVVVVpdatW3P3OTg4EI/Ho5ycHO7vFi1akI6ODteJXCAQ0IYNG5RqU2Q0tm3bRvXq1SN9fX1SU1MjJycn2rx5MwGg/fv3V/7QEguD11ashtqB1VA7/NdqYGFwhqkFPudE42M6hb8tLy+PNDQ0aOPGjR+0vWJ1p4rB8pKSEkpPT6fi4uJaHyw3MjKq9vGWLVt+dLD87YnGiRMnKCkpifh8PvcFvqpgecWu4jUJlo8fP54aNWpEYrGYtLW1qXPnznTo0KFKz3VwcCBvb29KSkribi9evCCi6oPsu3btog4dOpCuri5JpVISi8VUr1497nF/f39u8qWwcuVKatiwIQUFBZFUKiUAdP/+/SqP84e8729jYfDaidVQO7Aaaof/Wg1/Z6JROSXIMMy/QmxsLO7cuQNbW1tkZ2djwYIFAAAXF5eP3qdAIOCu+6/oQ4PlISEhlZ5br149AOXBcl9fX5w8eRK7d+/G7NmzERoaymUZauJLBstVVFQwb948tG/fHi1atADw94LlLVq04ILlOjo6OHv2LAICAmBpaYmMjAxcvnwZGRkZVe5TQ0Oj2n4lb79eZGQkPDw8MH/+fDg5OUFDQwO7du2q1ATxXQHxig0Nq/Ih7/vbxGIxxGLxO/fLMAzDfCVqPgdiGKYqDg4ONHHiRPLz86M6deqQrq6uUv+Ld/XVICpfkrZLly4kk8lIXV2dWrVqRVFRUdyv5BVvH9JXY8GCBVzfCB6PR7q6unT+/HmlbW7dukV9+vQhdXV1kslk1KlTJ7p3716Vl6/MmzeP+1X+4sWL3K/Ta9euJR0dHfrjjz+IiCgmJoZ7TlBQEL169Yo6duzI3ScQCEhNTU3pF+63fzUnImrfvj3Z2tqSjY0Nubi4cJcCDRo0iLKysrjtFGdeFi1aRDo6OqShoUEjRowgPp9PI0eOpDp16lD9+vVp8+bN3HMUPUz09PRILBaTkZER2dvbU7NmzbhtKtZERHT37l2uhrcvnTI2NqabN29y98nlchKJRNxSropf/iveGjduXOX7ZmtrS3PnzqW6deuSmpoabdmy5Z3vs7GxMS1cuJB0dXVJRUWFjIyM6PDhw/T8+XPu8yYUCmny5MlKz/P09CShUEgikYiMjY1p+fLlNGrUKO4MTGZmJllbWxOfzyc1NTVydnamu3fv0qpVq8jY2JiCgoK4OuvVq0disZh69uyp1C/Fzs6OhEKh0q9gP/zwQ6WeIu+i+CWNndH4Z7EaagdWQ+3wX6uBLW/LMLVEcHAwpFIprl69il9//RULFixAaGgoysrK4OLigszMTFy4cAGhoaG4f/8+Bg8ezD3Xw8MDDRo0QFRUFKKjozFjxgwIhcIqQ8UVA9DVqV+/Pvbt24fk5GRcvnwZjRo1wq+//so9/vjxY3Tu3BlisRjnzp1DdHQ0Ro4ciZKSEkybNg1ubm5wdnZGeno63N3dsWXLFi74PX/+fPD5fDRt2hQ7duxQCpavWLECGhoa3C/hgwYNglwuR4MGDWBjYwMnJyeoqKhgxYoVGDhwIE6cOIH169dj5syZiIyMRFpaGk6fPo2kpCRoa2vj3r17SEpKglAoREBAAK5fv47vvvtOqdZz587hyZMnuHjxIlauXImgoCBoaGjg2LFjWLlyJQYPHowxY8Zg27ZtAABdXV08fPgQffr0wYkTJzBs2DBcvXq1ymB5dWH5ig4dOgQrKyssWrQIAPDrr7/ixo0b+OmnnwAAa9euRVBQEPcZ0dPTw8iRI6vc1+jRo7F06VIQERo0aIDjx48rrfJUlVWrVkEul8PDwwN9+vTB8OHD4enpiWHDhiEmJgYqKirYsWMHd4YmOjoa27ZtQ2lpKZYuXYoJEyZg5syZ2LVrF7dPb29vPHnyBI0aNUJkZCSICL1790ZpaSm3TUFBAbS1tVFYWIiZM2fi6dOn6NOnDzZt2gSgfPUzkUgEFxcXhIeHIyUlBY8ePcK9e/fw6NGjKmthYXCGYZh/kRpPTRiGqZKDgwPXeVmhbdu2NH36dDp9+jQJBAKlX3sVHakVzePU1dWr/fX6U2Q0oqKiCAAXIp45cyY1bNiw2l8zKnbgVgTLFQHgqVOnkq2tLY0YMYJ4PB5du3aNC5YLBAL6/vvvSUNDg2bOnElyuZwKCwspPT2dPD09SVtbm3g8Hmlra9OYMWMoOzubnj59Sq6urqSvr8/9wj537lyaO3cuCQQCSk5Opm+++YYLlvN4PEpPT+fGaWxszIXQiYjMzc2pffv2SsFyHo9Hfn5+REQ0ceJEat68+QcFy98Oy6OKMxqKTuHOzs4EQOnMUcUO74pt325qV1Fubi5JJBKaMGECXbhwgRo0aEBCoZDatGlDkyZNokuXLiltb2xsTMOGDeMyQunp6QSA5syZw22jp6dHALhjpuiy7ufnR1paWiSTyahp06bE5/NJVVWVO3szcuRILhvz8uVLUlNT4453UFAQAaDLly/Tzz//TMbGxiQUCgkAjR8/nntvnJycuPddLBaThoYGqampUe/evausn4XBaydWQ+3Aaqgd/ms1sDMaDFNLWFtbK/2tr6+P58+fIyEhAYaGhjA0NOQes7S0hKamJhISEgAAU6ZMwejRo+Ho6IilS5ciOTn5b40lOjoa/fr1g5GREdTV1eHg4AAAePDgAYDy5Wjt7e2r/ZW+InV1dYSEhCA+Ph4A8M033yAxMREdO3aEhYUFzp49i1OnTuHPP/8En8/H/PnzkZWVhfr16yMvLw9aWlpo0qQJ9u/fj4KCAvB4PIwcORIbNmyAXC6Hrq4uDh48iCdPnuDNmzdITU3F/PnzwePxoK6ujoEDB2Lfvn149eoVsrKyQERITEzkxtesWTOuERxQfsaiVatW2Lx5M16+fImCggIYGhqiQYMGAP7v1/ri4mKMGzcOgYGBlc4SGRgY4NSpU8jLy8Pdu3fRq1cvZGVlcY+bmJggJSVF6Tm+vr5QU1PDpEmT0Lt3b8hkMqxbtw4vX75U2jY1NRWTJk2q8li/fPkShYWFGDVqFDp37oz79+/j7Nmz+Pbbb3H79m3Y29tj4cKFSs+5fPkyWrRogdWrV3NL3lpZWSk9DgDPnz8HACQkJKBjx4749ddf8fLlS+Tm5mLp0qUoKyvDokWLkJCQABUVFWzYsIFbPllLSwvm5uZo1KgRUlNTAZTnU9q1a4dZs2YhNTUVRUVF0NTURLt27bjXVlVVRXBwMF68eIHCwkJ4e3tDLpdX+7mbOXMmsrOzuZuiZwjDMAzz9WETDYb5hP5OZ+V58+bh9u3b6NOnD86dOwdLS0scPHjwo8aRn58PJycnyOVyhISEICoqituXon9BTQLTsbGx2LlzJ9LS0gCAuyTIxcUFHh4eXJO+HTt2wNnZGVpaWgDKw8D6+vqV+n4kJibCz8/vo2qrSlXH/V3vRatWrZCSkoKFCxeioKAAbm5u+Pbbb//2OHr16oW0tDRMnjwZr169Qn5+/nsvc1O8H8XFxXj69Clmz56N9u3bo1WrVlxt9vb2mD59Ok6fPo0FCxZg4cKFSn0oKoayFf9csX5FiP3vdPn+GHw+/4MC9RWxzuAMwzD/HmyiwTBfgIWFBR4+fKj062x8fDyysrJgaWnJ3WdmZobJkyfj9OnTGDhwIHddv0gkUro2/n3u3LmDjIwMLF26FPb29mjatCn3a7aCtbU1wsPDq/3ip3jN3Nxc/PTTT/Dw8ECXLl0AlJ8t6du3L7S1tTFr1izcunUL0dHR2LdvHzw8PKCpqYktW7agVatWePr0KZ4/f46ffvoJbdq0ga2tLaZOnYq8vDzutcLCwmBrawupVKrUFTwuLg5ZWVm4ceMG1117wYIF4PF43BmDkJAQHD16lOsw3qxZM5SUlODs2bPQ1dWFqqoqmjdvjoKCAu719u/fDzs7O3h6eiI0NBRubm7Yv38/MjMzAaDKruCKmoDyMwM8Hg8nT54EALRv3x42NjaIjIxEvXr1YGxsjCtXrgAAVqxYAR6Ph4CAAADlk5GFCxfC09MTcrkcY8eORbdu3eDm5gZ9fX1ERUXhf//7H168eAGRSISzZ88qdYZftGgRiouLUbduXchkMu4M1dv27NnDvYZiYhgbGwt7e3vcuHEDS5Ysga+vL9dxPCIiAkKhEHw+HxYWFigpKcGkSZNgZWUFqVQKAwMD3Lp1C40aNeJeo6SkBHK5HKdOnYKFhQUkEgmysrK4FaXq1auHJ0+eYMqUKdDU1ISWllal48owDMP8e7GJBsN8AY6OjrCysoKHhwdiYmJw7do1eHp6wsHBAW3atEFBQQF8fHwQFhaGtLQ0REREICoqiuuybWJigry8PJw9exYvX758b7dqIyMjiEQiBAQE4P79+zhy5Eily218fHyQk5ODIUOG4Pr160hKSsK2bdu4S5JMTExw8+ZNjBw5Erdu3cKJEye4L9alpaXQ1tbm9mVubo5Ro0ahtLQU/fv3V6q7ffv26NatG3JycrBr1y6sWbMGycnJ6NKlC4qKilBSUgJXV1c4ODjg5s2biIyMxNixY8Hj8dCsWTMIhUJIpVKcOXMGBw8exJ9//omBAwfixo0biIuLQ79+/dClSxfubMnRo0dx8+ZNPHnyBNu3b0d8fDyWLl3KjSk6OhqDBg2CpaUlDh06hHHjxmHz5s3Q0NCApqZmjd7XZcuWAQB2794NMzMz9OrVCwcOHICOjg6mT58OFRUVtGzZEunp6ZgzZw7U1NRQWFiIX3/9FWZmZoiNjcWcOXMwevRoXLhwAYWFhUhMTISVlRW2b98OPp+PpKQk8Pl8HD16FKtXr4a+vj7at2/P1auvr1/l2A4dOgQbGxvExsZi4sSJAIAJEybgm2++wf79+1FcXIx9+/Zh+PDhXJd1xdkDU1NTuLi4YO/evRgzZgz27t2LBg0agMfjITw8nHsNgUCA169fY86cOfjpp5/QpEkTqKmpccvZduvWDdHR0Vi/fj1+/vlnDB48GC9evMDLly+rPaYsDM4wDPMvUvP4CMMwVamqYZ+Liwt5eXkR0buXt33z5g235KpIJCIDAwPy8fGhgoICbl8VQ8Ufsrztjh07yMTEhMRiMdnZ2dGRI0eUgstERDdu3KCePXuSRCIhdXV1sre3p+TkZCIiev78OXXt2pUL454/f54LQKuqqio16/vuu+8IAHl6ehKRcrO+DRs2kKamJhkYGJBQKCRDQ0MaOnQoicVipa7gYWFhlWrw9/cnXV1dql+/PhkYGJCqqip9++23lJmZyW1TMbRORHTq1CmlsSgoAtju7u5kYWFBLVq0IKlUSnK5nIyMjKhhw4bctnhHA0IAtH79egJAS5cu5Y6pItzfuHFjbvleFRUVpWZ2gYGBJBAICIDSEq8FBQVUp04d2r17N3eftbU1de/enezs7Khu3bqkqqpKjRo1Il9fX6VgtLGxMTVu3FjpsweAbG1tub8V79vAgQO5+/bt20cmJiYEgAwNDWnZsmVKIfXMzEwaPnw4F952cnKi33//nbS0tIiofIECxeIAhoaGJBaLydHRkVtqV0Emk5FMJiMNDQ2aPHkyTZgwgUQikdJ7VhELg9dOrIbagdVQO/zXamCdwRmG+SwqdgWv6Et1BVdMNGpLV3BFTYov7ooVw4jKv5ijmq7gFdWkK3hqaup76yWqPMmt6jXatGlDIpFI6T1Q9FmJj4/nnldxNazQ0FDq1q0bGRgYkEwmI1VVVQJA+fn5XI0SiUTpdQ4cOEA8Ho+IiLKyspSOiYKrq2u1Ew3WGbx2YjXUDqyG2uG/VgPrDM4wzD/mc3YF/xhfsit4xcC1IoT9qbqCd+vWDcbGxjUderWvkZeXh++++w6+vr6VtjUyMqp0X2pqKvr27Yvx48dj0aJFqFu3Li5duoRRo0ahqKgIEokEQNVB/LePXU283Rlcsa/c3NwPWiGtNiouLsbr16+Rk5PDavgHsRpqB1ZD7VCTGhSXsH7Mf9vZRINhvkLh4eHo1atXtY9XDFr/HY0aNYJQKERUVBT3ZTQ7Oxt3795F586dAZRPFtLT07nnJCUlKWVIWrVqhd27d0NHR6fSCkLNmjXjVrKqqKCgAP7+/rCzswOPx6tREN7a2hqPHj3C3bt3YWZmVulxCwsLREREKN0XEREBMzMz7Nq1i2sGOGTIEO4/vkT03lzM2z4kwC+TySrd16hRIxQXF2Pu3Lk1er33adWqFeLj49GkSZMP2j46OhplZWVYsWIFt3Twnj17avSaGhoa0NfXx9WrV7nPS0lJCaKjo7lVtd4nIyMDANCwYcMavTbDMAzzaeXm5kJDQ6NGz2ETDYb5CrVp04brb/A5qaurw8vLC35+fqhbty50dHTg7+8PPp/P/YKv6KBtZ2eH0tJSTJ8+XenXEQ8PDyxbtgwuLi5YsGABGjRogLS0NBw4cACbNm1CQUEBdu/eje7du0NHRwf379/HlClT4OzsjMmTJ8PMzAxjx45FXFwcGjRoAHV1daVfvN/m4OCAzp0745tvvsHKlSvRpEkT3LlzBzweD87Ozpg6dSratm2LhQsXYvDgwYiMjMSaNWuwdu1a9O/fH+3atcOkSZNw584drFixAmVlZfj1119x/fr1Gh27igF+GxsbSCQS7iyAwtvv4e7duzF//nzI5fJq+2x8rOnTp6N9+/bw8fHB6NGjIZVKER8fj9DQUKxZs6bS9k2aNEFxcTECAgLQr18/RERE4H//+1+NX/eHH37A0qVLYWpqiqZNm2LlypVK/Ujep27dugDK+7/U9P/gaoucnBwYGhri4cOHX+1yvayG2oHVUDv812ogIuTm5sLAwKDmL1Tji60YhvlPUXQFl0gkpKenRytXriRbW1uaMWMGEVXfQVuRZyAipa7gYrGYGjVq9N6u4IpO34WFhUpdwSvutzoZGRlKXcGbN29OR48e5R7ft2/fR3UFfzujUTFY/+rVq3d2BVcE+D+0K3hNVJXRqOo1rl27Rj169CCZTEZSqZSsra1p0aJF1T5v5cqVpK+vz4XBt27dSgDo1atXRFR1DuXgwYNU8f9aiouL6YcffiC5XE6ampo0ZcoU8vT0rDaj8ba/c21wbcFqqB1YDbUDq6F2+FI18Ij+xsW0DMP85+Tn56N+/fpYsWIFRo0a9U8P518lNTUVjRs3RlRU1AdfWvRvl5OTAw0NDWRnZ3/VvxyyGv55rIbagdVQO3ypGtilUwzDvFNsbCzu3LkDW1tbZGdnY8GCBQDKu4Izn0ZxcTEyMjIqdQVnGIZhmK8Za9jHMMx7LV++HDY2NnB0dER+fj7Cw8OVGvZ9SSEhIVyX7LdvzZo1+0fG9HdFREQodQWvqGJX8Kpu/3ZisRj+/v7vzOXUdqyG2oHVUDuwGmqHL1UDu3SKYZivSm5uLp49e1blY0Kh8G8tCVsbFRQU4PHjx9U+/qGrSDEMwzDMl8YmGgzDMAzDMAzDfHLs0imGYRiGYRiGYT45NtFgGIZhGIZhGOaTYxMNhmEY5ov6448/YGJiAlVVVbRr1w7Xrl175/Z79+5F06ZNoaqqCisrKxw/flzpcSLC3Llzoa+vDzU1NTg6OiIpKelzlvDJazhw4AB69uwJLS0t8Hi8L9KQ81PWUFxcjOnTp8PKygpSqRQGBgbw9PTEkydPvpoaAGDevHlo2rQppFIp6tSpA0dHR1y9evVzlvDJa6ho3Lhx4PF4WL169ScetbJPXYO3tzd4PJ7SzdnZ+XOW8Fneh4SEBPTv3x8aGhqQSqVo27YtHjx48FWM/+3jr7gtW7asZgP7rF06GIZhGKaCXbt2kUgkos2bN9Pt27dpzJgxpKmpSc+ePaty+4iICBIIBPTrr79SfHw8zZ49m4RCIf3111/cNkuXLiUNDQ06dOgQ3bhxg/r3708NGzakgoKCr6aGrVu30vz58ykwMLBSM8ivoYasrCxydHSk3bt30507dygyMpJsbW2pdevWX00NREQhISEUGhpKycnJdOvWLRo1ahTJ5XJ6/vz5V1ODwoEDB8jGxoYMDAyqbRJaW2vw8vIiZ2dnSk9P526ZmZlfVQ337t2junXrkp+fH8XExNC9e/fo8OHD1e6zto2/4rFPT0+nzZs3E4/Ho+Tk5BqNjU00GIZhmC/G1taWvv/+e+7v0tJSMjAwoCVLllS5vZubG/Xp00fpvnbt2tF3331HRERlZWWkp6en1N09KyuLxGIx7dy58zNU8OlrqKiqrvOfw+esQeHatWsEgNLS0j7NoN/yJWpQdE8+c+bMpxn0Wz5XDY8ePaL69evTrVu3yNjY+LNOND5HDV5eXuTi4vJZxluVz1HD4MGDadiwYZ9nwG/5Ev8uuLi4ULdu3Wo8NnbpFMMwDPNFFBUVITo6Go6Ojtx9fD4fjo6OiIyMrPI5kZGRStsDgJOTE7d9SkoKnj59qrSNhoYG2rVrV+0+a1sNX9qXqiE7Oxs8Hg+ampqfZNwVfYkaioqKsGHDBmhoaMDGxubTDb7C/j9HDWVlZRg+fDj8/Pw+e2+hz/k+hIWFQUdHB+bm5hg/fjwyMjI+fQH4PDWUlZXh2LFjMDMzg5OTE3R0dNCuXTscOnToqxj/2549e4Zjx45h1KhRNR4fm2gwDMMwX8TLly9RWloKXV1dpft1dXXx9OnTKp/z9OnTd26v+N+a7PPv+Bw1fGlfoobCwkJMnz4dQ4cOhVwu/zQDr+Bz1nD06FHIZDKoqqpi1apVCA0N/SwNSj9XDb/88gtUVFTg6+v7ycf8ts9Vg7OzM7Zu3YqzZ8/il19+wYULF9CrVy+UlpZ+FTU8f/4ceXl5WLp0KZydnXH69GkMGDAAAwcOxIULF2r9+N8WHBwMdXV1DBw4sMbjU6nxMxiGYRiGYapRXFwMNzc3EBHWrVv3Tw+nxrp27Yq4uDi8fPkSgYGBcHNzw9WrV6Gjo/NPD+29oqOj8dtvvyEmJgY8Hu+fHs5HGzJkCPfPVlZWsLa2RuPGjREWFobu3bv/gyP7MGVlZQAAFxcXTJ48GQDQokULXL58Gf/73//g4ODwTw6vxjZv3gwPDw+oqqrW+LnsjAbDMAzzRWhra0MgEFTq7P7s2TPo6elV+Rw9Pb13bq/435rs8+/4HDV8aZ+zBsUkIy0tDaGhoZ/lbAbweWuQSqVo0qQJ2rdvj02bNkFFRQWbNm36tAXg89QQHh6O58+fw8jICCoqKlBRUUFaWhqmTp0KExOTr6KGqjRq1Aja2tq4d+/e3x/0Wz5HDdra2lBRUYGlpaXSNhYWFp981anP/R6Eh4cjMTERo0eP/qjxsYkGwzAM80WIRCK0bt0aZ8+e5e4rKyvD2bNnYWdnV+Vz7OzslLYHgNDQUG77hg0bQk9PT2mbnJwcXL16tdp91rYavrTPVYNikpGUlIQzZ85AS0vr8xSAL/s+lJWV4c2bN39/0G/5HDUMHz4cN2/eRFxcHHczMDCAn58fTp069VXUUJVHjx4hIyMD+vr6n2bgFXyOGkQiEdq2bYvExESlbe7evQtjY+NaP/6KNm3ahNatW398TqnG8XGGYRiG+Ui7du0isVhMW7Zsofj4eBo7dixpamrS06dPiYho+PDhNGPGDG77iIgIUlFRoeXLl1NCQgL5+/tXubytpqYmHT58mG7evEkuLi6ffXnbT11DRkYGxcbG0rFjxwgA7dq1i2JjYyk9Pf2rqKGoqIj69+9PDRo0oLi4OKVlMd+8efNV1JCXl0czZ86kyMhISk1NpevXr9OIESNILBbTrVu3vooaqvK5V5361DXk5ubStGnTKDIyklJSUujMmTPUqlUrMjU1pcLCwq+iBqLy5YWFQiFt2LCBkpKSKCAggAQCAYWHh38V4ycqX3VNIpHQunXrPnpsbKLBMAzDfFEBAQFkZGREIpGIbG1t6cqVK9xjDg4O5OXlpbT9nj17yMzMjEQiETVr1oyOHTum9HhZWRnNmTOHdHV1SSwWU/fu3SkxMfGrqiEoKIgAVLr5+/t/FTUoluWt6nb+/PmvooaCggIaMGAAGRgYkEgkIn19ferfvz9du3bts43/U9dQlc890SD6tDW8fv2aevbsSfXq1SOhUEjGxsY0ZswY7kvz11CDwqZNm6hJkyakqqpKNjY2dOjQoa9q/OvXryc1NTXKysr66HHxiIg+7lwIwzAMwzAMwzBM1VhGg2EYhmEYhmGYT45NNBiGYRiGYRiG+eTYRINhGIZhGIZhmE+OTTQYhmEYhmEYhvnk2ESDYRiGYRiGYZhPjk00GIZhGIZhGIb55NhEg2EYhmEYhmGYT45NNBiGYRiGYRiG+eTYRINhGIZhGIZhmE+OTTQYhmEYhvlX8Pb2hqur6z89jCqlpqaCx+MhLi7unx4Kw3wxbKLBMAzDMAzzGRUVFf3TQ2CYfwSbaDAMwzAM86/TpUsXTJw4EZMmTUKdOnWgq6uLwMBA5OfnY8SIEVBXV0eTJk1w4sQJ7jlhYWHg8Xg4duwYrK2toaqqivbt2+PWrVtK+96/fz+aNWsGsVgMExMTrFixQulxExMTLFy4EJ6enpDL5Rg7diwaNmwIAGjZsiV4PB66dOkCAIiKikKPHj2gra0NDQ0NODg4ICYmRml/PB4PGzduxIABAyCRSGBqaoojR44obXP79m307dsXcrkc6urqsLe3R3JyMvf4xo0bYWFhAVVVVTRt2hRr167928eYYd6HTTQYhmEYhvlXCg4Ohra2Nq5du4aJEydi/PjxGDRoEDp06ICYmBj07NkTw4cPx+vXr5We5+fnhxUrViAqKgr16tVDv379UFxcDACIjo6Gm5sbhgwZgr/++gvz5s3DnDlzsGXLFqV9LF++HDY2NoiNjcWcOXNw7do1AMCZM2eQnp6OAwcOAAByc3Ph5eWFS5cu4cqVKzA1NUXv3r2Rm5urtL/58+fDzc0NN2/eRO/eveHh4YHMzEwAwOPHj9G5c2eIxWKcO3cO0dHRGDlyJEpKSgAAISEhmDt3LhYtWoSEhAQsXrwYc+bMQXBw8Cc/5gyjhBiGYRiGYf4FvLy8yMXFhYiIHBwcqFOnTtxjJSUlJJVKafjw4dx96enpBIAiIyOJiOj8+fMEgHbt2sVtk5GRQWpqarR7924iInJ3d6cePXoova6fnx9ZWlpyfxsbG5Orq6vSNikpKQSAYmNj31lDaWkpqaur059//sndB4Bmz57N/Z2Xl0cA6MSJE0RENHPmTGrYsCEVFRVVuc/GjRvTjh07lO5buHAh2dnZvXMsDPN3sTMaDMMwDMP8K1lbW3P/LBAIoKWlBSsrK+4+XV1dAMDz58+VnmdnZ8f9c926dWFubo6EhAQAQEJCAjp27Ki0fceOHZGUlITS0lLuvjZt2nzQGJ89e4YxY8bA1NQUGhoakMvlyMvLw4MHD6qtRSqVQi6Xc+OOi4uDvb09hEJhpf3n5+cjOTkZo0aNgkwm424///yz0qVVDPM5qPzTA2AYhmEYhvkc3v7izePxlO7j8XgAgLKysk/+2lKp9IO28/LyQkZGBn777TcYGxtDLBbDzs6uUoC8qloU41ZTU6t2/3l5eQCAwMBAtGvXTukxgUDwQWNkmI/FJhoMwzAMwzAVXLlyBUZGRgCAV69e4e7du7CwsAAAWFhYICIiQmn7iIgImJmZvfOLu0gkAgClsx6K565duxa9e/cGADx8+BAvX76s0Xitra0RHByM4uLiShMSXV1dGBgY4P79+/Dw8KjRfhnm72ITDYZhGIZhmAoWLFgALS0t6OrqYtasWdDW1ub6c0ydOhVt27bFwoULMXjwYERGRmLNmjXvXcVJR0cHampqOHnyJBo0aABVVVVoaGjA1NQU27ZtQ5s2bZCTkwM/P793nqGoio+PDwICAjBkyBDMnDkTGhoauHLlCmxtbWFubo758+fD19cXGhoacHZ2xps3b3D9+nW8evUKU6ZM+djDxDDvxTIaDMMwDMMwFSxduhQ//PADWrdujadPn+LPP//kzki0atUKe/bswa5du9C8eXPMnTsXCxYsgLe39zv3qaKigt9//x3r16+HgYEBXFxcAACbNm3Cq1ev0KpVKwwfPhy+vr7Q0dGp0Xi1tLRw7tw55OXlwcHBAa1bt0ZgYCB3dmP06NHYuHEjgoKCYGVlBQcHB2zZsoVbcpdhPhceEdE/PQiGYRiGYZh/WlhYGLp27YpXr15BU1Pznx4Ow3z12BkNhmEYhmEYhmE+OTbRYBiGYRiGYRjmk2OXTjEMwzAMwzAM88mxMxoMwzAMwzAMw3xybKLBMAzDMAzDMMwnxyYaDMMwDMMwDMN8cmyiwTAMwzAMwzDMJ8cmGgzDMAzDMAzDfHJsosEwDMMwDMMwzCfHJhoMwzAMwzAMw3xybKLBMAzDMAzDMMwnxyYaDMMwDMMwDMN8cv8P5HYNJ5Qw/HQAAAAASUVORK5CYII=",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"## BUILT-IN\n",
"\n",
"# Get feature importances from the model\n",
"importances = best_pipeline_lasso.named_steps['model'].feature_importances_\n",
"\n",
"# Create a Series and sort\n",
"feat_series = pd.Series(importances, index=selected_features_lasso).sort_values(ascending=True) # ascending=True for horizontal plot\n",
"\n",
"# Plot Feature Importances\n",
"plt.figure(figsize=(8, 5))\n",
"feat_series.plot(kind='barh', color='skyblue')\n",
"plt.title('Feature Importances')\n",
"plt.xlabel('Importance')\n",
"plt.grid(axis='x')\n",
"plt.tight_layout()\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Interpreting the Feature Importance Plot\n",
"The **feature importance plot** shows how much each feature contributes to the model’s overall decision-making.\n",
"\n",
"For tree-based models like Random Forest, importance is based on how often and how effectively a feature is used to split the data across all trees.\n",
"A higher score means the feature plays a bigger role in improving prediction accuracy.\n",
"\n",
"In the graph you will see that:\n",
"* Features are ranked from most to least important.\n",
"* The values are relative and model-specific — not directly interpretable as weights or probabilities.\n",
"\n",
"This helps us identify which features the model relies on most when making predictions.\n",
"\n",
"**Important!**\n",
"Unlike SHAP values, native importance doesn't show how a feature affects predictions — only how useful it is to the model overall. For deeper interpretability (e.g., direction and context), SHAP is better (but it takes more time to run)."
]
},
{
"cell_type": "code",
"execution_count": 111,
"id": "e2197cea",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"PermutationExplainer explainer: 4263it [22:09, 3.21it/s] \n",
"/tmp/ipykernel_51877/2010823018.py:21: FutureWarning: The NumPy global RNG was seeded by calling `np.random.seed`. In a future version this function will no longer use the global RNG. Pass `rng` explicitly to opt-in to the new behaviour and silence this warning.\n",
" shap.summary_plot(shap_values.values, X_test_shap)\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAzsAAAOsCAYAAABtTKjUAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3XlcFPX/wPHXLrfIIXghoOCR5pUZppaaeaRxCd6VR1jgbWWa2qWm3+83y7xR0ZQEM28FvM0Ds/K2sswjkVTEFBHkvnZ/f/DbzXU5dpFLfD8fj3082JnPzLxndnaZ93yOUajVajVCCCGEEEIIUcUoKzoAIYQQQgghhCgLkuwIIYQQQgghqiRJdoQQQgghhBBVkiQ7QgghhBBCiCpJkh0hhBBCCCFElSTJjhBCCCGEEKJKkmRHCCGEEEIIUSVJsiOEEEIIIYSokiTZEUIIIYQQQlRJkuwIIYQQQgjxBJgxYwbVq1cvdl5sbCwKhYLNmzcbtf6SLleWTCs6ACGEEEIIIUTl4eTkxM8//8xTTz1V0aE8Mkl2hBBCCCGEEFoWFhZ06NChosMoFdKMTQghhBBCCKFVUHO07OxsJkyYgIODA/b29owcOZJ169ahUCiIjY3VWT4zM5Nx48ZRo0YNnJycmDRpErm5ueW8F/kk2RFCCCGEEOIJkpubq/dSqVRFLjN16lRCQkKYMmUKGzZsQKVSMXXq1ALLfvTRRyiVSjZu3MioUaP46quv+Prrr8tiV4olzdiEEEIIIYR4QqSlpWFmZlbgPGtr6wKnJyYmsmzZMj7++GOmTJkCQK9evejRowfXr1/XK9++fXsWLVoEQM+ePTl06BCbN29m1KhRpbQXhpNkRwghhBBCPJKcnBxCQ0MBCAgIKPRiWpSQoq/hZdVbi5xtZWXFkSNH9KavWLGCdevWFbjMuXPnyMzMxNfXV2d6nz59OHDggF75V155Red98+bNOXjwYHGRlwlJdoQQQgghhHhCKJVKPDw89Kbv2LGj0GXi4+MBqFWrls702rVrF1je3t5e5725uTmZmZlGRlo6pM+OEEIIIYQQolBOTk4A3LlzR2f67du3KyIco0iyI4QQQgghRKWmMOJV+lq2bImlpSURERE607dv314m2ytN0oxNCCGEEEIIUShHR0dGjx7Nf/7zHywtLWnTpg2bNm3i0qVLQH7TuMqq8kYmhBBCCCGEqBQ+//xzgoKC+N///seAAQPIycnRDj1tZ2dXwdEVTqFWq9UVHYQQQgghhHh8yWhsZUzRz/Cy6i1lF8dDhg4dytGjR7l69Wq5bdNY0oxNCCGEEEKISq1s+uIYIzo6mh9//JHnnnsOlUrFjh07+Pbbb5k3b15Fh1YkSXaEEEIIIYQQRapevTo7duxgzpw5ZGRk4O7uzrx583j33XcrOrQiSbIjhBBCCCGEKNJzzz3HTz/9VNFhGE2SHSGEEEIIISq1im/G9riS0diEEEIIIYQQVZIkO0IIIYQQQogqSZIdIYQQQgghRJUkfXaEEEIIIYSo1KTPTklJzY4QQgghhBCiSpJkRwghhBBCCFElSbIjhBBCCCGEqJIk2RFCCCGEEEJUSZLsCCGEEEIIIaokGY1NCCGEEEKISk1GYyspqdkRQgghhBBCVEmS7AghhBBCCCGqJGnGJoQQQgjxpLh1D/6KBzNTcHYAl5qFl03PhFNXoEV9cLQpvxiFKEWS7AghhBBCPAk6TIHjl3WnmZnAnk+hWyvd6d2nw8Fz/763s4K4r8HaquzjBO6kqZh9TMXWy2BtBou6KXjF3aRctl05SZ+dkpJmbEIIIYQQVd3/tugnOgA5efmJTWZ2/vslu8DuDd1EByA5A2oHlH2cwCdH86i9TMWis3AjFS7eg15b1Cw4lVsu2xdViyQ7QgghhBBVWXYOfPht0WXmR4Hv/2D813A/o+Ay6dnw69XSj+8Bc47nMvuYusB57x2G5ExVmW5fVD2S7AghhBBCVGXPvl98mZ2nIOpk8eVeXwAZWY8cUkH+SVMx9Yeiy9gvURF67kms4VEY8RIPkmRHCCGEEKKqys6B8zeKL5eSbtj6zl+H5yY/WkyF+PRHw2ptRuyFXTF5ZRKDqHok2RFCCCGEqKpSC2mS9rA79w1f5583YO/ZksVTCJVaTejvhpcfEFlwUzchHibJjhBCCCFEVRW43LBy8cnGrbf3LMgtvdqVnTFqcozojpP+xLVkk2ZsJSXJjhBCCCFEVbX1WNmt+/tfS21V4w4YP/DA4WvSlE0UT5IdIYQQQghhvNtGNH0rQtz9PK6VYFUvb1Tz1NdPXBWPMJIkO0IIIYQQVdHtpLJd/57TpbKa0d+XvP/N5SSY/bMkPKJwRiU7UVFReHh4cOrUqbKKRwghhBBClIaAJWW7/u9+LJXVnP3n0Zb/5EeITa7qz9+RPjslZVrRARjj8OHDXLx4kZEjR1Z0KI+tdevWYWNjg4+PT4mWj4qKIiUlhddff72UIys/p06dYtSoUTrTrKysaNCgAV5eXgwcOBATExMgf39nzpwJwDvvvMPQoUP11nfhwgWGDBkCgLe3NzNmzNArc+LECbZu3cq5c+dITEzEzMyM+vXr07FjR/r370+dOnVKdR8fjBtAoVBQrVo1GjdujL+/P97e3qW6vYpUlufkg+fKgAEDmDJlil6ZxMREPD09yc3NpW3btqxYsaLU4xAl8yjnRnl/Z4UodXl5sOtM2W/n6i1wr1vixdOy1dxIe/Qw3FeqeLGeiqOvP1aXtqIcPFZnxOHDh9mxY4ckO4/gu+++w8nJ6ZGSnfj4+Mc62dHo1asXL774Imq1mjt37rBjxw6++uorYmJi+Oijj3TKWlhYEBUVVWCyExkZiYWFBVlZ+g9ZU6lU/Pe//2X79u04OTnRq1cv6tevT05ODn/++SebNm1i+/bt7N+/v0z2cfDgwTRv3hyVSkV8fDzbt29nxowZ3L59mxEjRpTJNstbeZyTFhYW7N27l/feew9zc3Odebt27UKtVmsTZFF5lOTcqOjvrBClZvuJ8tlOs/GQtanEi+++Wno1Mj/eBIt5uaS9o8TURHpqiHyPVbIjRGlq1qwZnp6e2vf9+/dnwIABbN++nVGjRuHo6Kid17VrV/bu3cvvv/9Oy5YttdOzs7PZu3cvL7/8Mnv27NHbxooVK9i+fTu9evVixowZmJmZ6cx/7733yrQmoE2bNvTo0UP73sfHh379+rFmzRqGDRuGqWnBPwFpaWlYW1uXWVyPSq1Wk5GRQbVq1cple5rPPzo6mp49e+rMi4yM5MUXX+TkSQOePC4qvYr+zgpRagZ8WT7byc6DmsPg5/8ZvWh6torXokr3eTnZKjCbr+L951R81EGBqVKBjUV+4pOnUpORC9XNH8emXo9jzJVDiZIdtVpNeHg4mzdv5vbt2zg5OTFixIgCm8Zs376dTZs2ERsbi6mpKS1btiQwMJA2bdrolDt69ChhYWFcuXKFzMxM7O3tad68OePGjaNBgwYEBQVx5kx+dayHh4d2uenTpxtcS3Hnzh3Wrl3LyZMniY+PJysrC2dnZ7y8vBg6dKjendmcnBzWrVvH3r17+fvvvzE1NaV+/fp4e3szaNAgbbnU1FTWrFnDoUOHuHnzJlZWVri5uTFw4EB69eqlLXf58mVCQkI4e/YsGRkZODs74+3tzZAhQ3S2HRQURHx8PFFRUTrx3Lx5E19fXwIDA7W1W5pmNtOnT0etVrN27VquX7+Oo6MjAwYMYPjw4drlNcctPj5e5xhGRkZSr169Yo+fj48P8fHxOusCWL58OevWreP48ePs3buX6tWr6yz3xx9/MHz4cEaOHElgYKDOfjRo0IBvvvmGa9euUaNGDXx9fXnrrbf0LsITEhJYuXIlR48e5e7du9jb29O5c2dGjx6Ng4NDsbEbonr16rRq1YqDBw8SFxenk+x07tyZ48ePExUVpZPsREdHk5ycjI+Pj16yk5iYSHh4OE5OTnz66ad6F00ANjY2vP/++6USvyHq1q1Lw4YN+fPPP0lKSqJmzZp4eHjg7e2Np6cnISEhXLp0iaefflp7QXf48GHCwsK4dOkSCoWCJk2aMGzYMLp27aqzbh8fH5ycnJg4cSILFizgjz/+wMzMjM6dO/POO+/ofU7Z2dmsXbuWPXv2cOPGDczNzXn22WcZOXIkzZo105Z78BzPyMhg06ZN3LhxgzfffJMdO3aUyjlZnGbNmhETE0NUVJROsvP7778TExPDmDFjCkx2jh07RkREBOfPnychIQEzMzNatGjBiBEjeO6553TKar73q1evZv78+fz8889kZ2fz7LPPMnnyZBo0aKAtm5aWxpo1azh+/Dg3btwgPT2dOnXq0L17dwIDA7G0tNRZd1JSEgsXLuTIkSNkZ2fTokUL3n33XebNm1fgb8358+dZvXo1Z8+eJT09HScnJ7y8vBg+fLjOd1MTc0hICPPmzePUqVMoFApeeuklPvjgAywtLfnmm2/Yvn07CQkJuLu7M3nyZL3ff7VazZYtW9i+fTtXr15FqVTSvHlzAgMDdT7XB387mjdvzsqVK/nrr7+wsbHB09OTsWPHauMr6vfqwfcPKul39ubNmyxbtozjx4+TkpJC7dq1eeWVV3jrrbd0PouQkBBWrlzJxo0b2bZtG/v27SM1NZXWrVszZcoU3NzcOHjwIKtWrSI2NhYHBwcCAgLo27evzvY039lXX32VZcuWcfnyZapXr07Pnj0ZM2aMzk0AY/7vaZq/Llu2jAsXLhT6Pz4nJ4dXX32V+vXrs3r1ar1jFBYWxqJFi1ixYgVt27Yt8FiLMnLu7/wk51I8lOczN++mYvrUeF63NefHN1oYtMhPN1S8uL7s+tl8dRq+Oq0m/0CoUAIPbs1cCVYmkKkChRqqmYO7LbSuBb3dlfR7SoGJsuQJRmq2mrXn1fx9X413IyUvOkuyUlFKlOwEBweTlZVF3759MTc3Z/PmzcyYMQMXFxedf2KLFi0iLCyMFi1aMGbMGNLT09m2bRsjR47kq6++olOnTgCcPn2aiRMn0qhRIwICAqhevToJCQmcOHGC69ev06BBA0aMGIFarebs2bN89tln2m20bt3a4LgvX77MoUOH6Nq1Ky4uLuTm5vLzzz+zZMkS4uLidJou5eTkMG7cOE6fPk2HDh149dVXMTc356+//uLQoUPaZCclJYW33nqLmJgYunfvTv/+/cnLy+PixYscPXpUm+ycP3+eoKAgTE1NGTBgAI6Ojvzwww8sXryYy5cvM3v27JJ8FFpbtmwhMTERX19fbGxs2L17N4sXL6ZOnTr07t0bgM8++4x58+Zhb2+v04SpRo0aBm3j/fffZ8mSJSQlJTFx4kTtdHd3d/z9/Tly5Ah79+6lX79+OstFRESgVCrx9fXVmX7kyBHi4uK0x+PIkSOsXLmSW7duMX36dG25W7duERAQQE5ODn369MHFxYXr16+zZcsWTp06RXh4uN7FbEmo1Wpu3LgBgL29vc48U1NTXn31VXbs2MHEiROxsLAA8hPFpk2b0rRpU731HT16lKysLLy8vLTlK1p2dja3bt3CxMRE55idP3+egwcP4ufnp3PTYtOmTcyZMwc3NzfefvttAHbs2MGkSZP48MMP9S7Cbt++zejRo+nWrRvdu3fnwoULREZG8ueffxIWFqa98MvNzWX8+PH89ttveHp6MnDgQFJTU9m2bRtvvfUWK1eupHnz5jrr/u6770hOTsbPzw9HR0fq1KlD06ZNS/WcLIqvry/z58/n9u3b1K5dG8j//B0cHLS/ZQ+LiooiOTkZT09P6tSpw+3bt4mIiGDMmDEsX76cZ599Vqd8RkYGgYGBtGrVirFjxxIXF8f69et5//332bBhg/bC9M6dO0RERNCtWzd69+6NiYkJZ86cISwsjIsXL7Jkyb+dkrOzsxkzZgyXLl3Cx8eHFi1acPnyZcaOHYutra1ezEePHmXy5Mm4uroyZMgQbG1tOXfunDYRnjNnjl7Mo0ePpm3btowbN47z588TGRlJVlYW9vb2/P777wwcOJDc3FzWrl3LxIkTiYqK0qk5/PTTT9m7dy/du3fHx8eHnJwcdu/ezdixY/niiy946aWXdLb5448/snnzZvr164evry/R0dGEh4djY2Oj/W0r6veqMCX5zsbHxzN8+HBSU1Pp378/9evX5/Tp04SGhvLrr7+ydOlSvZs3M2bMwMrKioCAAJKSkli7di3jx49n1KhRLFq0iP79+2Nra0tERAT//e9/adiwoV6CeOHCBQ4cOICfnx9eXl6cOnWK9evXc+XKFYKDg1Eq8+9kG/N/T6O4//FmZmZ4e3uzdu1aYmNjcXNz01k+MjKS+vXrS6JT3q4nQJuJoCrPLOdfCqD6/Wx6LTtLXoNImNKvyPIvbSjfAQUe3lq2Kv+lkZkJiZlw+jaE/qFiUFMF631K1jw5I0fNC+vyOJeQ//7zE3ks6a5k7LPStK4ilCjZyc7OJiwsTHvXq3v37vTp04eNGzdqf5BjY2MJDw/nmWeeYfny5dqyfn5+DBgwgDlz5tCxY0dMTEyIjo5GpVIRHBysc/dXc3EF0KFDB/bs2cPZs2d1mh4Zo23btkRERKBQ/Jtdv/7663zyySdEREQwcuRIatasCeR35D99+jQBAQGMHTtWZz0q1b/fjuDgYGJiYgq88Huw3Ny5c8nJySE0NJQmTZoAMGjQIKZNm8aePXvw9fXl+eefL9F+QX5CsHnzZu0FbJ8+ffD29mbDhg3aZMfT05Nly5bh4OBQomPYtWtX1q1bR1ZWlt7yL7zwAnXq1CEiIkLnwjIzM5O9e/fSoUMHvQ69ly9fJiwsTHsXf9CgQUyePJmoqCj69u1Lq1atAPjiiy/Izc3l22+/1VlHjx49CAgI4Ntvvy1RP67MzEySkpJQq9UkJCSwYcMGLl26RKtWrahfv75e+T59+vDdd99x6NAhevfuzT///MPx48cLrZm5cuUKAE899ZTRsZWW9PR0kpKStH12Vq9ezb1793jllVd07jjHxMQQHBxM+/bttdPu37/PokWLcHFx4ZtvvtGeW/379+eNN95gwYIF9OzZExsbG+0yN27cYOLEiTp9JBo2bMj8+fNZv349b775JgAbNmzg9OnTLF68mI4dO2rL9u/fn0GDBrFgwQK9pkKac/zhGqLSPCeL8uqrr7Jo0SJ27NjBiBEjyMzMZN++ffj5+RXaHPDjjz/GyspKZ1q/fv0YOHAgoaGheslOUlISQ4cO1amRrVGjBosWLeLEiRPaY+Xs7MzOnTt1tjtw4ECWLVvGqlWrdJpbRkREcOnSJUaPHs1bb72lLd+4cWPmzJmDk5OTdlpWVhazZs2iZcuWLFu2TLv+fv360aRJE+bPn8+pU6d0akaSkpIYNmwYw4YN005LSUnh+++/p1mzZoSGhmrX4+7uzvvvv8+ePXu0n8mhQ4fYvXu33m/o4MGDCQgI4KuvvqJLly46v9sxMTFs3LhRWyPdr18/Bg0axIYNG7TJTlG/V4UpyXc2ODiYe/fusWDBAm3SO2DAABYuXEh4eDg7duzAz89PZxlHR0fmzZun3Sd7e3vmzp3LF198wYYNG6hbN7+z9yuvvIKXl5fO/1aNv/76i7lz52prWAcMGMDcuXNZv349+/fv195oM+b/noYh/+P9/f1Zu3YtERERvPPOO9plf/nlF2JjYxk/frzBx1CUkk++q7BE52HKzzbBxD5gVvBvY0q2mtzKEWqhNlxU80lHNS1qGl8js/GiWpvoaMz4ScXoNgqUCqnhKW8lSjEHDBigU71fu3Zt6tevz/Xr17XToqOjUavVDBs2TKdsrVq1tM0LLl68CKC9iDp48CC5uWU3VrqlpaX2Bz8nJ4fk5GSSkpLo2LEjKpWK8+fPa8vu2bMHW1tbnYRLQ3PHTKVSsW/fPtzd3fUSnQfLJSYm8ttvv9GlSxdtogP5I2Rp/jEfOnTokfbNx8dH5069paUlrVq14tq1a4+0XkOZmJjg6+vL+fPn+euvv7TTv//+e9LS0ujTp4/eMu3bt9dprqRQKLQXTJrjkZqaytGjR+nSpQsWFhYkJSVpX/Xq1cPFxYXjx4+XKOaQkBB69OhBz549ee2114iMjKRLly7MnTu3wPKNGzemefPmREZGAvk1HJoan4KkpeUPL1ORfV8+++wzevTowSuvvMLw4cP58ccf8fb25uOPP9Yp99RTT+kkOgDHjx8nIyODwYMH65xb1atXZ/DgwaSnp+sde2trawYMGKAzbcCAAVhbW+uc47t378bNzY2nn35a5zPNzc2lffv2/Prrr2RmZuqsx8vLy6gmiyU5J4tib29Ply5d2LFjB5B/jqamphZZO/RgoqNJPE1MTGjZsiV//PGHXnmlUsngwYN1prVr1w5A57tsZmamTSByc3O5f/8+SUlJ2hsmv//+u7bsDz/8gImJCa+99prOev38/PRqRI8fP87du3fx8fEhNTVV57N58cUXtWUeZGJiotOsF/L7iqnVavr166eTkGmSuwf/V+zatQtra2u6du2qs73U1FQ6d+7MzZs39X7HunbtqtP0VqFQ4OHhwd27d0lPT6ekjP3OqlQqjhw5QtOmTfVq9958802USiWHDx/WW27QoEE6yYcmgejSpYs20YH8RLdBgwY6x0ujQYMGek1JNTcTHtymMf/3NAz5H9+gQQPatm3Lrl27dP5vR0REYGJiUqlGfExMTNQZQCY1NZWUlBTt++zsbO7evauzjKYJZGHvb926hVr979V6ZdhG3t3SecBnaVCkZ0N6fqwF7ceZm9kVFZpR4tP+jduYzyO+gNHl7mbA33G3dNf/0GdeFDUKg19CV4lqdpydnfWm2dnZcevWvx/izZs3AWjUqJFeWc20uLg4mjdvzsCBA4mOjubzzz9n8eLFPPPMM7zwwgv06tXL4CZWhsjNzeWbb75h165dXL9+Xeekhfw72RrXrl2jadOmRTZlSEpK4v79+zp3pguiORYNGzbUm+fu7o5SqSQuLs6YXdFT2GeSnJz8SOs1Rp8+fVi9ejURERHa2g5NM5+Hm6EAek0f4N9jpDkesbGxqFQqIiIiiIiIKHC7Be27Ifz9/enRowcKhQIrKyvq16+PnZ1dkcv4+Pjw5ZdfEh8fz44dO3jppZewtbUlKSlJr6zmgulRLr40yz+8Djs7uwL7EzxM0z9OqVRSrVo13NzcCryQK6gmS/MZFHTePvw5aTg7O+vFZW5ujrOzs07Zq1evkpWVpTN4wsOSkpJ0LvwKirE4xp6TxfHx8eHdd9/ll19+ITIykhYtWhR4fDRu3LhBcHAwx44d07koAXQudjVq1aql95ujOScf/i5v2rSJLVu2EBMTo1OLDOhsKy4ujpo1a+oN5mBmZka9evV0yl69ehVAp6nwwx6+YKtZs6ZezJrmcQ/3BdRMf3BfYmNjSUtL45VXXil0m4mJiTp9lgr7vdOsu6QDVxj7nb137x7p6ekFngN2dnbUrFmzwN92FxcXnfeFHS/I7yP04P9WjYKa49WsWRMbGxudbRrzf0/DkP/xAH379uXjjz/m6NGjdO3albS0NL7//ns6d+6s0+exoj18k+ThJN/c3Fwv3gdrPAt6/+BvU2XZhskUf9hROg/5fFSqzk+jtMv/PhW0H80s1EBeBURmuFpW0OmBfjbGfB59Giv4+CjkPfB182yowN2l6M9clI0SJTuaGouHPfwjaih7e3vCwsI4e/Ysx48f5+zZs8ybN4+QkBAWLlxoVL+cosyfP58NGzbQs2dPRowYQY0aNTA1NeXChQssXry4xPGXtoIuggDy8gr/YagMw97WrVuXjh07smvXLiZMmEB8fDxnzpxh6NChhTbzMdSrr75a6J3CkvaHqV+/vl5tRnF69+7NggULmD17NtevX+eDDz4otKwmqb948SIvv/xyiWIECA8PZ+XKlTrTiupk/XAMhuzjwx3ay0Pjxo157733Cp3/8I2OksRY2udkx44dqV27NitWrODUqVNMnTq10LLp6ekEBgaSkZHBa6+9RuPGjbG2tkahUPDNN98UOKBBYb+toPv7unbtWhYsWECHDh0YPHgwNWvWxMzMjDt37jBjxgy95MdQmm288847hTblqlWrlsExG/K/Qq1WU6NGjSL7LT5808zQ42Ss0vrOFqew+Ev7fyuU7P+eoXF069YNOzs7IiIi6Nq1K/v37ycjI0Ov2Z4oJ52awxfDYNpayKuYB2yqgbsuNtitfafIpkN1rBX0coO9seUTl7E86sDSHiZYmpasluRpRwXfeSv58AcVf98Hn0YKlvWQ/joVpcyGntbcGbpy5YreXayYmBidMpB/se7h4aG9gLt8+TJDhgxh1apVLFy4ECg8CTDUrl27aNu2Lf/7n+7wiIU1EYiNjSU7O1vvuRoa9vb22Nracvny5SK3q7lbp9nvB2lqLh48Fra2tly4cEGv7KPW/sCjH8Pilvf39+fo0aPaB8AChTYXio2N1Zv28Lnh4uKCQqHQNm+qaDY2NtphiOvUqVNkTJ06dcLCwoJdu3YxYsSIQs+j4nh5eem11y+PfkCa721MTIxefzJNDcDDd4Dj4uLIycnRqd3Jzs4mLi5OpybP1dWVe/fu0a5duyIvXA1RmudkcUxMTPDy8iI0NBQLCwud0RYfduLECe7cucOnn36q19Rt2bJlJdq+xq5du6hXrx6LFi3SOX4//fSTXtl69epx4sQJ0tPTdWo8cnNzuXnzpk6fK03tmZWVVbl931xdXbl27RqtWrUq9aHEjf29M/Y7W6NGDaytrQv8bb9//z4JCQll9l3VfAcflJCQQEpKis730pj/e8YyNzfHy8uLDRs2aAfNqF27drGtHUQZmuyX/zp9GTz0H4JclnKDevDNM0pUpkoCnIpvlRPlb8JnP+YxuwwfB2RrBl1cIOQVJfVslFxPUbH9MrjbqWlTW4mLjYLkLDX/pEGTGo9+jfSgAU2VDGgqCU5lUGafgqZDaXh4uE573oSEBKKionByctKOYFVQEyA3NzcsLS11qtg17d9L2jRLqVTq3ZnKyMhg3bp1emV79+7N/fv3WbVqld48zTqUSiW9evUiJiaG7du3F1rOwcGB1q1bc+TIEZ2+A2q1mtDQUACdu4gNGjQgLS1Np929SqUqME5jWVlZFdhswVDVqlXj/v37hd5p7NSpE7Vq1WLr1q3s2LGDZ555psDmapDf9v/BpE6tVhMWFgagbYtub2/Piy++yMGDBzl37pzeOtRqNffu3Svx/pTEm2++SWBgIB988EGRF+oODg4MHTqUmzdvMmvWLHJycvTKpKam8tVXXxW5PRcXF9q3b6/zKmgUrdLWvn17rKys2LBhg7YvA+T3a9iwYQPVqlWjQ4cOOsukpaWxaZPuw+U2bdpEWlqaTv8CLy8v7t69y7ffflvgth9uKlWU0jwnDdGvXz8CAwOZNm1akaMAampbH47r2LFjOt/tkjAxMUGhUOisW9Nc6WGdO3cmLy+P7777Tmf6tm3bSE1N1ZnWsWNHHBwc+Oabbwr8nc3MzNQ5F0qDl5cXKpVKZwS5BxlzLjysuHPjYcZ+Z5VKJZ07d+bixYt6ieY333yDSqXS61dTWv7++2+9/kBr1qwB0Gmiacz/vZLw9/cnLy+PRYsWce7cOby9vStFS4Mn3nNNoHur8tteyreolwSiMjX8stLMRMGsLqZ0dy39cP4IUKCeZEryO6ZE9TOlnk1+XK42Ssa3VeLdyAQXm/zExs5CwVMOilJNdETlUmY1O25ubgwdOpSwsDACAwPp2bOndujp9PR0Zs2apf1BnD17Nrdv36Z9+/Y4OTmRlZXF/v37SUtLw8vLS7vOVq1asXHjRj7//HM6deqkfW6PoX02unfvztatW5k2bRrPP/88d+/eJSoqqsB+Gq+99ho//PADq1at4vz587Rv3x4LCwtiYmL4+++/Wbp0KQCjR4/m5MmTzJ49m+PHj/PMM88A+c0gcnNzmTVrFgCTJk0iKCiIwMBA7VDLR48e5eeff6Z37946d841o9xMnjyZwYMHY2ZmxoEDB4psxmaoVq1aERERwbJly3B3d0ehUNClSxe9EaMK07JlS3744Qe++OILWrdujVKppF27dtq2q5pO4Zok8eGR7B7UpEkTRo0axYABA6hZsybR0dGcOHECT09PnaaLU6dO5e233yYwMBAvLy+aNm2KSqUiLi6OI0eO4OnpWaLR2EqqSZMmOgNNFCUoKIiEhAS2b9/Or7/+yiuvvKId/vXixYscOHAAMzOzcn3WjqFsbGyYMGECc+bM4c0339Q2I9yxYwfXr1/nww8/1LvYd3FxYeXKlVy5coWnn36aP//8k8jISNzc3HQ63r/22mscP36chQsXcvLkSdq1a4e1tTW3bt3i5MmTmJubExISYlCcpXlOGqJu3boGnW9t2rTB0dGRBQsWEB8fT+3atbl06RK7du2icePGOjc+jNW9e3eWLFnChAkTePnll0lLS2Pv3r0FNs3z8/Nj69atLFu2jBs3bmiHnv7+++9xdXXV+V2xsrJi5syZTJo0STuss6urKykpKcTGxnLo0CG+/PJLg5pQGqpHjx74+PiwceNGLly4QOfOnbG3t+f27dv89ttv3Lhxo9D+esUp7twoiLHf2bFjx3L8+HEmTZpE//79cXV15cyZM+zfv5+2bduWWUf9xo0b88knn+Dn50f9+vU5deoUBw4coG3btjr9n4z5v1cS7u7utGnTht27d6NQKIwazl2Usa1TwG5I2W/Hsw1Ut4ICbg4YYmp7BQeul143gq2+Cpo7SsIt/lVmyQ7AhAkTcHV1ZdOmTSxZskT7QL3Zs2frDLnq6elJVFQUO3fu5N69e1hbW9OwYUPmzJlD9+7dteV69erFxYsX2bdvHwcOHEClUjF9+nSDk52JEydibW3N/v37iY6Opk6dOvj7+9O8eXPGjBmjU9bMzIwlS5awdu1a9u7dy9KlSzE3N6d+/fo6DzG1tbUlNDSU1atXc+jQIQ4dOoS1tTXu7u46IxQ1b96c1atXExISwubNm7UPFR0/fjxDhuj+GDk7OzN37lyWLl3K8uXLsbOzw9PTE19fX/r372/UZ/CwMWPGkJyczKZNm0hJSUGtVhMZGWlwsvPGG28QFxfHgQMH2LJlCyqViuXLl+tcPPj5+REaGoqVlVWRHdC7dOmifajo33//jYODA2+//bbeCHh169Zl7dq1rFmzhujoaHbv3o25uTl16tShc+fOek+0r0yUSiUff/wxPXv2ZOvWrezatYvExETtuTRgwAC90csqE00i+mC/oaeeekpnyNsH1a5dm88//5wFCxawd+9ezMzM6N27N++++67OOWZqasqCBQvYvHkzu3bt0iY2tWrVokWLFkZdIJbmOVmabGxsWLJkCYsWLWLDhg3k5eXRrFkzFi5cSERExCMlO0OHDkWtVhMREcFXX32Fo6MjPXv2xNfXV+98Mjc3Z9myZSxcuJDo6Gj2799Py5YtWbp0KbNnz9Yb9a5jx46sWbOGNWvWsHv3bu7du4etrS0uLi688cYbBif6xpg+fToeHh5s27aNb775hpycHBwdHWnWrNkjJaeGnBsPM/Y76+TkxDfffMPy5cvZvXs3KSkp1KlTh4CAgAIfkFxamjVrxnvvvcfSpUvZunUr1tbWDBw4kLFjx+rUOBvzf6+k/P39+eWXX/Dw8NBrti4qkG016NsetpZsxFKDLdAftdYYPdxMcK2Wy/VHG8uH/k/Bwm4m1KteVWtoqup+lT2FurL0yhdVRkJCAl5eXvj6+hb4wLoHn4JenjUyomz5+Pjg5OSk93ycyqC4c/JJlJeXR48ePWjZsiWLFy+u6HCEETw8PPD29mbGjBkVHQoA+/fvZ9q0acyePVv7XDdRSajVoCz64Z6PLGcTmJponyUIEBAQYNCIoRq301TUWVbyQRWsFJD+fpnev69wasWw4gv9P4U6rAwjefxIzylR6jZv3kxeXl6Bzx4SoiI86efkw7U3AFu2bCElJaVSDPwhHm+bNm3C3t6ebt26VXQo4mFl3Q9l1Ctg+uhNxmpbP9rlaKin1HqIwj32aXBmZqZeJ9uCPPyEaPGv1NTUAi+GHmRmZlZsG++9e/dy69YtwsPD6dixI08//XRphlkkzcPyilOjRg3pPPsEqchzsjL5z3/+Q1ZWFq1bt8bc3Jxz586xZ88eXF1d8ff3r+jwxGMoMTGREydO8Msvv3DmzBnGjRtX4hEnRRlTkD8mdFlYNqrUVmVtAmlGdk22M4eveyno31T+r4vCPfbJzv79+5k5c2ax5U6dOlUO0Tye5s6dq30qfGHatm1bbPOkjz76CAsLC9q0acMnn3xSmiEW69dff2XUqOJ/dCMjIwt8cJ+omirynKxM2rdvz6ZNm1i1ahXp6ek4Ojri5+fHqFGjCnzIrBDFiYmJ4eOPP8bGxoZ+/frp9T0VlciLT8PRP0t/vXXtS3V1q19VMGiHcVlZ0oTH/jLWYGoj+uxIPZeux77PTkJCAleuXCm2nDTVKFxMTAx37twpsoytrW2lvit+//59/vyz+B/zNm3alPghpEIIIcRjJy0Tqr9e+us99QU811j79lH67ABk5KipttC4qh31pCcn2VEphhtcVqleU4aRPH4e+7OkZs2a0kTtETVs2JCGDRtWdBiPxNbWVhJaIYQQ4mHWloaV6/s8bDXwCZ9utXQSndJgZabAuTrEFd8zAYAe9Ut186IKkwEKhBBCCCGqMksDaln8Dbxh6OoIez59tHgK8b9OhpVrZAf7Bjxp/XQURrzEgyTZEUIIIYSoyr4wYNjiJs6gNOCycNMkaGrY8w2N9UYLE6oVk8Ps7Qd/BZqiKOuR5kSVIcmOEEIIIURVNt6r+DJP1YNjn4NFMbVAzcuu/ZhSoeD+O8pCE57hzeEV98e+B4YoZ5LsCCGEEEJUdUsCC583+zWoUR3aNYbMDfBlITVBXZqDjVXZxPf/TJRK/hlrQr8mutNfcIJvPJ/kREeasZXUk3zWCCGEEEI8Gca+Cp2fhq8i4cotiL8HdtVg0VvQqblu2Ul+4NsO3lsNJ/4CK3P4sB+M6l0uoVY3V7C5T/4l6tUkNbWq5U8ToiQk2RFCCCGEeBK0doM1Ewwr+5Qz7Kz455O520uSIx6NNGMTQgghhBBCVElSsyOEEEIIIUQlppa+OCUmNTtCCCGEEEKIKkmSHSGEEEIIIUSVJMmOEEIIIYQoNyq1mnuZ6ooO4zEjQ0+XlPTZEUIIIYQQ5eK/P+Xy0U//vu9QF34eIpejouxIzY4QQgghhChzB2J1Ex2AY7fg+TW5FROQeCJIsiOEEEIIIcpcj80FTz95B7ZclIRHlA1JdoQQQgghRJnKyVMVOb9/VDkF8phSG/ESuiTZEUIIIYQQZerc7aKTHYDlZ6V2R5Q+SXaEEEIIIUSZGryj+DKjD5R9HOLJI8NfCCGEEEKIMnU5uaIjeNzJkNIlJTU7QgghhBCiUjgVn1fRIYgqRpIdIYQQQghRZq4lG57AvLpJutiL0iXN2IQQQgghRJnput7wBCYhuwwDeYyppRlbiUnNjhBCCCFEVaVSQV7FNg27mlKhmxdPOEl2hBBlKioqCg8PD06dOlXRoVR6cqxKl4+PD0FBQTrTgoKC8PHxqaCIKrdTp07h4eFBVJTuA0+SkpL49NNP6d27Nx4eHnrHVFRS24+Boi+Y9AfTAfl/WwyAfxIrOrJiTT0sQ1CL0iPJjhCiyjp8+DAhISEVHYaOU6dOERISQkqK3Op8nFy8eJGQkBBu3rxZouVv3ryJh4cHc+bMKbSMj48PAwcOLGmIBinJfsyfP5/9+/fTr18/PvvsM0aMGFGGEYpHkngf2k7MT2z8v9Cfn50Hdd/On+8zu/zjM9CcU3DuTvHP5RHCENJnRwhRZR0+fJgdO3YwcuTIig5F6/Tp06xcuRIfHx9sbGx05nl6evLKK69gZmZWQdFVfcHBwajVxneAvnTpEitXruS5556jXr16ZRBZ+ShqP9q2bcuPP/6IqanupcHx48fp0KEDgYGB5RmqMMa+XyBoKfydYPgyO86Asi+YKqFtIxj4AlhbgI0VDHgRzErnEnHcnpLV0rReo+LUG2qeczIplTgef9Jnp6Qk2RFCiErCxMQEExP5x16WJJEsnFKpxMLCQm/63bt3sbOzq4CIhI6lu+HSTWjrDv/ZAvcz4FbSo61TDeSo4Pjl/JfGGwt1yzlUhyZOENAdGtSEl1uBRcHfpXuqakRcgefqqqllpSL495KH5/GtGsjFwgQa20LwKwqszZTcSlPzsqsCpQIOXVfjaKWgvZMkA6JgkuwIIcqFWq0mPDyczZs3c/v2bZycnBgxYgTe3t465bZv386mTZuIjY3F1NSUli1bEhgYSJs2bXTKHT16lLCwMK5cuUJmZib29vY0b96ccePG0aBBA4KCgjhz5gwAHh4e2uWmT59ucJ+NO3fusHbtWk6ePEl8fDxZWVk4Ozvj5eXF0KFD9RKTnJwc1q1bx969e/n7778xNTWlfv36eHt7M2jQIGbMmMGOHfmPEff19dUuFxgYyMiRI4mKimLmzJksX74cDw8PfvzxR9555x0mTZrE4MGD9eILCAjg+vXr7NmzR3s3/tq1a6xcuZITJ06QnJxMrVq16NGjB0FBQVhZWRm03xohISGsXLmSDRs2sHXrVr7//ntSU1Np3LgxY8eO5fnnn9cp7+Hhgbe3N15eXixdupRLly5hZ2fHwIEDefPNN7l//z4LFizghx9+ID09nXbt2vHRRx9Rq1Yt7TqSk5P5+uuvOXLkCHfu3MHKygonJydeeeUVhg0bZlT8BQkKCiI+Pl6nX8qVK1dYsWIFv/32G0lJSdja2uLm5sbQoUPp1KmT9jgAjBo1Sruct7c3M2bMeOSYinPmzBm+/vpr/vjjD3Jzc3Fzc2PAgAH4+fnplHvU/Th16hSjRo3SfkceLL9jxw7tufvee+8xf/58PvroI/z9/fXiHThwINnZ2Wzbtg2FQi5AH1lqBriPgoQKbPqamKqbEDk7wP4Z8LSLTrHo7Gasz+yAaocCKL1BEbLy4I970HWDWrteO3NQKCApK79MzwYKovyVWJjKOSd0SbIjhCgXwcHBZGVl0bdvX8zNzdm8eTMzZszAxcVFm8gsWrSIsLAwWrRowZgxY0hPT2fbtm2MHDmSr776ik6dOgH5TcEmTpxIo0aNCAgIoHr16iQkJHDixAmuX79OgwYNGDFiBGq1mrNnz/LZZ59p42jdurXBMV++fJlDhw7RtWtXXFxcyM3N5eeff2bJkiXExcXx0Ucfacvm5OQwbtw4Tp8+TYcOHXj11VcxNzfnr7/+4tChQwwaNIi+ffuSlpbGoUOHmDhxIvb29gA0adKkwO136NABR0dHdu7cqZfsXLt2jXPnzjF48GBtovPnn38yatQobGxs6Nu3L7Vr1+bSpUusX7+eX3/9lRUrVug1UTLE9OnTUSqVDBs2jPT0dLZu3cr48eNZtGgR7du31yl78eJFfvjhB/z9/fHy8mL//v0sWbIECwsLduzYQb169QgKCuL69ets2LCB6dOns3TpUu3yU6dO5cyZM/Tr148mTZqQlZXF1atXOX36dKkkOw9LSkpi9OjRAPTr14+6deuSlJTEn3/+ye+//06nTp3o1q0bCQkJbNu2jYCAANzd3QFwcXEpatUFys7OJikpqcB5KpV+H4UjR44wefJkHB0dGTJkCNWqVWPfvn3Mnj2buLg4xo4dW2b70a1bN1xdXfn000959tlntYlNixYtCAsLIzIyUi/ZOXfuHDExMYwZM0YSndLyQVjFJjoFiUuEqeEQMU076V4mbMp8HlU5dQdPfmiI6v1/qwk7ryawddU872To6ZKTZEcIUS6ys7MJCwvTNiPq3r07ffr0YePGjbRp04bY2FjCw8N55plnWL58ubacn58fAwYMYM6cOXTs2BETExOio6NRqVQEBwfj4OCg3cbbb7+t/btDhw7s2bOHs2fP4unpWaKY27ZtS0REhM5F2+uvv84nn3xCREQEI0eOpGbNmgCsW7eO06dPExAQoL0A1dBcxLZu3ZrGjRtrE6ji+n6YmJjg6elJeHg4MTExNGzYUDtv586dADo1Y5999hk1a9YkLCwMa2tr7fTnn3+eyZMns3v37hKNRGZiYsLXX3+t/Ux8fX3p378/X375JZs3b9Yp+9dffxEaGkrLli0B6NOnD97e3sybN4+BAwcyefJknfLr1q0jNjYWNzc3UlNTOXnyJP379+eDDz4wOs6S+PXXX0lMTOR///sfPXv2LLBMkyZNaN26Ndu2baN9+/Y6NYXGioiIICIiotD5D37GeXl5fPHFF1hZWbFmzRptDdjAgQMZOXIka9aswcfHh/r165fJfjRp0oQmTZrw6aef4uzsrPM98vX1JTQ0VO+8jIiIwMTEpFKNeJeYmIi1tbW2iV5qaipqtVrbZy47O5uUlBQcHR21y8THx+Pk5FTo+1u3blGnTh3tb0OZbuNMTKkdi1L1y1Xg37gv3YOcCr6s/OV2fn+8x/UzF2VDRmMTQpSLAQMG6PSXqF27NvXr1+f69esAREdHo1arGTZsmE65WrVq4ePjQ3x8PBcvXgSgevXqABw8eJDc3LIbotTS0lL7jy0nJ4fk5GSSkpLo2LEjKpWK8+fPa8vu2bMHW1tbnYRLQ6ks+U+tl5cX8G9yA/lNAnfv3k2jRo1o1qwZkJ9kXL58md69e5OTk0NSUpL21aZNG6ysrDh27FiJYnj99dd1PpM6derQu3dvYmNjuXr1qk7ZVq1aaRMdyO8j06JFC9RqtV7t1LPPPgugPQcsLCwwNzfn999/L/GoZ8bSnEs//fQTqampZb69l156ieDg4AJfD14UQX5N3a1bt/D19dVp6mdmZsawYcNQqVRER0dXyH74+fmhUCh0EreMjAz279/PCy+8oBNvRXNwcNDpi1S9enWdwUHMzc31jv3DF6APv69bt67OTZAy3UbvZ4vcvwrTsSnwb9wtHMGSin0iaMd6+Z/J4/qZi7IhNTtCiHLh7OysN83Ozo5bt24BaC9uGzVqpFdOMy0uLo7mzZszcOBAoqOj+fzzz1m8eDHPPPMML7zwAr169aJGjRqlFnNubi7ffPMNu3bt4vr163qjeN2/f1/797Vr12jatGmBHbwfRePGjWnWrBl79uxh7NixKJVKzpw5w82bN5kwYYK2nCbpCAkJKXS47cTEkj1fQ9Pc6UGau/lxcXE68wv6nG1tbQH0arI0FwbJyclA/kX8xIkT+eqrr/D19aVhw4Z4eHjQtWtXvf5BpeW5557Dy8uLqKgodu/eTfPmzWnfvj09e/bUqbEoLbVr19Zr+qdhbm6u817znSgojge/E1D+++Hs7Mzzzz/Prl27GD9+PKampuzfv5+0tDT69OlT6tt7on3UH6JOQWWq4WndAL4crjOpujkMszpKWEYnMjHHUgmZZTB6tIL8cRXq24BSCbHJ+dOGtVDwWjNp6iX0SbIjhCgXhdVulGQYYHt7e8LCwjh79izHjx/n7NmzzJs3j5CQEBYuXGhUv5yizJ8/nw0bNtCzZ09GjBhBjRo1MDU15cKFCyxevLhEsZeEl5cXX331FSdPnqR9+/bs3LlT28RNQxPLkCFD6NixY4Hr0SQdZamo0eQKm/fgcezfvz9du3bl6NGjnD59mgMHDrBx40Z69uzJ//73v1KPF2DmzJkMHTqUn376ibNnz7J27VpWr17NxIkTGTRoUJlssyyU9374+/szdepUoqOj6d69OxERETg6Omr71olSYmYKp+fCn9fh7zvQ1BkmfQP30+H8Dbh5r+y2rQDq14QWrtCwLgztCpZm0NqtwOLPmcXS0vQGHp5DaV7bFEsTFZYLHu13UgF0cQLvp2DMM0oSsxTcSYdnaufP+/UOOFhCfduqnuhU9f0rO5LsCCEqBU2NwJUrV/Q6TMfExOiUgfwLZw8PD22/g8uXLzNkyBBWrVrFwoX5w6Y+agfpXbt20bZtW72LbE2zqwc1aNCA2NhYsrOz9e7QP6gkMfXu3ZuFCxeyc+dOnnnmGQ4cOED79u21/YUA6tevD+QnlYXVHJTU1atXeeqpp3SmFfSZlJaaNWvi5+eHn58feXl5fPrpp+zdu5chQ4bQokWLUt8e5NegNW7cmGHDhpGSksLw4cNZsmQJAwcORKFQVEhne82x1RzrBxV2/MtzP7p27YqDgwMRERE0atSIX3/9leHDh5doEAxhgKdd818AW6bozkvLgJC98H6Ycevs+jQ0qgfDuoKLI1S3hOR0aOyUP9RZCVgocvGoC2ZmCsCEPf659N5WolWhnqR/LlUzB5cHHlHWpnbJ1i2eHNJnRwhRKXTp0gWFQkF4eLhOP5yEhASioqJwcnKiadP8NuIFjWbl5uaGpaWlTtMyzVDLmmZSxlIqlXq1NxkZGaxbt06vbO/evbl//z6rVq3Sm/fgOqpVqwboNoErTo0aNXjhhRc4dOgQe/bsIS0tTduXR6Np06Y0atSILVu2cOPGDb115Obmlvg4rFu3jpycHO37f/75h71799KgQYMCm7iVVGZmJpmZmTrTTExMtKPVGXPMDJWcnKw3CpqNjQ3Ozs5kZmaSlZU/rq3mXCqLGArTrFkz6tatS1RUFAkJ/z4sMjc3l/DwcBQKBS+99BJQMfthamqKt7c3x44d0w5RLU3YKoi1FUz0A/VWWKLfb7BAUdPg0H/g67HQpUV+zU1te2hSr8SJTkF6NSpZ8pv1rtRkiNIht1+EEJWC5nkgYWFhBAYG0rNnT+3Q0+np6cyaNUvbDGr27Nncvn2b9u3b4+TkRFZWlra/wINJQKtWrdi4cSOff/45nTp10j63x9DaiO7du7N161amTZvG888/z927d4mKiirwAYuvvfYaP/zwA6tWreL8+fO0b98eCwsLYmJi+Pvvv7XDK2s67y9atEg7PHWjRo1o3LhxkbF4e3tz5MgR5s+fT/Xq1enatavOfIVCwWeffcbo0aN57bXXtH1eMjMzuXHjBgcPHmTcuHElGiUrLy+Pt99+m169epGens6WLVvIysrSG1ntUf39998EBQXx8ssv06hRI2xsbIiNjWXz5s04OztrBzQoTTt37mTdunW8/PLLuLi4YGpqypkzZ/j555/p2bMnlpaWQP5wy0qlktWrV3P//n2srKxwdnbWGYyhtJmYmPDBBx8wefJkhg8fjr+/P9WqVWP//v2cO3eOgIAAbY1eRe2Hv78/4eHh7N27l7Zt22rjERVorGf+KzMbXN+GhAcGrGjlCt/PzE9qypGmn42hbgSCuak8YPlBMvR0yUmyI4SoNCZMmICrqyubNm1iyZIl2pG8Zs+erXOh6+npSVRUFDt37uTevXtYW1vTsGFD5syZQ/fu3bXlevXqxcWLF9m3bx8HDhxApVIxffp0g5OdiRMnYm1tzf79+4mOjqZOnTr4+/vTvHlzxowZo1PWzMyMJUuWsHbtWvbu3cvSpUsxNzenfv36OglGmzZtGD9+PFu3bmX27Nnk5eURGBhYbLLTuXNn7OzsSE5Oxs/Pr8CBEJo2bcq3335LaGgoR44cYcuWLVhbW+Pk5ISPjw/t2rUzaL8fNnPmTLZs2cKaNWtISUmhcePGTJ8+nQ4dOpRofYWpU6cOvr6+nD59msOHD5OTk0OtWrXw9/dn+PDh2gv20vTcc89pnw2UkJCAiYkJ9erV491332XgwIHacnXr1uXTTz9lzZo1fP755+Tm5uLt7V2myQ7k13guXbqUVatWER4eTk5ODm5ubnz88cc6DxWtqP1wdXXFw8ODkydPSq1OZWNpDneMbNZWRmpawp3M4stpONvJ5akoPQp1efWwFUII8VgJCQlh5cqVREZGFvtMIPHkmjBhAufOnWP37t1lkpCKx0NOTg6hoaEABAQE6AxXH7Q3l5XnDF9XQX11nnRZitEGl7VQLyvDSB4/0mdHCCGEECVy/fp1jh07xquvviqJjijUl10Nb5JWQ/IcUcrklBJCPFEyMzMNeujigyOdVSWP+/7fu3ePvLy8IstUq1ZNOxBEWcrLy+PeveKH/bWzs9O5y10V/P7771y9epX169djZmbGkCFDKjokUYnZWRje3+TKSOmbIkqXJDtCiCfK/v37mTlzZrHlTp06VQ7RlL/Hff+HDRtGfHx8kWUCAwMZOXJkmcfyzz//4OvrW2y55cuXa4dIryo2b97Mzp07cXZ2ZtasWdLMUZSaGlYyMIEoXdJnRwjxRElISODKlSvFlivtZ9VUFo/7/v/yyy/aYZQL4+zsrPesprKQlZXFL7/8Umy5p59+ulwe6CpERSqqzw5A869z+TOp6HUogTzpr1Mg6bNTcnJGCSGeKDVr1qy0TbTKw+O+/23atKnoELQsLCwqbVIoRGVzeriSagtVRZb5fXg5BfMYkqGnS04GKBBCCCGEEGXKyqzoS04F8HQtuQcvSp8kO0IIIYQQokKlTpCaC1E2JNkRQgghhBBlLr6QcUOmPAfVzGVggqIpjHiJB0myI4QQQgghylxdG1N2+oPpA9fj816Gz1+W5mui7MjZJYQQQgghyoVnI1Ny3q/oKMSTRJIdIYQQQgghKjEZja3kpBmbEEIIIYQQokqSZEcIIYQQQghRJUmyI4QQQgghhKiSpM+OEEIIIYQQlZr02SkpSXaEEEIIIUS5SkjPpdHXcD87//2Ap2Cjr1yWitInzdiEEEIIIUS5UavV1Fr6b6IDsOkS9N2eW3FBiSpLUmghhBBCCFFuPj+WV+D0bX+VcyCPERl6uuSkZkcIIYQQQpSbD38sfN6nR6R2R5QuSXaEEEIIIUS5SMtWFTl/1olyCkQ8MSTZEUIIIYQQ5aLO0qKTHYCMnOLLCGEoSXaEEEIIIUS5SDOgldormyTZEaVHkh0hhBBCCFFp/HGnoiMQVYkkO0IIIYQQotIwlYHHRCmSoaeFEEIIIUSZe3qlYSOt3ckuvsyTRoaeLjmp2RFCCCGEeFJkZcOOk3AuFu4kl+umLxixuXvpBT+LRwhjSbIjhDBYVFQUHh4enDp1qqJDEVWMj48PQUFB5brNU6dO4eHhQVRUVKmvOygoCB8fn1Jfr7FCQkLw8PDg5s2bFR2KqAxaTQDLweDzP2g9EWoHgKJv/susL/xxrcw2feRv456f02yluowiEU8aSXaEEI+Nw4cPExISUtFhlJt169aVyYW4sWbMmFHkBbMmCS7tWCvL/sO/ScP58+f15q1du5Z27doxYsQIUlJSKiA6IQzQdAz8fqPw+blAy3dh95ky2fxLm4wrfzsH3twhDxj9l8KIl3iQJDtCiMfG4cOHWblyZUWHUW6+++67SnOxX9a2bNlCcHCwzrTHYf+XLVvGggUL6NChA0uXLsXGxgaA4OBgtmzZUsHRiSdeWiYELc2vubl0y7BlPGdDwCLIK71mZAeNrNXRWHMBPjoiCY94NDJAgRBCVBFpaWlYW1tXdBglYm5uXtEhGEWtVvPll1+yceNGevbsyWeffYaZmZl2/oN/C1HqbtyFGwmQlQM1beDM1fwrui8i4dJNSH/EHv7fHM5/WZvDWE+oZw8ZOfBCM7Cxgvq1oJo5pGZCLTudRVNV5pz9BxQmuRy9DlOOQM4jhPLfE/DfE7mYAE87wNAW8Gxt8KijwNZSSWyyGqfqCv5OVqNUQlOHgu/j38tUY2UKljLU2xNHkh0hhNHUajXh4eFs3ryZ27dv4+TkxIgRI/D29tYru337djZt2kRsbCympqa0bNmSwMBA2rRpo1Pu6NGjhIWFceXKFTIzM7G3t6d58+aMGzeOBg0aEBQUxJkz+c0rPDw8tMtNnz7dqL4RqamprFmzhkOHDnHz5k2srKxwc3Nj4MCB9OrVS1vu8uXLhISEcPbsWTIyMnB2dsbb25shQ4ZgYmKiLRcUFER8fLxeDcTNmzfx9fUlMDCQkSNHAvl9REaNGsX06dNRq9WsXbuW69ev4+joyIABAxg+fLh2ec0+xsfH6+xvZGQk9erVw8fHBycnJyZOnMiSJUs4d+4cdnZ2vPfee0yePJmPPvoIf39/vf0fOHAg2dnZbNu2DYWi7P7pR0VFMXPmTJYtW8aFCxeKPVc0+7NixQqD9h/g/PnzrF69mrNnz5Keno6TkxNeXl4MHz4cU1Pdf2+HDx9mxYoVxMbGUqNGDby9vXn22WdLtG+5ubnMnDmT3bt34+/vz7Rp01AqdS+wCjovNNNWr17N/Pnz+fnnn8nOzubZZ59l8uTJNGjQQGcdN2/eZP78+Zw4cQKA5557jvfff59Ro0bpHCsAlUrFmjVr2LZtGwkJCbi4uBAQEFDoPhh6fs+YMYMdO3bw/fffs2DBAn744QdycnJo164d06ZNo2bNmmzdupV169Zx8+ZNnJycGD9+PF27di3RsRXFUKmg/RQ4daV8tpeWDV9sL3ieAlADzZxhzQTimrjxn1QfrqlqwfrSDyUP+D0RpvygmaL+/6m6nKxVnBqipJ5N/nfydpqaIbtU7P9bjbUZvO+hYOaLJnrLiapLkh0hhNGCg4PJysqib9++mJubs3nzZmbMmIGLi4tOErNo0SLCwsJo0aIFY8aMIT09nW3btjFy5Ei++uorOnXqBMDp06eZOHEijRo1IiAggOrVq5OQkMCJEye4fv06DRo0YMSIEajVas6ePctnn32m3Ubr1q0NjjslJYW33nqLmJgYunfvTv/+/cnLy+PixYscPXpUm+ycP3+eoKAgTE1NGTBgAI6Ojvzwww8sXryYy5cvM3v27Ec6flu2bCExMRFfX19sbGzYvXs3ixcvpk6dOvTu3RuAzz77jHnz5mFvb8+IESO0y9aoUUP79z///MPo0aPp0aMH3bp1Iz09nc6dO+Po6EhkZKResnPu3DliYmIYM2ZMmSY6DzL0XHlYcft/9OhRJk+ejKurK0OGDMHW1pZz584REhLCpUuXmDNnjnaZQ4cO8cEHH1CvXj3efvttTExMiIqK4ujRo0bvT3Z2Nh988AFHjhxh2LBhTJgwwajlMzIyCAwMpFWrVowdO5a4uDjWr1/P+++/z4YNG7SJRlJSEoGBgdy9e5d+/frh7u7O2bNnGTVqFBkZGXrrnT9/Pt999x1t27bl9ddfJzExkTlz5uDs7KxXtiTn94QJE6hduzajRo3i+vXrbNiwgcmTJ/Pyyy+zbds2+vTpg7m5ORs2bGDKlCls3bq1wG2LRzR5TfklOsXRjB9wIQ4GfMn4LxfnJzoVLD4N+mxXcXJofrLzzqH8RAcgLQc++1lNu7oqvBs9Xj05ZOjpkpNkRwhhtOzsbMLCwrRNdbp3706fPn3YuHGj9gI2NjaW8PBwnnnmGZYvX64t6+fnx4ABA5gzZw4dO3bExMSE6OhoVCoVwcHBODg4aLfz9ttva//u0KEDe/bs4ezZs3h6epYo7uDgYGJiYvjwww/p27evzjyVSqX9e+7cueTk5BAaGkqTJk0AGDRoENOmTWPPnj34+vry/PPPlygGgFu3brF582aqV68OQJ8+ffD29mbDhg3aZMfT05Nly5bh4OBQ6P7GxcXx8ccf4+fnpzPd19eX0NBQYmJiaNiwoXZ6REQEJiYm5TpKmCHnSkGK2v+srCxmzZpFy5YtWbZsmbYWp1+/fjRp0oT58+drR1rLy8tj7ty52NrasmbNGuzt7bVlBw8ebPT+TJ8+nbi4OMaNG8ebb75p9PJJSUkMHTpUpxavRo0aLFq0iBMnTtCxY0cA1qxZwz///MOsWbN49dVXAejfvz8LFy4kPDxcZ52xsbGsX7+edu3asWTJEm3C1K1bN4YOHaoXQ0nO7xYtWjBlyhSdaevWreP27dts2LBBey63a9eO1157jW3btjFu3Dijj48oRhkNHvDIriVw7eQNqNOg+LLl4Nc7//69N1Z/VLc9V9V4NyrHgESFerzSWiFEpTBgwACdPgm1a9emfv36XL9+XTstOjoatVrNsGHDdMrWqlULHx8f4uPjuXjxIoD2QungwYPk5pZNZ1SVSsW+fftwd3fXS3QAbTOkxMREfvvtN7p06aK9EARQKBTaGoZDhw49Uiw+Pj7afQawtLSkVatWXLtm3LCvdnZ2BSYufn5+KBQKIiIitNMyMjLYv38/L7zwArVqld/dV0POFWMdP36cu3fv4uPjQ2pqKklJSdrXiy++qC0D8Oeff/LPP//g6+urTXQg/5zr16+f0dtOSEjAxMREr8mZoZRKpV6S1a5dOwCdz/+HH36gZs2aOk0rgQKTF8137Y033tBpgtasWTPat2+vU7ak5/drr72m817TBNDLy0vnXG7SpAnW1tZGn8tlKTExkaysLO371NRUnVHzsrOzuXv3rs4y8fHxRb6/desWavW/F9HltY28RnUL3smKZmmOeX3Hio5Cy9FSpf08Gtnpz29gk1cpP3NRNiTZEUIYraDmKXZ2diQn//vEOM0wxY0a6d8+00yLi4sD8vuRNG3alM8//5zu3bszYcIE1q9fz71790ot5qSkJO7fv89TTz1VZDlN3A/WiGi4u7ujVCq1cZeUIcfP0PU8eHH74PTnn3+eXbt2aZPH/fv3k5aWRp8+fUoWtAEKahpXWvv6oKtXrwL5Td169Oih8+rfvz+A9iJD81kVlJy4u7sbve1PP/2UmjVrMm3aNA4ePGj08rVq1cLCwkJnmp1d/tXYw98fV1dXvb5ADg4O2hHfNDT76Obmpre9h/expOf3w5+jJgZN/6kH2draPtLnW9ocHBx0jnn16tV1jqG5uTmOjroX6k5OTkW+r1u3rs75Xl7bMFk6Eqwq4WAenw7gw1esURTQh6a8KYClPU21n8f/uiixfKAdU6uaMLKNWaX8zIuiRmHwS+iSZmxCCKM9fAGm8eBdL2PY29sTFhbG2bNnOX78OGfPnmXevHmEhISwcOFCo/rllLfC+r7kFTFsa0EJSklYWloWOs/f35+pU6cSHR1N9+7diYiIwNHRUdtPyhiaf+iZmZkFztf0IXn4Ih5K/1x5cNl33nmn0OS1rGqvXF1dCQkJYeTIkUybNo3//Oc/9OjRw+DlCzse8GjHpKwVds4WNr0y78tjzbUm3PkGPt8KP12E1Ay4lQT/JEGeCnJVxayghKz+v3bWwix/9LdurcClJlhbwsst4dmGeOfk8J/qmzmW3ZAsJw/+uKvgRmrph2IK2FvC807g6Q7RNxQ0qaHmfjaAgkkeChrY/fs969FAyV9vKYj4S01NK+jTWIGFjMj2RJFkRwhRJjR3gq9cuYKLi4vOvJiYGJ0ykH/R5OHhoR156/LlywwZMoRVq1axcOFCoPDEwhD29vbY2tpy+fLlIstp7lRrYnxQbGwsKpVKJ25bW1suXLigV/ZRa3/g0fa3a9euODg4EBERQaNGjfj1118LHKXMEJpjcvXq1QJrBDQ1LQXd5X8Uhe1//fr1AbCystJrpvUwzWf1999/683TxG0sFxcXbcLz0UcfARiV8BjCycmJ69evo1KpdBKkxMREvQeXavYxNjZW77v28D4ae36LSsjaEma9Xny5f5Jg0Q7479aSbefAdOj2jFGLOCrT8LI8R4CfB2Zm//7W+G7JJapkXzfsTOHuBBNMlAX/HoxtW/w6nG0UjHlWEpwnlTRjE0KUiS5duqBQKAgPD9fph5OQkEBUVBROTk40bdoUyG9i9jA3NzcsLS25f/++dpqVlRVAiZrIKJVKevXqRUxMDNu3b9ebr7kT7eDgQOvWrTly5Ah//fWXzvzQ0FAAXn75Ze30Bg0akJaWxu+//66dplKpWLdundExPszKykpn/41hamqKt7c3x44d0z6ItaRN2F566SUUCgUbN24kJ0f3iRl37txh37591K1bl2bNmpVo/YUpbP87duyIg4MD33zzTYHnQmZmJmlpaQA8/fTT1KlTh8jISJ3zLDU19ZEe+qlJeGrVqsVHH33E/v37S7yugnTp0oWEhAT27t2rM/3hwQng38/n22+/1alRvHDhgnbYag1jz2/xGKtjD/8ZAuqtEDnN8OVcHPKXMTLRKUpE35LVZje0gaR3TQtNdIQwhNTsCCHKhJubG0OHDiUsLIzAwEB69uypHXo6PT2dWbNmaZvAzJ49m9u3b9O+fXucnJzIysrS9jHx8vLSrrNVq1Zs3LiRzz//nE6dOmmf22PonejRo0dz8uRJZs+ezfHjx3nmmfx/5hcvXiQ3N5dZs2YBMGnSJIKCgggMDNQOzXv06FF+/vlnevfurTNSlb+/P2vXrmXy5MkMHjwYMzMzDhw4UGQzNkO1atWKiIgIli1bhru7OwqFgi5dumiTvuL4+/sTHh7O3r17adu2rbZGxFhubm68+eabhIaG8sYbb/DKK6/g4ODAjRs3iIiIIC0tjZkzZ5Za8zyNovZ/5syZTJo0iX79+uHr64urqyspKSnExsZy6NAhvvzySzw8PDAxMeG9995j2rRpDB8+HD8/P0xMTIiMjMTOzo5btwx8qnwBHqzh+fjjj1GpVHoDCpTU8OHD2bNnDzNnzuSPP/7Azc2Ns2fP8ttvv2Fvb69T6+Xm5saAAQPYuHEjo0ePplu3biQmJrJx40aaNGmiHQhEw5jzW1QRPu0gbR1YF1Mj1LsN7P601DevUCiY+CzMO2vccldGymWqeHRyFgkhysyECRNwdXVl06ZNLFmyBDMzM1q0aMHs2bN1Hujo6elJVFQUO3fu5N69e1hbW9OwYUPmzJlD9+7dteV69erFxYsX2bdvHwcOHEClUjF9+nSDkx1bW1tCQ0NZvXo1hw4d4tChQ1hbW+Pu7s6gQYO05Zo3b87q1asJCQlh8+bN2ocujh8/niFDhuis09nZmblz57J06VKWL1+OnZ0dnp6e+Pr6ajvLl9SYMWNITk5m06ZNpKSkoFariYyMNDjZcXV1xcPDg5MnTz7ywARjx46lSZMmbNmyhbVr15KRkYG9vT0eHh4MHz6c5s2bP9L6C1LU/nfs2JE1a9awZs0adu/ezb1797C1tcXFxYU33nhDZ6SxHj16oFQq+frrr1mxYgUODg7ah4o+6vDIzs7OrFixgpEjR/Lpp5+iVqu1w4c/Cnt7e77++msWLFhAZGQkCoWC5557juXLlzNs2DC9/lGTJk3C0dGRbdu2sXDhQlxdXZkyZQrXrl3TS3aMOb9FFVLNEjI3wPvfwPZjoFRCaiZ0bw0LAsC5Zplu/qvupsw7a/homzv1B80UokQUaulFKIQQVdaECRM4d+4cu3fvLnJAA/F4SEpKokePHvTt25cPP/ywosMRQkvz7CaAgIAAnSHnNRRzDU921JPkfvyDUhQTDS5ro55XhpE8fqTPjhBCVFHXr1/n2LFjvPrqq5LoPIYKGv1uzZo1AMUOzCBEZTSjg2Hl7PXzpCeeDD1dcpI2CyEea5mZmaSmFj++ac2aZdtEozL5/fffuXr1KuvXr8fMzKzApknp6emkp6cXuR4TExNq1KhRVmGKYrzzzjs4OTnRrFkzVCoVJ0+e5IcffqB169Z07dq1osMTwmjTO5ky41jxtTtlNIC2eEJJsiOEeKzt37+fmTNnFlvu1KlT5RBN5bB582Z27tyJs7Mzs2bNKnBI6PDwcO0obYVxcnIiKiqqrMIUxejcuTM7d+7k0KFDZGVlUadOHYYMGUJgYGCpDwYhRGViLxXRohRJnx0hxGMtISGBK1euFFtOmv3ounHjRrHPArKwsKBNmzblE5AQ4rFmSJ8dAPv5uSQXM1jl7r4KejeUhP5B9xWTDC5rq55bhpE8fqRmRwjxWKtZs+YT1USttLi4uOg9gFIIIcpa3FgTqi8qOtuRREeUJhmgQAghhBBClAtr86I70Pco2ePAhCiUJDtCCCGEEKLcvNGs8HkR/lKrI0qXJDtCCCGEEKLcLO5R8OVng+pQzUyGTi6IDD1dcpLsCCGEEEKIclPDUknwy7rTLJVwfoRclorSJwMUCCGEEEKIcjXmOVPGPAexySosTaBudUl0RNmQZEcIIYQQQlQINztJcgwhzdNKTs4wIYQQQgghRJUkyY4QQgghhBCiSpJmbEIIIYQQQlRq0oytpKRmRwghhBBCCFElSbIjhBBCCCHK3FcncrGcl4vVvFxWnM2t6HDEE0KSHSGEEEIIUaa6fpfLpCOQpYJMFYw8AH22SsIjyp702RFCCCGEEGUqOk5/WmQMqNRqlArpj1IcdUUH8BiTmh0hhBBCCFEhuq7Pq+gQRBUnyY4QQgghhCgzSZmqQuf9UECNjxClSZqxCSGEEEKIMtNxXeHJjjCMWoaeLjGp2RFCCCGEEGXmQmLR82OTZKACUXYk2RFCCCGEEBUmNbuiIxBVmSQ7QgghhBCiTGTkFN+EbX9MOQQinliS7AghhBBCiDLx593ik52JR8shkMeewoiXeJAkO0IIIYQQokxcLqa/jhBlTZIdIZ4gp06dwsPDg6ioKO20mzdv4uHhQUhISKlua8aMGXh4eJTqOkXVVFbnYHFCQkLw8PDg5s2bpb5uDw8PZsyYUerrNVZQUBA+Pj4VHYZ4XPxzD3z/C56zIDGlVFb52i7DykVelkEKRNmQZEcIUWJRUVGsW7euosOoklJSUggJCeHUqVMVHQo+Pj5FXjBrEtvSTBoq0/5DftLQuXNnvek5OTlMnToVDw8P5syZg1otzzkXj5nbSdB7Jij6Qt23IOoU7D4LjsPBpC/8Ff9Iqzf0G9En4pE2U+WpURj8ErrkOTtCPOGcnJz48ccfMTExMXrZqKgo4uPjef311/Xmffzxx0ybNq00QnwipaSksHLlSoAqX0NW0Dn4OOx/ZmYmkydP5ueff+att95i9OjR2nkl/U4JUW5uJIBbEOQVUUYFNBkLrerDbwuM3kTMvaJWru/nv3Pp2EAuTUXpkjNKiCecQqHAwsKi1NdramqKqan8xJSntLQ0rK2tKzoMo5XVOViWUlJSeOeddzh37hwTJ07US/gft/0RVVxuLvyTBNPXw5afISnDuOXPXQO71+HeWlAW3SgoTwUbL8JnP+dyKdm4zbywCd54KpeFPRVYmSqpZia1FOLRyZWIEE+4mzdv4uvrS2BgICNHjtRO37FjBxs3buTatWvk5ubi6OhIq1ateP/996lRowY+Pj7Ex+c3b3jwzvvy5cu1/RV27Nih0wxJM+3w4cMsXryYgwcPkpaWRrNmzZg4cSItW7bUiS0pKYmFCxdy5MgRsrOzadGiBe+++y7z5s0jPj5ep++Roa5fv87q1as5fvw4iYmJ2Nvb07x5cwIDA3n66ae15Q4fPkxYWBiXLl1CoVDQpEkThg0bRteuXXXW5+Hhgbe3t17/jKioKGbOnKk9HpDfR2TlypVs3ryZnTt3snPnTu7du4ebmxtjx46lU6dOQH7fqlGjRgGwcuVKbQ2Hk5MTUVFROp+Zu7s7YWFhXL16lZ49e1K9enXWr1/P1q1bqV+/vk5MCQkJeHl54enpyfTp040+dsYw5rN++Bwsbv819u3bx4YNG7h8+TJ5eXk0btyYoUOH0qNHD51YVCoVa9asYdu2bSQkJODi4kJAQECJ9+3u3buMHz+eK1eu8OmnnxbYxK+g80IzrW/fvixZsoTz589jYWFB165def/996lWrZrOOk6fPs2SJUu4dOkS1atXp2fPnvj7+zNo0CC97+v9+/dZtGgRhw4dIisri+bNm/Pee+8Vug+Gnt8+Pj44OTkxadIkFixYwLlz57C0tMTT05Px48eTl5fHsmXL2Lt3L8nJybRo0YIPP/wQd3f3kh1cUXKJKTBtLWz6CZLSDG8/Zqj7mWDSX3eaiYKMfi8y1f9NtifZcC31TUABe0qepHx7Cb69pKagKidLE3jnOfjsRRPMTZ6sREiap5WcJDtCCD07d+5kxowZPPvss4waNQoLCwv++ecffvzxRxITE6lRowbvv/8+S5YsISkpiYkTJ2qXNeQiZ9y4cdSoUYO3336b5ORkvv32W9555x0iIyO1NRPZ2dmMGTOGS5cu4ePjQ4sWLbh8+TJjx47F1ta2RPt1/vx5Ro8eTW5uLn369KFRo0bcv3+fM2fO8Ouvv2qTnU2bNjFnzhzc3Nx4++23gfzkb9KkSXz44Yf07du3RNvXmDFjBqampgwZMoScnBy+++47Jk2axNatW6lXrx7u7u5MnDiRefPm8fLLL/Pyyy8D6F0MR0dHs2HDBvr160e/fv2wtramYcOGrF+/nsjISMaNG6dTfseOHeTl5eHn5/dI8RvDkM/6YYbs/9KlS1m9ejUvvPACo0aNQqlUcujQIaZOncoHH3zAwIEDtWXnz5/Pd999R9u2bXn99ddJTExkzpw5ODs7G70/8fHxjB07llu3bvH5559rYzPUpUuXeO+99/Dx8aFXr16cPn2aiIgIlEolH330kbbcL7/8wrhx47C1tWX48OHY2Niwf/9+fv31V7115ubmMm7cOM6fP4+npyetWrXi0qVLjBkzBjs7O73yxp7ft2/fZuzYsfTs2ZNu3bpx/Phxvv32W0xMTIiJiSErK4vhw4eTnJxMeHg477//Pps3b0ZZTA2AKGWD58F+/fOjTOWpsdp4lIHH77Bo3CzKetjjzDyYcwKy8lTMf1maiQrDSLIjhNBz+PBhrK2tWbZsmU5TNM3ddoCuXbuybt06srKy8PT0NGr9zZo1Y+rUqdr3DRs2ZOrUqezZs4d+/foBEBERwaVLlxg9ejRvvfWWtmzjxo2ZM2cOTk5ORm1TrVYzY8YMcnJyWLNmDU2aNNHOCwgIQKXKfxaE5g65i4sL33zzDdWrVwegf//+vPHGGyxYsICePXtiY2Nj1PYfZG9vz/z581Eo8i8MPDw8GD58OFu3bmXcuHE4OjrStWtX5s2bR+PGjQs9vleuXGH9+vV6CWbr1q3ZsWMHo0eP1uk3EhkZibu7O88880yJYzeWIZ/1w4rb/wsXLrB69WoCAgIYO3asdvrgwYN5//33CQ4OxsvLC2tra2JjY1m/fj3t2rVjyZIl2uPRrVs3hg4datS+5OTk8Pbbb5OSksKCBQt4/vnnjVoe4PLly4SGhmprtvr160daWhqRkZG899572oRu3rx5KBQKVq1ahYuLCwADBgwgKChIb52RkZGcP39er7bH3d2defPm6XxXSnJ+37hxg88//1xbY9a/f3+GDBlCeHg4nTt3ZunSpdpz2c7Ojrlz53L8+HE6duxo9PERJRSfWP6JzgOa/3O9XLe35g818427zyCeYHLbRQihp3r16mRmZnL06NEyGV3q4f4NmmZe16//+w/zhx9+wMTEhNdee02nrJ+fn/YCzRgXL14kJiYGHx8fnURHQ3MX+vjx42RkZDB48GCd7VSvXp3BgweTnp7O8ePHjd7+gwYPHqy9OARo0aIF1apV49q1a0atp1OnTgXWpPn7+5OQkMCPP/6onXbmzBmuXbtGnz59Sh54CRjyWRtr9+7dKBQKvLy8SEpK0nl16dKFtLQ0zp07B+TXfqnVat544w2dxK9Zs2a0b9/eqO2qVCoSExOpVq0aderUKVHsrVq10muu2a5dO/Ly8rSj2d29e5fz58/z0ksvaRMdyO8H9/D3AfJvTpiYmPDGG2/oTO/fv79e7VlJzu/atWvrNQ1s06YNarWaQYMG6ZzLbdq0ATD6XC5LiYmJZGVlad+npqaSkvLvsMrZ2dncvXtXZxlNE93C3t+6dUvnt7HCt2Fhhtq04mo6rHKyoBxHIrRU6jZxq3SfRwm3IcqG1OwIIfQEBARw5swZJk2ahJ2dHW3btuXFF1+kZ8+epdIB/uHmQ/b29gAkJ//bmzUuLo6aNWvqNd0yMzOjXr16Ov9UDKG5uG7atGmR5eLi4oD8GoiHaaZpypTUgxewGnZ2djr7b4iH++Ro9OzZk6+++oqIiAi6dOkC5NeUmZmZ4eXlZXzABnrwolfDkM/aWFevXkWtVtO/f/9Cy2guMjSflZubm14Zd3d3jh07ZvB2LSwsmD17NlOnTmXkyJEsX768wPUWpaCmc5qmZppjokl6GjRooFe2oGma78rDNwHMzc1xdnbW+a6U5PyuV6+eXllNzc/D+6NpYvoon29pc3Bw0Hlf0HFydHTUmfZwzfHD7+vWrVu5tuFggyKgG6zcT0XY3LojFPD9LytT2pvpvK90n0cJtyHKhiQ7Qgg99evXZ9OmTZw4cYKTJ09y5swZZs+ere1gX9DFujEKG5K3Kj2jJC+v8CFXC+vLYOz+W1paFjr91VdfZevWrdy9excLCwsOHDhAly5dqFGjhlHbgPyL/KIuXjMyMrTlHlZWn7VCoWDRokWFHstGjRo90voL89JLLzFnzhymTJnCyJEjCQkJMSrhKWo46sp6/hfV96a0zmVRCpYFQbvGsPFHOPc3JKdDrgpyjRv+2WBKBbjXJu9dX1Ke786AW2qOXErkHzRJQOklP4r/31xzR/jsRSV+TaRhkjCcJDtCiAKZm5vTqVMn7QhhR48e5d133+Xbb79lypQpQMF38ktLvXr1OHHiBOnp6Tq1O7m5udy8edPoPjOaWpBLly4VWU6TyMXExOj1ybh69Sqgeze7sBqZR639edRj27dvXzZt2sSOHTu0zRJL2oStXr16xMbGkpSUpK2ZedDVq1extrYucF5JFbX/rq6u/PTTT9StW7fYATE0n1VsbKxekq75PI3VpUsXvvjiCz744ANtDU9pjj6mudv7999/680raJqzszPHjx8nNTVV5+5ydnY2cXFxOgN6GHt+i8eIiQkE9sx/FSY5DZJSocNUuGVk7duQzhCuP8KfCTAaeDsnh9Bb+U8GDQgI4F62kjrLVMZtA/h9OLSoJZenovRIaiyE0JOUlKQ3rVmzZoBu85Rq1apx//79MrmL27lzZ/Ly8vjuu+90pm/bto3U1FSj1/fUU0/RsGFDIiMjuXLlit58zT60b98eKysrNmzYQFpamnZ+WloaGzZsoFq1anTo0EE7vX79+pw7d47MzEzttPv37xMZGWl0jA+ysrLSrqskmjRpQosWLYiMjCQiIoK6devqxG0MzXDE3377rd68n3/+mZiYGDp37lyqo28Vtf+aAQuCg4MLrEF7sJ38Sy+9hEKh4Ntvv9Upe+HCBU6cOFHi+Dp37syXX35JSkoKo0aNIiYmpsTreljNmjVp3rw50dHR3LhxQzs9NzdX7/sA+fuYl5en9/ls3rxZ5xwG489vUcXYWUODOhAfCuqt8MkAw5Yb2bPARKcota2V5L1vXD+ivPdNJNEphBqFwS+hS84oIYSesWPHYmNjw7PPPkudOnVISUkhKioKhUKhMzJWy5Yt+eGHH/jiiy9o3bo1SqWSdu3a6bVlLgk/Pz+2bt3KsmXLuHHjhnbo6e+//x5XV9cim4kVRKFQMH36dMaMGcPw4cO1Q0+npKRw5swZOnbsyODBg7GxsWHChAnMmTOHN998E29vbyB/aN7r16/z4Ycf6tw9HzhwIJ988gmjRo3C09OTlJQUtm/fjpOTk17nVGPY29vj6urKvn37cHFxwcHBASsrK20fHEP4+/sze/ZsAAIDA0ucjPj6+rJnzx5CQ0O5ePEi7dq1w8LCgosXL7Jjxw4cHR31hrl+VEXtf4sWLQgKCmLFihW8/vrr9OjRg1q1apGQkMCff/7Jjz/+qO2L4+bmxoABA9i4cSOjR4+mW7duJCYmsnHjRpo0acLFixdLHGOnTp20NTyjRo1i2bJlpdZ87p133mHs2LG89dZb9O/fn+rVq7N//35yc3MB3ZovX19ftm3bxsqVK4mLi6N169ZcvHiR77//HhcXF53virHnt6jiPnst/5WSDi5v5z9L50H928P6Sfm1RiWgNKKG2tnKuPJCGEqSHSGEnv79+7N//362bt1KcnIydnZ2NG3alA8++EDnAaJvvPEGcXFxHDhwgC1btqBSqVi+fHmpJDvm5uYsW7aMhQsXEh0dzf79+2nZsiVLly5l9uzZOjUphmrRogVr1qxh1apVfP/992zZsgV7e3tatGihHUUK8of4rVmzJuHh4doHWj711FPMnTtX76GLr776Knfu3GHjxo3Mnz8fZ2dn3n77bZRKJb///vujHAJmzZrFvHnzCA4OJjMzEycnJ6OSnV69ejF//nwyMjLw9fUtcRympqYsWbKEdevWsW/fPkJCQsjLy6N27dr07duXt956i5o1a5Z4/YUpav+DgoJo3rw569ev57vvviMjIwMHBwcaNWrEpEmTdNYzadIkHB0d2bZtGwsXLsTV1ZUpU6Zw7dq1R0p2ID/h+fLLL5k8ebI24WncuPEjrRPgueeeY/HixQQHBxMaGoqNjQ09e/akd+/evPnmmzr9o8zMzAgODtZ+Vw4ePEjz5s0JDg5mwYIFeiM+GXN+iyeETTVIXpf/99V/wNIcnIzv31eQWuZwJ7v4cj8NkURHlA2FWnoRCiEeI3l5efTo0YOWLVuyePHiig6nUsvOzqZ37940b96cJUuWVHQ4ohQcOHCAKVOm8J///IdevXpVdDhCaOXk5BAaGgrk99kxM8sfMe18Qi4tvil+efUkuf9elNuKTwwuW1s9qwwjefxInx0hRKVVUO3Nli1bSElJMfoZKU+i3bt3c//+ffz9/Ss6FGEktVqt8wwPyO+z8+2332JiYsJzzz1XQZEJYZzqZsWXEaIsSRothKi0/vOf/5CVlUXr1q0xNzfn3Llz7NmzB1dXV+0FfGpqarFN2szMzLTPMnkSHDlyhPj4eFasWEHDhg0LbJqUnJxMTk5OkeuxtLSU/hsVJDs7Gx8fH3r37k2DBg1ITk5m//79XL58meHDh5dJs0EhyoKLrQlQdB/L6XLvSpQhSXaEEJVW+/bt2bRpE6tWrSI9PR1HR0f8/PwYNWqU9uGmc+fOZceOHUWup23btqxYsaI8Qq4UvvzyS+7cucPTTz/Nxx9/XOCzXSZPnsyZM2eKXI+3tzczZswooyhFUUxNTXnxxReJjo4mISEByH+g6JQpUxgwwMARtISoBAwZdGBc23IIRDyxpM+OEOKxFhMTw507d4osY2try9NPP11OET0e/vzzz2KHta5VqxYNGzYsp4iEEI+zwvrsACjm5ha5bOa7SixMpWdFUW4rPjW4bG31Z2UYyeNHanaEEI+1hg0bygV5CUjyJ4QoL+3rwPF/Cp8viY4oS3J2CSGEEEKIMnP0jcKf01NDBjAQZUxqdoQQQgghRJkxVRbeb2ervzxfxxDS56TkpGZHCCGEEEJUiK71C6/1EaI0SLIjhBBCCCHK1Hov/Wmh8lxcUQ6kGZsQQgghhChTg542ZWAzNRMO5JGeA1+9rMTeUu65i7InyY4QQgghhChzCoWCxT3k0rMk1EjfppKSlFoIIYQQQghRJUmyI4QQQgghhKiSpC5RCCGEEEKISkyasZWc1OwIIYQQQgghqiRJdoQQQgghRLm4dDePVzbl8npULkmZ8qhMUfakGZsQQgghhChztgtyScn99/13F/OI8FPg21geLFo8acZWUlKzI4QQQgghylS7MN1ER8Nvu9TuiLIlyY4QQgghhChTp24XPF1SHVHWJNkRQgghhBBCVEnSZ0cIIYQQQohKTIaeLjmp2RFCCCGEEBXm3f0FdOYRopRIsiOEEEIIIcqMWl10z5xlv5ZTIOKJJM3YhBBCCCFEmfnsaF6R87PLKY7HmQzkUHJSsyOEEEIIIQyTkgHZObDvF4i9ZdAic8+UbUhCFEVqdoQQQgghRNH6fg7bThQ8L2EN2FoWumh6TvGrz1WpMVVKJ3xR+qRmRwhR4aKiovDw8ODUqVMVHYqoYnx8fAgKCirXbZ46dQoPDw+ioqLKdbtClIl7KfDal4UnOgC1hxe5CpUBm8mQMQpEGZFkRwjxxDt8+DAhISEVHUa5WbduXaW4EJ8xYwYeHh7cvHmzwPmaJLi0Y60s+69x5swZ3nvvPXx8fOjYsSM9e/Zk6NChfPnll9y4cUNb7ubNm4SEhHDx4sVH2l5KSgohISFyc0EULTMLFH3BYTis/7nosirg9OVH2lxWrvRKKYoahcEvoUuSHSHEE+/w4cOsXLmyosMoN999912lutgvS1u2bCE4OFhnWmXa/82bNxMUFERMTAze3t5MmTKF119/HXd3d/bu3cuFCxe0ZW/evMnKlSu5dOnSI20zJSWFlStXcvr06UcNX1RFXrPzkxyr14xazLTjxwVOv5liSL0OHL9pWDkhjCV9doQQQhQpLS0Na2vrig6jRMzNzSs6hELl5uYSHBxM3bp1+fbbb6levbrO/JycHNLT0ysoOlGlqdWQkQW37sGMDbDhR8guesQ0QyhzVahMde+j9/zOsCTGeztMfT6XoFbgXkMuT0XpkbNJCFFpqNVqwsPD2bx5M7dv38bJyYkRI0bg7e2tV3b79u1s2rSJ2NhYTE1NadmyJYGBgbRp00an3NGjRwkLC+PKlStkZmZib29P8+bNGTduHA0aNCAoKIgzZ/KHCvLw8NAuN336dHx8fAyOPTU1lTVr1nDo0CFu3ryJlZUVbm5uDBw4kF69emnLXb58mZCQEM6ePUtGRgbOzs54e3szZMgQTExMtOWCgoKIj4/Xq4G4efMmvr6+BAYGMnLkSCC/j8ioUaOYPn06arWatWvXcv36dRwdHRkwYADDh//bnl6zj/Hx8Tr7GxkZSb169fDx8cHJyYmJEyeyZMkSzp07h52dHe+99x6TJ0/mo48+wt/fX2//Bw4cSHZ2Ntu2bUOhKLtmFFFRUcycOZNly5Zx4cKFYs8Vzf6sWLHCoP0HOH/+PKtXr+bs2bOkp6fj5OSEl5cXw4cPx9RU99/m4cOHWbFiBbGxsdSoUQNvb2+effZZg/YlKSmJlJQU2rVrp5foAJiZmWFnZ6ez3wAzZ87U/t22bVtWrFiBSqUiNDSUY8eOce3aNZKTk3F0dKRTp06MHj0ae3t74N9zBWDlypXaGk0nJyedc23fvn1s2LCBy5cvk5eXR+PGjRk6dCg9evTQibG475coB6evwKrvAQXUtYdNP0H8PTBVQlIaZJVPZxgF8NbYfWSag3rurwz3H8m3tZqSh0mxy2p8fiL/BbnadQKYKKCGJXSrr8C/iYKjcWpyVRDQUsnzTk9Ks60nZT9LnyQ7QohKIzg4mKysLPr27Yu5uTmbN29mxowZuLi46CQxixYtIiwsjBYtWjBmzBjS09PZtm0bI0eO5KuvvqJTp04AnD59mokTJ9KoUSMCAgKoXr06CQkJnDhxguvXr9OgQQNGjBiBWq3m7NmzfPbZZ9pttG7d2uC4U1JSeOutt4iJiaF79+7079+fvLw8Ll68yNGjR7XJzvnz5wkKCsLU1JQBAwbg6OjIDz/8wOLFi7l8+TKzZ89+pOO3ZcsWEhMT8fX1xcbGht27d7N48WLq1KlD7969Afjss8+YN28e9vb2jBgxQrtsjRo1tH//888/jB49mh49etCtWzfS09Pp3Lkzjo6OREZG6iU7586dIyYmhjFjxpRpovMgQ8+VhxW3/0ePHmXy5Mm4uroyZMgQbG1tOXfuHCEhIVy6dIk5c+Zolzl06BAffPAB9erV4+2338bExISoqCiOHj1q0D44OjpSrVo1zp49S2xsLG5uboWWffbZZwkICCA0NBR/f39tQuXg4ADk1wKFh4fTrVs3XnrpJSwtLTl//jwRERH88ssvrF27FjMzM9zd3Zk4cSLz5s3j5Zdf5uWXXwagWrVq2m0tXbqU1atX88ILLzBq1CiUSiWHDh1i6tSpfPDBBwwcOBAw7PslytiRP6DHTMipHL37FYBVNrzYczQ/1Wr2yOvT9OLJVcOdDNhwUc2Gi//27Vn5Wx57+ivp0UB6ZYjCSbIjhKg0srOzCQsLw8zMDIDu3bvTp08fNm7cqL2AjY2NJTw8nGeeeYbly5dry/r5+TFgwADmzJlDx44dMTExITo6GpVKRXBwsPaiEODtt9/W/t2hQwf27NnD2bNn8fT0LFHcwcHBxMTE8OGHH9K3b1+deSrVv0045s6dS05ODqGhoTRp0gSAQYMGMW3aNPbs2YOvry/PP/98iWIAuHXrFps3b9bWEvTp0wdvb282bNigTXY8PT1ZtmwZDg4Ohe5vXFwcH3/8MX5+fjrTfX19CQ0NJSYmhoYNG2qnR0REYGJiYlRN2KMy5FwpSFH7n5WVxaxZs2jZsiXLli3T1uL069ePJk2aMH/+fO1Ia3l5ecydOxdbW1vWrFmjrTnp168fgwcPNmgfFAoFQUFBLFiwgEGDBtG0aVNat25NixYtaNeuHTVr1tSWdXFxoX379oSGhtK6dWu92M3NzdmzZw+WlrrD/7Zu3ZrZs2dz+PBhevbsiaOjI127dmXevHk0btxYbz0XLlxg9erVBAQEMHbsWO30wYMH8/777xMcHIyXlxfW1tYGfb9EGZsfVWkSnQfVSr1fLtvJU8O8U2p6SF4tiiCpsBCi0hgwYID24hWgdu3a1K9fn+vXr2unRUdHo1arGTZsmE7ZWrVq4ePjQ3x8vHa0Ks1F/8GDB8nNLZsLApVKxb59+3B3d9dLdACUyvyf2cTERH777Te6dOmiTXQg/4JXU8Nw6NChR4rFx8dHpzmUpaUlrVq14tq1a0atx87OrsDExc/PD4VCQUREhHZaRkYG+/fv54UXXqBWrVolD95Ihpwrxjp+/Dh3797Fx8eH1NRUkpKStK8XX3xRWwbgzz//5J9//sHX11eb6ED+OdevXz+DtzlkyBDmzZtH+/btuXr1KuvXr+eTTz7By8uLzz77jMzMTIPWo1AotIlOXl4eKSkpJCUl0a5dOwB+//13g9aze/duFAoFXl5eOvuflJREly5dSEtL49y5c9p9hbL9fpWGxMREsrKytO9TU1NJSUnRvs/Ozubu3bs6y8THxxf5/tatW6jV/9YwVNQ2cu+lUhk9lVDwCItlITlLXWk+j0fdRlFkNLaSk5odIUSl4ezsrDfNzs6OW7f+fUq3ZpjiRo0a6ZXVTIuLi6N58+YMHDiQ6OhoPv/8cxYvXswzzzzDCy+8QK9evXSabT2KpKQk7t+/T8eOHYssp4n7wRoRDXd3d5RKJXFxcY8US2HHLzk52ej1PNh/6MHpzz//PLt27WL8+PGYmpqyf/9+0tLS6NOnT4njLk5BTeMMOVeMdfXqVQCd5owP01y8aD6rgppqubu7G7XdLl260KVLF/Ly8rh69SonTpxg/fr1REZGYmJiwkcffWTQevbv38/atWu5ePGiXvJx/75hd9qvXr2KWq2mf//+hZbRHIPy+H6VhgdrnQC9/lHm5uY4OjrqTHNyciryfd26dSvHNoa/DNHnqWzO13Ypt20Naa6sPJ/HI25DlA1JdoQQlYamFuRhD95NM4a9vT1hYWGcPXuW48ePc/bsWebNm0dISAgLFy40ql9OeSus70teXuEjJhWUoJTEw02hHuTv78/UqVOJjo6me/fuREREaDvCG8vCwgKg0NqLjIwMnXIPKu1z5cFl33nnHZ566qkCy5Rl7ZWJiQmNGzfWNi/z8/Nj586dTJ06tdjP9uDBg0ybNo0WLVowadIk6tSpg7m5OSqVivHjxxt1XBQKBYsWLSr0GGtuKjzO368qI6A7pGbC8n2gUoG1JZyLhZy8fzu8lCPNJkO3LONVx084XacBlFI/PgVQxxq6uij4/W7+AAWBrZWMbiONlETRJNkRQjxWNHf0r1y5gouL7t3DmJgYnTKQfwHp4eGhHXnr8uXLDBkyhFWrVrFw4UKg8MTCEPb29tja2nL5ctEP1NOM9KWJ8UGxsbGoVCqduG1tbXWesaLxqLU/8Gj727VrVxwcHIiIiKBRo0b8+uuvBY5SZgjNMbl69WqBNV6amhZNudJS2P7Xr18fACsrK9q3b1/kOjSf1d9//603TxP3o7C3t8fFxYULFy6QlJSEo6NjkZ/brl27sLCwICQkRCdZjY2N1Stb1HpcXV356aefqFu3rkE1VIZ8v0QZG++V/zJUbi58uR1O/AVH/4C7aaWWGF1p4cDBCc8TEBDAqf9vZmo7LxcDH7WDCfDG07CilxILU0liROmQM0kI8Vjp0qULCoWC8PBwnaY6CQkJREVF4eTkRNOmTYH8JmYPc3Nzw9LSUqdZj5WVFYDRzb0gv4ahV69exMTEsH37dr35mjvqDg4OtG7dmiNHjvDXX3/pzA8NDQXQjowF+c2j0tLSdPpaqFQq1q1bZ3SMD7OysjK4WdPDTE1N8fb25tixY9phi0vahO2ll15CoVCwceNGcnJydObduXOHffv2UbduXZo1e/RRnR5U2P537NgRBwcHvvnmmwLPhczMTNLS0gB4+umnqVOnDpGRkTrnWWpqKlu2bDEojszMzEIf7Hnt2jWuXr2Kvb29tkmYZsS0gmLT1MI8OCCGWq1m1apVemU153tBx0AzYEFwcHCBtYgP9kEw9PslKhlTU5jWH7ZNhTvhoNoK6q2QGAaHC2/CWRw1cHCC/gArN8YYdnPlvy9A7iRT1niZSqJTALURL6FLanaEEI8VNzc3hg4dSlhYGIGBgfTs2VM79HR6ejqzZs3SNvmZPXs2t2/fpn379jg5OZGVlaXtY+Ll9e+d0FatWrFx40Y+//xzOnXqpH1uT0H9QgoyevRoTp48yezZszl+/DjPPPMMgLbvxKxZswCYNGkSQUFBBAYGaoeePnr0KD///DO9e/fWGYnN39+ftWvXMnnyZAYPHoyZmRkHDhwoshmboVq1akVERATLli3D3d0dhUJBly5dtBfBxfH39yc8PJy9e/fStm1bbY2Isdzc3HjzzTcJDQ3ljTfe4JVXXsHBwYEbN24QERFBWloaM2fOLLXmeRpF7f/MmTOZNGkS/fr1w9fXF1dXV1JSUoiNjeXQoUN8+eWXeHh4YGJiwnvvvce0adMYPnw4fn5+mJiYEBkZaXDfoczMTEaOHEmjRo144YUXcHV1Ra1WExsby65du8jKyuKDDz7QJjLu7u5YW1uzefNmLC0tsbGxwcHBgXbt2tG9e3cOHjzIqFGj8PLyIjc3l+jo6AKbCNrb2+Pq6sq+fftwcXHBwcEBKysrunTpQosWLQgKCmLFihW8/vrr9OjRg1q1apGQkMCff/7Jjz/+yLFjxwDDv1/iMVGjOrzUMj/xycyCJTth8lqDF88b3avA6baWJmiem1OU/qV7T0MILUl2hBCPnQkTJuDq6sqmTZtYsmQJZmZmtGjRgtmzZ+s80NHT05OoqCh27tzJvXv3sLa2pmHDhsyZM4fu3btry/Xq1YuLFy+yb98+Dhw4gEqlYvr06QYnO7a2toSGhrJ69WoOHTrEoUOHsLa2xt3dnUGDBmnLNW/enNWrVxMSEsLmzZu1DxUdP348Q4YM0Vmns7Mzc+fOZenSpSxfvhw7Ozs8PT3x9fUtsvO4IcaMGUNycjKbNm0iJSUFtVpNZGSkwcmOq6srHh4enDx58pEHJhg7dixNmjRhy5YtrF27loyMDOzt7fHw8GD48OE0b978kdZfkKL2v2PHjqxZs4Y1a9awe/du7t27h62tLS4uLrzxxhs6I+n16NEDpVLJ119/zYoVK3BwcNA+VHTcuHHFxlG9enU+/fRTjh07RnR0NHfv3iUrK4saNWrQtm1bBg0apPPgU0tLS/7zn/+wbNky5s2bR3Z2Nm3btqVdu3b06tWL9PR01q1bx8KFC7GxsaFLly6MGzdO51zXmDVrFvPmzSM4OJjMzEycnJzo0qULkP9A2+bNm7N+/Xq+++47MjIycHBwoFGjRkyaNEm7DkO/X+IxZGkBk/rmv77YCh+tg9yi26KpF46A/6+lLgnn6lKbI8qGQv0ovTmFEEI8kSZMmMC5c+fYvXt3kQMaCCGqALUaHIfBvbSC56esJcfCTNskNyAgQGdoeMXc4mt21JPk/ntR/lb81+CyDdQflmEkjx85s4QQQhjl+vXrHDt2jP79+0uiI8STQKGAxHC4ngCRJ2Dzz3DtNnzgDyPzH1jMQ/3uHmSlgAy5tS4qiCQ7QghRgMzMTFJTi39g34NPua/qfv/9d+2DL83MzPSa3gGkp6eTnp5e5HpMTEwq1XNYhBAGcq0JYz3zX0bwawLfXSqjmIQohiQ7QghRgP379zNz5sxiy506daocoqkcNm/ezM6dO3F2dmbWrFkFDgkdHh6uHaWtME5OTkRFRZVVmEKISmbVqyZ8d6nwwVVK50k8VZtajlKJSbIjhBAF6NixI8HBwRUdRqUyY8YMZsyYUWQZLy8v2rRpU2SZgh4SKoSouqzMir5QH17645AIoSXJjhBCFKBmzZpPVBO10uLi4qL3sFchhChKSK/SHV5eiAfJOH9CCCGEEKLCmJtIEy1RdqRmRwghhBBCiEpNEsKSkpodIYQQQghRpt5qUdERiCeVJDtCCCGEEKJMff2qKeYFVE5Meq78YxFPFkl2hBBCCCFEmct635QVPaC6GThawG5/+PJl6VFhCLURL6FLzjAhhBBCCFEuAtuYEtimoqMQTxKp2RFCCCGEEEJUSZLsCCGEEEIIIaokacYmhBBCCCFEJaaWoadLTGp2hBBCCCGEEFWSJDtCCCGEEOKRpanMyVNLDYSoXKQZmxBCCCGEKLGP92bw3++zUav9wQQyT6t4r0NFR1W1SDO2kpOaHSGEEEIIUSI7z+fwn/3ZqDUPeMmDiZszOfJ3XoXGJYSGJDtCCCGEEEJLfe5vcmq8iVrRlzyzgeTMiSi07Gvr0gE1qNVY5ubQ5u49fK7fpN+ie2TlyiMuRcWTZEcIIYQQQgCg/iUGdev3UCbdJ1Nhzt+m9cj4aAt5O0/plf32TBYpmWpQKECpINPUjF8ca/BrrRr0uPEPL85KJDtbVQF7UfWoURj8Erok2RFCCCGEEKgyc8h99gOU5F8gWqhzsFGlcNbRnXTfr8i5fR+Ae8m5zAxPJmBLNhYWJlioVDhnZlM3OwfUaq5Vq8b6tk34zawaT32YSKbU8IgKJAMUCCGEEEII4qbswBUVakABKFBTK/sebROyCX+qF+qXNrPbszsXcqz4u5YtudZK7LJy6JKUgoUqP6FJMlESbVudnORsnrmfhm1OLi98msiZ/zrqbOtmihpTJdS2lpoIUbYk2RFCCCGEEGQePqdNdB5ko0pjzIVIrtrW5PPUrtyoYw0m+Y2DWib8m+gA2OepaJSZzQVTE87WtMUv9jY28amY/q86eSoF1UzVWFooSczML1/NFA6/bkK7etLYSJQNObOEEEIIIZ5wu44mYBkTW2SPD/f7CSw+spWnUjIwVakwzVNhk5UDgEqR/wKwzcsDpYI8pZKf6tqTbmaKVbYKlArSVQptogOQngsdw/PIzpOmbkVRG/ESuqRmRwghhBDiCZabnk2n7hOwzc5ERdF3wt0TE2h9J4meV+Oom5JGnlLJb/Vqsr1Fg/z599LIS8kGi/xLzHhrS25ZW6BWATl5YKqAXFX+oAYmClAoyFND29XZ/B5oUeb7Kp48UrMjhBBCCPGkupHAxTqfcKBGD/JQFnphmGZSjd21X+EP87b4RZ+h0dV4LtlYkwc0upNE81uJKNVqrjhWJ7aubX4yk54F2bn5tQ2mCjBTglKR/3eOCjJzQZU/bPUfdxUo5mQzLTq3/PZdPBGkZkcIIYQQ4gn1j2cwv9q1pXHaX5hQ+DDRp+2f5Z65A5Dfp6dO4n3+aurGt40bgJUZKjMTrO9nYWMK9ywtIC0bclR0SUjmrq0lf9Syy09yALLU+bU6psp/OwipAYWCz0+oWXwmh9T3zMp0vx8/MpBDSUnNjhBCGOnmzZt4eHgQEhJS0aGUik2bNtGvXz86duyIh4cHN2/eNGi5qKgoPDw8OHXq3+dvnDp1Cg8PD6Kioko1xqCgIHx8fEp1nZXRxYsXGT16NC+//LJR51hVOydF+bi14gTHb7ugVOdhlpeNqpAL6r9q1OIvWze96U/fTkSlUKDKyoW0bNKyVSSlqyAjJz+RsTDlSJO6/FHHXttkjSwV5Knza3gUD20vTwVZKtKy1Si+yOKXW3mlv9PiiSM1O0II8QQ7deoUc+bM4aWXXmL48OGYmppSo0aNColl3bp12NjYPBFJTUFyc3P54IMPyM3NZdSoUdjY2NCkSZOKDssgFy9e5PDhw/j4+FCvXr2KDkcYIGXhfjKn7aQ1CmKs3fnTrgXm6hxapF7QlkkzqcYp+7b8WqsxZrkqLHN0k4/r9jb5f6gBtVr7Jxm5YG5Kk9Q0Xrp0FevsHM7VdeBwo3qoihqIQE1+IpSnBnMlz4apsDVXEdRGwScdldhayD16YTxJdoQQ4gl2/PhxAD799FPs7OweeX1t27blxx9/xNTU+H8v3333HU5OTgUmO8HBwajVVXucobi4OOLi4nj33XcZNGhQRYdjlEuXLrFy5Uqee+45SXYqsZy0HHLT88j+/jy27y7j/1MV3DL+5geHF1E+MJaXGjhc8yWSzeyomZo/fJpKAcr/L3Khpj3R7s6Fbss2I4uhf1zB5P/fd79yEzOVir2u/39+qNT57YserN15YAhrclVgYsL9HJh7Qs3cE7mYKKFFDQULeyhoVdsER6snp2mXWpqxlZgkO0IIUcnl5uaSl5eHhUXpj1SUkJAAUCqJDoBSqSyTOM3Mqn77/bt37wKl91mIJ1xaJkScgNw81Fbm/Dbqe/4xqYkKJd0SDuldOrdJ/pU4y38T1btmDpipsmmcepk7FrVINrP/P/buOzyK6mvg+Hd30wtJSEIICRCalABSQlEBUXpvoYgUI11QkaL8bATFV0Gkt4D0Ih1JqAaki5QEEelVQkIL6T1b3j/WLFk2gfRQzud59iE7e2fmTtllztx7z3CkvDuny5Qi3tKCCy6OoFRiptWiVpq2uFSJjTcEOulKJfGWFmhStZCq1kdSKgXolI/G7Wj5L0Mb+pYdxX/vdTpDTmWNFv5+CG+t1aBCjU2aGiuNlge2Vv8tQ0cVB0hGSXTqo9iprD3UcobDt3QkpUPVkjCqvoq3vRTs+RfuJ4GDhY6G7gouPgQzpQ57CzgbqePPCAVJah0j6yrpViXrlqW4VB3brupQKqBLZQV2FhKYPEsk2BFCPJOCgoKYNGkSCxYs4OLFi2zatIn79+/j7u7O+++/T8eOHQH9WIXOnTszZMgQhg0bZrSMgIAAFi9eTGBgoOFus7+/P9u3b2fv3r3MnDmTw4cPk56eToMGDfjf//6Hi4sLW7ZsYe3atURERODu7s6HH35I8+bNs6zn7t27Wb58Obdu3cLJyYnOnTszaNAgk5aNyMhIFi9ezJEjR3j48CGOjo40bdqUESNGULJkSZM6r1+/nm3btrF3714iIyOZP38+Pj4+Od5/Bw4cYOXKlVy+fBmFQkGVKlUYMGCAYTsy9luGjGXXq1ePRYsW5Xg9jzt16hTDhw9n4sSJhhYarVbLunXrCAwMJCIiAoVCgbOzM3Xq1OHzzz/HzMzMsP47d+4YbWfGsRs6dCh37twxGguUMW3p0qXMmDGDY8eOkZaWRt26dRk/fjzly5c3qltERAQzZszgxIkTANSvX5+xY8cyfPhw3N3djbb7yJEjrFy5kmvXrpGSkoKjoyM1atRg1KhRJst9moiICBYsWMDx48eJj4+nVKlStG7dmkGDBmFlZWXYltDQUAAmTZrEpEmTjLY/Nw4fPszixYu5evUq9vb2tG/fnpEjR5qck6Ghofz888+cO3cOtVqNl5cXPXv2pGvXrkblrl27xqJFi/j777+JiYmhRIkSeHl50b9/f5o0aWI4ZwGGDx9umK9jx474+/vnqu6igIRFwhuf6/8F/i5Rk3MlagKg0Gkx05mOhbHXJFAt8fKj9+p4Wj/YZ3h/yNWHRQ1bo8vUEuOSmMykA8fZ4l2ZfV4ej1pplAoctPp13La34x83Fx5YmHPRzvrRg2A0OkAL5irjFh3QB0Iq9IGOQvHf2HyFIXMb5io0QLyZingtVIiO44aDHSiVXInVgUIHmQKwy9FwOVoHCv20kEgdfjs0KCwUj1pMMoKqzBQY8gLsu6Xls4Y6fmimMipyJVpH07Ua7iXp33vYwdG+Kso7SMDzrJBgRwjxTJs3bx6pqal0794dCwsLNm3ahL+/P56entSpUyfPy/3oo48oVaoUw4cPJywsjPXr1zN+/Hjeeusttm7dSpcuXbCwsGD9+vV89tlnbNmyBQ8P4y4bhw4dIjw8nJ49e+Ls7MyhQ4dYvHgxd+/eZeLEiYZyd+/exc/Pj/T0dLp06YKnpydhYWFs3ryZU6dOsWrVKuzs7IyW/dVXX2Fpacm7776LQqHAxcUlx9u2ceNGpkyZgpeXF4MHDwZg+/btjBs3js8//5zu3bvj5OTEN998w9atWzl9+jTffPMNgFHgVVCWLl3KwoULadq0KT169ECpVBIREcGhQ4dIS0vDzMyMb775hunTp+Po6Mj7779vmPdp44eSk5MZMmQItWrVYuTIkYSHh7Nu3TrGjh3L+vXrUan0FyYxMTEMGTKEhw8f0qNHDypUqMDp06cZPnw4ycnJRssMCQlhzJgxVKpUCT8/P+zs7IiMjOTEiROEhYXlKti5c+cOAwcOJCEhAV9fX8qVK0dISAjLli3jzJkzzJ8/HzMzM95//31effVVli1bRrdu3ahbt26Otv9xR48eZdOmTfTo0YPOnTtz8OBBVq1ahb29vdF+PXToEOPHj8fZ2Zl+/fphY2PDb7/9xuTJkwkPD2fkyJGG/TZixAgAevToQenSpYmJieHChQv8888/NGnShLfffpvIyEi2bt2Kn58fFSpUAMDT0zNXdRcFaOpWQ6ADcNW2suFvlU5j1F0tO5a6dKP3jR/+hUNqEjFWtoZpkbbWxFua0+ufKzS5Gc781+uQamFOnEJFqEtJGtx9yFk3F7RKJQ8tsrjk1OgMWdgMDN1Vs0hgoPwvZXVGvKFQgOK/cMVMqU9+YKEANaYpuDIvS6kA88e6hmW0ImU3DzAzRMcPzYyLTD6mNQQ6AOEJ8MNxLQtaGwdFovhIsCOEeKalpaWxcuVKQzemFi1a0KVLFzZs2JCvYMfb25vPPvvMaNratWu5f/8+69evNwQfDRo04J133mHr1q2MGjXKqPyVK1dYuXIl1apVA6B3796MHz+eoKAgunfvTq1atQCYOnUqarWaNWvW4ObmZpi/ZcuW+Pn5sWbNGpNWKTs7O8OFcG7ExcUxe/ZsPD09Wb58uWE7fH19effdd5k5cyatWrUy3PE/ceIEp0+fpn379rlaT27s37+fChUqMGPGDKPpH374oeHv9u3bs2DBAkqWLJmrusTExNC/f38GDhxomObk5MTs2bM5ceIEr732GgArVqzg3r17fPvtt7Rr1w7Q75NZs2axatUqo2UePHgQrVbLvHnzjIK/jMAxN+bNm0d0dDQzZ86kSZMmAPTs2dOw3u3bt9O1a1caN26MmZkZy5Yto3bt2nk+HtevX2fDhg2G1qAePXrQu3dv1q9fbwh2NBoNU6dOxdramhUrVuDq6gpAr169GDZsGCtWrKBTp06UK1eOM2fOEBUVxffff0+rVq2yXGeVKlWoXbs2W7dupVGjRrlqgSwKUVFR2NraGrpXJiQkoNPpsLfXj1hJS0sjPj4eZ2dnwzx37tzB3d092/d3797Fzc0NxX8Xw8/cOi7fye9uM2GhVVMu7qFRsGOblo5dmj4oUlqY82Z8MpDMQ3MzDrs6sLp6Rcon6z83e7z1Bp6cTTm7XARZtL4oMrcA5WdoX+b5s6hbaqYGsYzjcTnKNKi5HJ23Y/4kMmYn7ySthRDimdazZ0+j8RqlSpWiXLlyhIWF5Wu577zzjtH7jDvpHTp0MGplqVKlCra2tty6dctkGY0aNTIEOgAKhYIBAwYA+gt80F+QHDlyhGbNmmFpaUlMTIzhVaZMGTw9PQ1JAjLr27dvngb5Hz9+nOTkZPr06WO0HXZ2dvTp04ekpKQs11eY7OzsuH//Pn/99VeBL1upVNKnTx+jaQ0aNAAwOmaHDx/GxcWFNm3aGJXt379/lvUF+P3331Gr8/6AQ61Wy6FDh6hataoh0Mnw3nvvoVQqOXDgQJ6Xn5XmzZsbdXtTKBT4+Pjw8OFDkpL0t58vXLjA3bt36dy5syHQAf24qAEDBqDVajl48CDwaF/88ccfJCQkFGhdi0rJkiWNxpHZ2dkZAgQACwsLowtSwOQC9PH3pUuXNgQhz+Q6WtU2WlaVxKuGv9VKc552VqdgbhIzaBQKou0fnS/odHimJBPqWZq/y3twroqX4SPndDUVE1O4V8Ia7X+b4J6WbhrwmGVzGWquBJXStKVFqzNt7dGBc1Kq0dgeVDkIDLIKinSP/f3Y+qs4Pvo743i08jJdVysvRZ6OuSgc0rIjhHimPd51DPQDuO/evVugy824aMhqfESJEiWIjY01me7l5WUyrWLFioA+sxbAzZs30Wq1bNu2jW3btuWoLgDlypV78gZkI2O9GfV4Ut2KysiRIxk3bhyDBw/G1dWV+vXr06RJE1q0aJHvxAOurq4mCREyBvhnPmYRERF4e3ujfGwgdcmSJY0uGEHfwnHw4EF++OEH5syZw6uvvsrrr79OmzZtctWtLDo6mqSkpCyPhYODAy4uLgV+LLL7voB+f9jY2Bieo5RVvSpVqgQ8Okfq169Phw4dCAoKYteuXdSoUYNGjRrRqlWrLOcXz4iPO8I/YbD6IGi0VI87h6UmlTBrTxLM7EhV2WCmScp2divSTabdcihNw6RUKqRp+MfJlih7Ky4523CpfCnMEtPofCfK6A56tIMValsLbpS0pcLDRKy0OmrFJ3HF1ooEs/9aQ7IKSswVj6b/l3QA0Aceap2+m1oGnY6KD2II9XTVd4lTPZr+yH/NNZm7y+l0qLQ63O0V3E58NI+dhf5ZqAqFPtZKz/SMVU872NvLNDj7XyMll6K0bLqsb3t5p7qCT+pLK8yzRIIdIcQz7fGL0wwZaYgVj9/ly0Sjyf6BdBljOXI6Pb9pj9u1a2dIqvC4rLKXZQxcfxHUrl2bX3/9lWPHjnHq1ClCQkLYvXs3S5Ys4eeff85X9rHszg/I+zFzdHRk5cqVnD59muPHj3P69GmmT59OQEAAs2bNonbt2k9fSDEpjP0xadIk+vfvzx9//MHp06dZvXo1S5cuZcyYMc9diuyXhrkZLP8QZr4PGi3mOh3uS44St/IGPIjjrmUpKiXdzNUiI+1KogDMVAqiHG0efaBQoLa14L65itL/PYdHrVDwwFb/u3bPwZooGwts09QkmpuRrlI8aqHJnG0NwEyhH0/zOCX6bG3mCkjXARoUSnCwBAdvB5pZ6BfRooIS36pK1FoFNio4GqHl2B3oW01BuRJKzkXqSNcq8HEDe0t91rS7iTosVTqS0hWUsYOoFH2sZWWm/9vOXN99zdUm6/9rrM0VrO+sIipZh0IBTlaFE+i82In3C5cEO0KI51qJEiUA/ViVxxV2C8bNmzdNpl2/fh14dIfd09MThUKBWq2mUaNGhVqfjPVl1KNhw4ZGn924ccOobkXJxsaGFi1a0KJFC+BREoVt27YZuv49KXDNL3d3d8LCwtBqtUYBQVRUFPHx8SblVSoVPj4+hvEnV65coV+/fixZsoRZs2blaJ1OTk7Y2toazonM4uLiiIyM5JVXXsnjFuVdxvHPql6Pn78ZKleuTOXKlRkwYADx8fEMHDiQuXPn0qtXLxQKRaEeO5EPjo/G15T4rB0NMoYparUk2vthmxTPbUt3XNMiTRISPK5kdDwKnY74rBINKBTEWZrjkq4h2kxFtLVxi226uYoYVaZAXKXINDZG8Wh8TFankRLQ6fCwUzCgloL6pZV0qazALKug6DEVnJT08370vmwJ0zKlbfUp15z+u7/kbP3oszJ2puWzU/IleubP80bG7Aghnmu2trY4Oztz8uRJozvXt2/fLvDxEI87fvw4Fy8+etq4Tqdj5cqVAIYUz46Ojrzxxhv8/vvvnD171mQZOp2O6OjoAqtTo0aNsLa2Zv369SQmJhqmJyYmsn79emxsbGjcuHGBrS8nYmJiTKZljHXKHKRaW1tnGbQWhGbNmhEZGcmePXuMpj+enACyrq+XlxdWVla5qp9SqaRp06ZcunSJP/74w+iz5cuXo9Vqs01pXpiqVatG6dKlCQoKMjxnCfTPc1q1ahUKhYI333wT0Hd902q1RvPb29vj4eFBSkoKqampgP7YQdY3HcQzSKnE9kEAySpLnNOiOOnowy0r4+x5alRcty5HjJk9aQozyife5psdc6gfflOfECAzjZa/7Wz41dmRgw72/G1hBfFpRp+j1ur7ham1/6WUxii1s74cj1p6/ksz7eetIPZjc26PNOf/mpnR4xVljgIdITJIy44Q4rnXq1cvFixYwEcffcSbb75JZGQkmzdvplKlSpw/f77Q1lulShWGDx9Oz549cXFx4eDBg5w4cYL27dsbdXWaMGECgwcPZsiQIXTo0IGqVaui1WoJDw/n0KFDtG/f3iQbW17Z29vz0UcfMWXKFN577z1D17nt27cTFhbG559/bpLmurD5+vpSq1YtvL29cXV1NaQpNjc3p3Xr1oZytWrVYtu2bSxYsIAKFSqgUCho1qyZ4UI6PwYOHMju3buZNGkS586dw8vLi9OnT/P333/j6Oho1DIxefJk7t+/T6NGjXB3dyc1NZXg4GASExPp0KFDrtY7cuRIjh8/zrhx4/D19aVs2bKEhoYSHBxMvXr1su3aWJhUKhWffvop48ePZ+DAgXTr1g0bGxuCg4M5e/Ysfn5+hjFjO3bsYO3atbz11lt4enpiZmZGaGgox44do1WrVobulhnjoZYuXUpcXBzW1tZ4eHhQs2bNIt8+kUM2VlimrOGq42c0jj6GDhVaHt0FN0NDueTbmPEo2K0WeYMpO+ZwvtT/8UcZV9QqpT6QSUj777k5mSSr9X3BzBT6sTYZdOjLWmS6367NGFPz3+foKGMHt0eYS6uhyDcJdoQQz72M55js3LmTkJAQKlSowFdffcWFCxcKNdhp1qwZ5cuXZ/ny5fz777+ULFmSwYMHm6QoLl26NKtXr2bFihUcPHiQXbt2YWFhgZubG02bNs02pW9eZQRfq1atMjzs8ZVXXmHatGnF0pLQr18/jh49yvr160lISKBkyZLUrFkTPz8/o25cH3zwAbGxsWzcuJH4+Hh0Oh2BgYEFEuw4Ojry888/M3PmTAIDA1EoFNSvX5+FCxcyYMAAo3FT7du3JygoiB07dhAdHY2trS0VK1ZkypQphm54OeXu7s7y5ctZuHAhu3btIj4+Hjc3N/z8/LJ8+GxRadasGfPnz2fJkiWsWrWK9PR0vLy8+PLLL40eKlq/fn0uXbrE4cOHiYyMRKVSUaZMGUaPHk2vXr0M5UqXLs3XX3/NihUr+OGHH1Cr1XTs2FGCnWec0kxJpQ9qc2dmAp7p90w+zxzoZCiRmkjlB1ew1MAFKytuW1hkv4J0LWQ1DjIj01lGIPNYyui3yinY21slgU4mkno67xS6/I66FUIIIZ5TMTExtGzZku7du/P5558Xd3WEKBZam94ok588ZieztwZ9xdVSFSj/IJ6jDlkMhMngZKUfn6PO4lLTQmmcRlqjpXZpBWfey1+GxhfVBcWMpxf6T3XdJ4VYk+ePjNkRQgjxUkhJSTGZtmLFCoAiSR4hxLNKGbEUjVnWmSgfd9bNkwMVa/BQZYZ7ajoeaWlgZwE2jwUp1mZgodJnV3u8UUKJcaCj07GkrQQ6onBINzYhhHgOxMbGkp7+5DuvVlZW+R6Pk5KSkqOHR7q4uORrPcXh448/xt3dnWrVqqHVajl58iSHDx+mdu3auereV5T7KHMCgezY2dm9UKnKRTFwtEWVsIY4+8GUSDc9txPMLIi2sWN7tXqMb9cPgOR0HZtdS4KthT6gUSrA3kI/HkengxL/dQ3NHNQYkhIYBzoO5lrer2Oagl88It3Y8k6CHSGEeA6MHz+e0NDQJ5bp2LEj/v7++VpPcHAwkyZNemq5U6dO5Ws9xaFp06bs2LGD/fv3k5qaipubG/369WPIkCHZPl8pK0W5j9q2bfvUMhMnTqRTp075Xpd4yVlaYO1kBvdNP7JTp/GXkysnPCvhkphCYjKg0aFTKMAsUychhUKfkCBVDVHJ+tYetRbS1EztYs3Juwq6VlbQtiK8u03D3w90tK2kZH6bJ4z7ESKfZMyOEEI8By5cuPDUtL6urq75fqp9ZGQk165de2q5l7nbV1Huo+PHjz+1TKVKlZ7LljbxDPpsJbqpv2bbhnC/agV0+7+ly3dRhCksSVUqiXayQft4KujkdH2WNqUSlAr+GG7Fa+Xk/np+nFfMzHHZGrrRhVaP55EEO0IIIYQQAhKSeeD2ES5JD00CntSaFbA8+5PhfWSilldmphCtU2KUtC1dow90dIBCQYsqKvb65T+j4svuXC6CHW8JdoxIggIhhBBCCAF21pSMmE2MuYPR5DRzSyxPTzWa5mKr5NKo/7qfWSrBXKnPsGZvoR+vk65lUH0JdETxk2BHCCGEEEIAoHKwxiE2gIhu7Yn29CK+d0ss7iyCLLK1uTqY8YomTT8uR/VfkgKdDhLSqOSs4OceEuiI4ifd2IQQQgghRJ5cuplG/SWpJJqb6buvpWpoZZvGb1/JOLKCJN3Y8k5adoQQQgghRJ5U9bLg5mhrxtrH0y72Fl/YHWLHBIenzyhyRYcixy9hTIIdIYQQQgiRZy7OZnw/yomuNQ5TrlREcVdHCCMS7AghhBBCCCFeSJL0XAghhBBCiGeYdE/LO2nZEUIIIYQQQryQJNgRQgghhBBCvJAk2BFCCCGEEEK8kGTMjhBCCCGEKDR9t6v55aL+b5UCTvWFOu5yCZob8lDMvJOWHSGEEEIIUShG/vYo0AHQ6KDumuKrj3j5SLAjhBBCCCEKxfy/s57+wzF10VZEvLQk2BFCCCGEEAUuKlmb7WfzTxdhRV4AOhQ5fgljEuwIIYQQQogCdy8x+2AnLKkIKyJeahLsCCGEEEKIArfzWnHXQAjJxiaEEEIIIQrBhMPFXYMXh3RPyztp2RFCCCGEEAVOUhCIZ4EEO0IIIYQQosjtuS7hkCh8EuwIIYQQQogit/bi08sIkV8S7AghhBBCiCdbuR+c+0O5IXDswlOLa3W6p5ZZf74gKvZy0OXiJYxJsCOEKBCnTp3Cx8eHoKAgw7SIiAh8fHwICAgo0HX5+/vj4+NToMsUL6bCOgefJiAgAB8fHyIiIop0vUIUCitfGDgHohIh7CG8/gUouj96vTPNZBal4ukD6lMLo65CPEaCHSHEMykoKIi1a9cWdzVeSPHx8QQEBHDq1KnirgqdOnWiU6dO2X6eEdgWZNDwLG0/gEajYceOHQwaNIg2bdrw+uuv0759e4YNG8bChQtJS0szlD116hQBAQHEx8fna52XLl0iICBAgjGRvf1/Q+n39MFMavbPywFg3R+YWfTGKvZR+HLm/lPmEaKISLAjhCg07u7uHD16lEGDBuV63qCgIH755ZcsP/vyyy85evRofqv30oqPj2fx4sWEhIQUd1UKXVbn4LO2/V9++SUTJ04E4N133+XTTz+lS5cu2NjYsHLlSpKSHj19MSQkhMWLF+c72Ll8+TKLFy+WYEcYi08Ex3f1Ac7b/nAvLsezKoB3P91veP/m2pwFO79JkoIc0aHI8UsYk+fsCCEKjUKhwNLSssCXa2ZmhpmZ/HwVpcTERGxtbYu7GrlWWOdgQblw4QLBwcG89dZb/Pjjjyafx8TEYGdnVww1E889tQbOh0FpR9j7N6w9BEkpYGcN92LhrxuQpinQVSoBv2G7SavdnNg0L1A+/Z56my2QkaTatwr0eAVS1KBFQbfKCpys5b68yB+5WhBCFJqIiAg6d+7MkCFDGDZsmGH69u3b2bBhA7du3UKtVuPs7EytWrUYO3YsTk5OdOrUiTt37gAYjc1ZuHAhPj4++Pv7s337dqNuSBnTDhw4wJw5c/j9999JTEykWrVqjBkzhpo1axrVLSYmhlmzZnHo0CHS0tLw9vZm9OjRTJ8+nTt37hiNPcqpsLAwli5dyvHjx4mKisLR0ZEaNWowZMgQqlevbih34MABVq5cyeXLl1EoFFSpUoUBAwbQvHlzo+X5+PjQsWNH/P39jaYHBQUxadIkw/4A/RiRxYsXs2nTJnbs2MGOHTuIjo7Gy8uLkSNH0qRJE0DfDWr48OEALF68mMWLFwP6FpCgoCCjY1ahQgVWrlzJjRs3aNWqFXZ2dqxbt44tW7ZQrlw5ozpFRkbSoUMH2rdvb2ilKCy5OdaPn4NP2/4Mv/32G+vXr+fKlStoNBoqV65M//79admypVFdtFotK1asYOvWrURGRuLp6Ymfn1+Ot+XWrVsA2Y5Bc3R0NNlugM6dOxumZ2zbgwcPWL16NSdPnuTOnTukpqbi4eFBhw4d6N+/PyqVCnh0rgCGfQEYnWtpaWmsXr2a3bt3c/v2bSwsLKhbty7Dhg2jWrVqRtu/bt06AgMDiYiIQKFQ4OzsTJ06dfj888/lpkRxOX4ZfH+E2w+LdLUKwBzQvjYBpqzL9fybruhfejoG7dHxRSMdk5uqCrCW4mUjv0JCiCK1Y8cO/P39qVu3LsOHD8fS0pJ79+5x9OhRoqKicHJyYuzYscydO5eYmBjGjBljmLdChQpPXf6oUaNwcnJi8ODBxMbGsmbNGj7++GMCAwMNLRNpaWl88MEHXL58mU6dOuHt7c2VK1cYOXIkJUqUyNN2nT9/nhEjRqBWq+nSpQuVKlUiLi6O0NBQzpw5Ywh2Nm7cyJQpU/Dy8mLw4MGAPvgbN24cn3/+Od27d8/T+jP4+/tjZmZGv379SE9P55dffmHcuHFs2bKFMmXKUKFCBcaMGcP06dN56623eOuttwCwsbExWs7BgwdZv349PXr0oEePHtja2lKxYkXDhe2oUaOMym/fvh2NRkPXrl3zVf/cyMmxflxOtn/+/PksXbqU119/neHDh6NUKtm/fz8TJkzg008/pVevXoayM2bM4JdffqFevXr07duXqKgopkyZgoeHR462wdPTE4B9+/bRrl27J55/3bt3JzExkf379zNmzBhDIFSlShUArly5wv79+2nevDmenp6o1WqOHTvG3LlzCQ8P54svvgDg7bffJjIykq1bt+Ln52f4XmXURa1W8+GHH/L333/Tvn17evXqRUJCAlu3bmXQoEEsXryYGjVqALB06VIWLlxI06ZN6dGjB0qlkoiICMNNBAl2ioFOp08mUMSBTmYbX309R606OfHdcR0DvHW8UvJl7571sm9/3smvkBCiSB04cABbW1sWLFhgdCGU+Q5z8+bNWbt2LampqbRv3z5Xy69WrRoTJkwwvK9YsSITJkxg9+7d9OjRA4Bt27Zx+fJlRowYYTSWo3LlykyZMgV3d/dcrVOn0+Hv7096ejorVqwwXHwC+Pn5odXq+67HxcUxe/ZsPD09Wb58uaF7kq+vL++++y4zZ86kVatW2Nvb52r9mTk6OjJjxgwU/2VC8vHxYeDAgWzZsoVRo0bh7OxM8+bNmT59OpUrV852/167do1169aZBJi1a9dm+/btjBgxwtBSABAYGEiFChV49dVX81z33MrJsX7c07b/4sWLLF26FD8/P0aOHGmY3qdPH8aOHcu8efPo0KEDtra23Lx5k3Xr1tGgQQPmzp1r2B9vv/02/fv3z9E2eHt707RpUw4fPkz79u2pXbs2NWvWpGbNmjRs2BArKytD2dq1a1O5cmVDQFOmTBmjZdWrV49t27YZjj1A3759+eqrr9i2bRvDhg3DxcWFKlWqULt2bbZu3UqjRo1MWpXWr19PSEgIc+bM4bXXXjNM9/X1pXfv3sycOZNFixYBsH//fipUqMCMGTOMlvHhhx/maPtFIXgQC5fCi7UKN51LFejyjoRLsCPyTjpCCiGKlJ2dHSkpKRw5cgRdDp7DkFt9+/Y1ep9xIRcWFmaYdvjwYVQqFe+8845R2a5du+ZpfMSlS5e4fv06nTp1Mgp0Mij/u8N5/PhxkpOT6dOnj9F67Ozs6NOnD0lJSRw/fjzX68+sT58+Rhe73t7e2NjYGLpL5VSTJk2ybEnr1q0bkZGRRgkiQkNDuXXrFl26dMl7xfMgJ8c6t3bt2oVCoaBDhw7ExMQYvZo1a0ZiYiJnz54F9K1fOp2Od9991yjwq1atGo0aNcrxOn/88UfGjx9PpUqVCAkJYenSpYwZM4Y2bdqwevXqHC/HysrKcOzT09OJjY0lJiaG1157Da1Wy/nzOXuoya5du/Dy8qJ69epG269Wq2nUqBFnzpwhJSUF0J+79+/f56+//spxPYtaVFQUqamPsoQlJCQYJXhIS0vj4UPjVpCMbrTZvb97967R79cztQ5neyhTkuK0rH7zAl1eGcWT990zfTxysQ5ROKRlRwhRpPz8/AgNDWXcuHE4ODhQr1493njjDVq1alUgA+Af7z6U0dUnNjbWMC08PBwXFxeTrlvm5uaUKVMm15muMi6uq1at+sRy4eH6u60VK1Y0+SxjWkaZvMroipSZg4OD0fbnxONjcjK0atWKn376iW3bttGsWTNA31Jmbm5Ohw4dcl/hHFJk8cyOnBzr3Lpx4wY6nQ5fX99sy2RcwGQcKy8vL5MyFSpU4M8//8zROs3MzOjduze9e/cmJSWFixcvcvToUdavX8/MmTNxcXGhbdu2T12OWq1m+fLl7Ny5k7CwMJObCXFxOcusdePGDVJTU03GJ2UWExND6dKlGTlyJOPGjWPw4MG4urpSv359mjRpQosWLTA3N8/R+gpbyZLGF/6P39CwsLDA2dnZaNrjrbuPvy9duvSzvY55Q6DPdEhNpzh0OXeKGaU6P71gDnSrDG1ruhpNe+6ORw7XIQqHBDtCiCJVrlw5Nm7cyIkTJzh58iShoaFMnjzZMGg6q4v13Mh8hz2zwmhFKi4aTfYZlJTZ9JPP7fZn7j71+PR27dqxZcsWHj58iKWlJfv27aNZs2Y4OTnlah0AlpaWTwxOkpOTDeUeV1jHWqFQMHv27Gz3ZaVKlfK1/CexsrKiTp061KlTh/r16zNq1CgCAwNzFOzMmDGD9evX06pVK95//32cnJwwMzPj4sWLzJkzJ1f7pXLlynzyySfZfp5xrGvXrs2vv/7KsWPHOHXqFCEhIezevZslS5bw888/4+DgkON1igLUtRGELYKD56CsC+wIgYA9kJQGdlaQroaHCYWyag0woa0dcxJSUZvnLhOipx009YAkNVibwcf1lTQuI52QAEkpnQ8S7AghipyFhQVNmjQxZAg7cuQIo0ePZs2aNXz22WdA1nfyC0qZMmU4ceIESUlJRq07arWaiIiIXI+ZyWgFuXz58hPLZQRy169fp2HDhkaf3bhxAzBurciuRSa/rT/53bfdu3dn48aNbN++3dAtMa9d2MqUKcPNmzeJiYkxyjyW4caNG9ja2mb5WV49afvLli3LH3/8QenSpZ+aECPjWN28edMkSM84nvlRq1YtAO7fv2+Y9qS679y5k3r16vH9998bTc+qW9/T9kF0dDQNGjTINuDLzMbGhhYtWtCiRQvgURKObdu2MWDAgKfOLwqJqwP4vq7/u9Er8M07Ty4PsDMEOnyX51XqgKXzW/Pe4LfQzcrZ78zkN+CL1+RyVBQeCZeFEEUqJibGZFpGKtvMF/Y2NjbExcUVSotM06ZN0Wg0Jg8t3bp1KwkJub/b+corr1CxYkUCAwO5du2ayecZ29CoUSOsra1Zv349iYmJhs8TExNZv349NjY2NG7c2DC9XLlynD171jA+AvRdkQIDA3Ndx8ysra0Ny8qLKlWq4O3tTWBgINu2baN06dJG9c6NjHTba9asMfns2LFjXL9+naZNm+boojunnrT9GQkL5s2bl2ULWuY++G+++SYKhYI1a9YYlb148SInTpzIUV1u3bqV7RijAwcOAMZZCDOC86zqrlQqTb4vycnJrF271qTsk/ZBhw4dePjwYZbHBIz3wZO+z3k9v0Qxal8fdFv0r41jczWrDtj6aUN0Kv139VCfnMykY0IjSSstCpeE0kKIIjVy5Ejs7e2pW7cubm5uxMfHExQUhEKhMMqMVbNmTQ4fPszUqVOpXbs2SqWSBg0amPSTzouuXbuyZcsWFixYwO3btw2pp/fu3UvZsmWf2E0sKwqFgokTJ/LBBx8wcOBAQ+rp+Ph4QkNDee211+jTpw/29vZ89NFHTJkyhffee4+OHTsC+rTNYWFhfP7550b9vnv16sVXX33F8OHDad++PfHx8fz666+4u7ubDHzNDUdHR8qWLctvv/2Gp6cnJUuWxNra2jAGJye6devG5MmTAf1zXvIajHTu3Jndu3ezbNkyLl26RIMGDbC0tOTSpUts374dZ2dnkzTX+fWk7ff29mbo0KEsWrSIvn370rJlS1xdXYmMjOTChQscPXrUMBbHy8uLnj17smHDBkaMGMHbb79NVFQUGzZsoEqVKly6dOmpdbl8+TKff/459erVo379+pQqVYrk5GTOnTtHcHAwtra2DBkyxFA+4xlCs2fPpl27dlhYWFCpUiUqV65MixYt2LJlC//73/9o2LAhDx8+JCgoKMuuZN7e3iiVSpYuXUpcXBzW1tZ4eHhQs2ZN3nnnHY4fP86sWbM4efIkDRo0wNbWlrt373Ly5EksLCwICAgA9BnaatWqhbe3t2E/bd26FXNzc1q3bl0Qh0sUF983QPcGJKaAXd8nl7U0Qx27isgVKwyTGpZRoe/U9gQKBSqldM/KiRenI3bRk2BHCFGkfH19CQ4OZsuWLcTGxuLg4EDVqlX59NNPjVLgvvvuu4SHh7Nv3z42b96MVqtl4cKFBRLsWFhYsGDBAmbNmsXBgwcJDg6mZs2azJ8/n8mTJxu1pOSUt7c3K1asYMmSJezdu5fNmzfj6OiIt7c3derUMZTr2bMnLi4urFq1yvBgx1deeYVp06aZPFS0Xbt2PHjwgA0bNjBjxgw8PDwYPHgwSqWSf/75Jz+7gG+//Zbp06czb948UlJScHd3z1Ww06ZNG2bMmEFycrLRAy5zy8zMjLlz57J27Vp+++03AgIC0Gg0lCpViu7duzNo0CBcXFzyvPzsPGn7hw4dSo0aNVi3bh2//PILycnJlCxZkkqVKjFu3Dij5YwbNw5nZ2e2bt3KrFmzKFu2LJ999hm3bt3KUbBTr149PvroI06cOEFgYCBRUVHodDrc3Nzo1KkTAwYMoGzZsobyderU4cMPP2TLli1MnjwZjUbDkCFDqFy5MmPGjMHW1pbg4GAOHjyIm5sb3bp1o0aNGnzwwQdG6y1dujRff/01K1as4IcffkCtVtOxY0dq1qyJmZkZM2fOZNOmTezcudMQ2Li6uuLt7W0I0gH69etnSKaQkJBAyZIlqVmzJn5+frzyyit5Pj7iGWJrpW/pGTQH1hwBW0vY8QU0fiwhS7pxMgSzHAQxVhLniCKg0L1Io3aFECIfNBoNLVu2pGbNmsyZM6e4q/NMS0tLo23bttSoUYO5c+cWd3WEEMUsPT2dZcuWAfqsm+bm5iimqZ84j5c93Bgm991z4pRiQY7L+uhGFGJNnj8yZkcI8VLKqvVm8+bNxMfH5+oZKS+rXbt2ERcXR7du3Yq7KkKI51Tdgn32qBBZknBaCPFS+u6770hNTaV27dpYWFhw9uxZdu/eTdmyZQ0X8AkJCU/t0mZubv5Spdc9dOgQd+7cYdGiRVSsWNGk6x3oE02kpz/5+R5WVlZ5eoCrEOLFsbSdJCfIKUk9nXcS7AghXkqNGjVi48aNLFmyhKSkJJydnenatSvDhw83PNx02rRpbN++/YnLqVevHosWLSqKKj8TfvzxRx48eED16tX58ssvs3zWzfjx4wkNDX3icjp27Ii/v38h1VII8SxQ8OSB9Y4yaEcUAQl2hBAvpY4dOxoNtM7KgAEDaNeu3RPLlChRoiCr9cwLCgp6aplPPvnkqWmHXV1dn/i5EOL5N6IWzD9b3LUQLzsJdoQQIhsVK1akYsWKxV2N50716tWLuwpCiGfA569JsFNQJJtY3kmCAiGEEEIIUeBcbbK/zHS1LMKKiJeaBDtCCCGEEKLAWZhlf5np36QIKyJeahLsCCGEEEKIQlEnm2cCf1BXRlLkhhZFjl/CmAQ7QgghhBCiUJx+z4xXMwU8CuDCe8VVG/EykrBaCCGEEEIUmr/e019u6nQ6FAppeRBFS1p2hBBCCCFEoZNARxQHadkRQgghhBDiGaaTsTh5Ji07QgghhBBCiBeSBDtCCCGEEEKIF5J0YxNCCCGEEOIZpivuCjzHpGVHCCGEEELkzv4zoOiufym7Q/BfxV0jIbIkwY4QQgghhMi5kGvw9qRH73Vg1uF7LGNTi69OQmRDgh0hhBBCCJFzPuNNJimAXl8dKPKqCPE0MmZHCCGEEELkjFab7UeWqTKypLBI6um8k5YdIYQQQgiRM32mZfuRXI6LZ5EEO0IIIYQQImc2/vnkz9WaoqmHEDkkwY4QQgghhMg3BdB49T/FXY0Xkg5Fjl/CmAQ7QgghhBCiQDhEJhV3FYQwIsGOEEIIIYR4ui1P6cIGhHm7FkFFhMg5ycYmhBBCCCGersfUpxZRW6qKoCIvH8lzl3fSsiOEEEIIIQpEqqVcWopni5yRokAFBQXh4+PDqVOnirsq4jkQEBCAj48PERERxV0VA39/f3x8fAp1HZ06dWLo0KGFuo6nKervqo+PD/7+/kWyrudRVuddYX0/5FiIPHnC83Uye3vlhUKuiBC5I8GOEM+o+Ph4AgICJHAUQuSK/HaIQqHyzVExGR8hnjVyTgrxjIqPj2fx4sUAhd7SUFwGDRrEe++9h4WFRXFXRYhnTl6/H0/77Th69CgqlYyrELkwbH6Rr/JqlJrwBAVvlpNzFZCU0vkgwY4QIltqtRqNRoOlpWWhLN/MzAwzM/kZEiIrhfX9KKzvs3jBaLWQlAI9psBvZ3M3b5oazM2zXqxOR9BVDb+ch7034WH6kxakA9QmU+0VUMIazJTQ1gs+aaB/lqmFGagUkKyGKk4KktRgZ65AqVSgABQKBWqtFjOldGx6mchVhigUOp2OVatWsWnTJu7fv4+7uzvvv/8+HTt2NJT57bff2LVrF5cvXyYqKgobGxvq1KnD8OHDqVKlitHyzpw5w5IlS7h06RLx8fE4ODhQpUoVhgwZQq1atXJVt4iICGbMmMGJEycAqF+/PmPHjmX48OG4u7uzaNEiQ7nOnTszZMgQhg0bZrSMgIAAFi9eTGBgIGXKlDFMj4yMZPHixRw5coSHDx/i6OhI06ZNGTFiBCVLljSUi42N5eeff+bQoUM8ePAAa2tr3N3dad26NQMGDODUqVMMHz4cgMWLFxvu0rq7uxMUFJTjbfXx8aFjx460a9eOBQsWcOXKFezs7GjVqhUffPABNjY2Jtu0fv16tm3bxt69e4mMjGT+/Pn4+PiQlpbG6tWr2b17N7dv38bCwoK6desybNgwqlWrBsCNGzfo2bMnffv2ZcyYMSb1+fzzz/n999/ZtWsXTk5O2e7HiIgIFixYwPHjx4mPj6dUqVK0bt2aQYMGYWVlZSjn7+/P9u3bs+yuk7HtmccmbN++nQ0bNnDr1i3UajXOzs7UqlWLsWPH4uTklOU+nDZtGuvWrWPLli2UK1fO6LPIyEg6dOhA+/btmThxYs4OSiYXL15k5syZnDt3DnNzc5o2bcrHH39sdK4AxMTEEBAQwKFDh3j48CHOzs40a9aMYcOG4ejomOeyWVmyZAkLFiygV69ejBs3DqVSmePzGuDatWvMnDmT06dPY2Fhweuvv57luZBTR44cYeXKlVy7do2UlBQcHR2pUaMGo0aNonz58gDcvHmTdevWERoayt27d9FoNFSoUAFfX1+6du1qtLyMc27Dhg1s3bqV3377jYSEBGrXrs1nn32Gl5cXv//+O0uWLOHmzZuULFkSPz8/unfvblK348ePs3LlSs6dO0daWhrlypXD19cXX9+cdfd5mqy+HwXx25HVdyNjWvfu3Zk7dy7nz5/H0tKS5s2bM3bsWKPfCoCQkBDmzp3L5cuXDb8p3bp1o3fv3ln+ZornQMg1+HgJ/HkJNPnL/fXe+0fpcvE0HS+EkGRhyYSeg1he8/X8LtYgXgfx/z3OJ+Af/cuU7rF/M9PSowps6mJ6Gfz3Ay2dt2r5Nw7MlTColoL5LZUoFNKy8rySYEcUinnz5pGamkr37t2xsLBg06ZN+Pv74+npSZ06dQDYsGEDDg4OdOvWDRcXF27fvs3WrVsZNGgQq1evNlxY3rx5k5EjR+Ls7EyfPn0oWbIkUVFR/PXXX1y+fDlXwU5MTAxDhgzh4cOH9OjRgwoVKnD69GmGDx9OcnJyvrb57t27+Pn5kZ6eTpcuXfD09CQsLIzNmzdz6tQpVq1ahZ2dHQATJkwgNDSUHj16UKVKFVJTU7lx4wYhISEMGDCAChUqMGbMGKZPn85bb73FW2+9BWBywZETFy9eZN++fXTt2pUOHTpw6tQp1q1bx7Vr15g3bx7Kx+5wffXVV1haWvLuu++iUChwcXFBrVbz4Ycf8vfff9O+fXt69epFQkKC4XgtXryYGjVqUKFCBWrUqMGePXv4+OOPjbrKJCQkcPDgQV5//fVsAwuAO3fuMHDgQBISEvD19aVcuXKEhISwbNkyzpw5w/z58/N0t3vHjh34+/tTt25dhg8fjqWlJffu3ePo0aNERUVlW6euXbuybt06AgMDGTVqlNFn27dvR6PRmFxQ58T9+/cZMWIEb7/9Ni1atODixYsEBgZy4cIFVq5caQjqEhISeP/99wkLC6Nz585Uq1aNS5cusWnTJk6ePMmKFSuwtbXNddnHaTQapk6dyubNmxk1ahTvvfcekLvzOjw8nCFDhpCWlkavXr1wc3Pj8OHDfPjhh7neP6C/oB4zZgyVKlXCz88POzs7IiMjOXHiBGFhYYZg59SpU4SGhtKkSRPKlClDSkoKe/fuZfLkyURHR+Pn52eybH9/f6ytrfHz8yMmJobVq1fz4YcfMnz4cGbPno2vry8lSpRg27Zt/N///R8VK1Y0/HYBbNmyhe+//55atWrx/vvvY21tzfHjx/nhhx8IDw/n448/ztM2P01h/nZcvnyZTz75hE6dOtGmTRtCQkLYtm0bSqWSL774wlDur7/+YtSoUZQoUYKBAwdib29PcHAwZ86cKZRtFkUgORXaT4b7sflelAJYvHkxNhp9k41NehqLVszi2JiynC9dNt/LLyibr8Cqc1r6ez/6P1Ct1dF8nZboVP37dC0sPKPD20XLqLrF251OurHlnQQ7olCkpaWxcuVKzP9rxm7RogVdunRhw4YNhguGOXPmYG1tbTRfhw4d6Nu3L2vXrmXChAkA/Pnnn6SkpPDdd99Rs2bNfNVrxYoV3Lt3j2+//ZZ27doB4Ovry6xZs1i1alW+lj116lTUajVr1qzBzc3NML1ly5b4+fmxZs0ahg0bRkJCAidPnsTX15dPP/00y2U5OzvTvHlzpk+fTuXKlWnfvn2e63X16lWmTZtG8+bNAejZs6ehtSI4OJg2bdoYlbezszMJKNasWUNISAhz5szhtddeM0z39fWld+/ezJw509Ai1rFjR6ZOncqxY8do0qSJoezevXtJTU01at3Lyrx584iOjmbmzJmG+Xv27Gk4Rtu3b89TcHHgwAFsbW1ZsGCB0bZl3AXPTuXKlalduzbbt29nxIgRRgFcYGAgFSpU4NVXX811fW7fvs2YMWPo27evYVrFihWZMWMG69atMwQbK1as4NatW3z22Wf07NnTUPaVV15h6tSprFy5khEjRuS6bGYpKSl8+eWXHDlyBH9/f6NjlNPzGmD+/PnExcWxcOFCw1iRXr16MX78eC5dupTrfXTw4EG0Wi3z5s0zakEaPHiwUbkOHTqYtKb07duX4cOHs3z5cvr3728SIDs7OzN9+nTD3VpHR0emTZvG1KlTWb9+PaVLlwagdevWdOjQwei3KzIykmnTptG6dWu+++47wzIzvltr1qyhR48eeHp65nqbn6SwfzuuXLnCsmXLDL+zPXr0IDExkcDAQD755BNDwJSx35YsWWLYxp49exZ7hkGRD4cvFEigk8FaY9w3TanT0fXcyWcq2AGYHWoc7Jy4gyHQyWzZWR2j6hZhxUSBkk6LolD07NnTEOgAlCpVinLlyhEWFmaYlhHo6HQ6EhISiImJwcnJifLly/PPP4/apDPuGh88eJDU1Cx+hXLh8OHDuLi4mFzg9+/fP1/LTUhI4MiRIzRr1gxLS0tiYmIMrzJlyuDp6cnx48cBfX95CwsL/vnnnyJJuVy+fHlDoJMh40L6wIEDJuX79u1rcmG4a9cuvLy8qF69utG2qdVqGjVqxJkzZ0hJSQGgTZs2mJubs2PHDqNl7Ny5EwcHB5o2bZptXbVaLYcOHaJq1apGgVJGnZVKZZZ1zgk7OztSUlI4cuQIOl3u+lJ069aNyMhIjh49apgWGhrKrVu36NKlS57qY2traxSQgP57Y2try/79+w3TDhw4gJOTE926dTMq2717d5ycnPJcNkNcXBwjR47kxIkTzJgxwyjQyc15rdVqOXz4MDVq1DAaFK9QKBgwYEAe9tCj7/7vv/+OWm3abz9D5psmqampxMTEEBcXR+PGjUlMTOTmzZsm8/Tu3duoW0pGINOsWTNDoAMYfpMy/3bt3buXtLQ0unTpYrRPYmJiaNq0KVqt1tBNtiAV9m9HrVq1TG4oNWjQAI1GY1jfw4cPOX/+PG+++aZRMGdmZsY777xT4HUqCFFRUUb/dyQkJBAfH294n5aWxsOHD43muXPnzhPf37171+h35LlfRykHClJWv7D37UoU6DoKQln7R3/fuXMH12waQEvbFs3xEIVDWnZEofDw8DCZ5uDgwN27dw3vL168yMKFCwkJCTHpQpZ5/tatW7Nz506WLVvG2rVrqVWrFo0bN6ZNmza4u7vnql4RERF4e3ubdN0qWbIk9vb22cz1dDdv3kSr1bJt2za2bduWZZmMbTI3N2fMmDH89NNPdO7cmYoVK+Lj40Pz5s1p2LBhnuuQnQoVKphMc3Fxwd7envDwcJPPHh+XAvqxOKmpqbRs2TLb9cTExFC6dGkcHBxo0qQJhw4dIiEhATs7OyIiIjh9+jS+vr5GQfDjoqOjSUpKomLFiiafOTg44OLikmWdc8LPz4/Q0FDGjRuHg4MD9erV44033qBVq1bZdu3K0KpVK3766Se2bdtGs2bNANi2bRvm5uZ06NAhT/Xx8PAw2RcWFhZ4eHgYbWNERATVq1c3CUDNzMwoV64cFy9ezFPZDJMmTSIpKYnFixcbddOC3J3XUVFRJCUlGbqWZZbV8cyJXr16cfDgQX744QfmzJnDq6++yuuvv06bNm2Muh0mJSWxaNEigoODuXfvnsly4uLiTKY93upSooT+Qizz2LEM9vb2Rr9dGcHTBx98kG3do6KinrxxeVDYvx3Z/W6DfqwQYAh6sjrOWU17Fjw+riwjiM5gYWGBs7Oz0bTH/295/H3mgPiFWEedCtClIWwrmCD9L/fy1Lvzr+F9mIMzv9Rp8oQ5ip4CmN3i0bVAxr5p66Vg981HQY1KAd81VVG6VOEfjycpoOFOLyUJdkSheDyYyJBxV+Tu3bsMHToUW1tbBg0ahJeXF1ZWVigUCn766Sej4MfCwoL58+fzzz//8OeffxIaGmoYuDt58mRDn/SC9qTBiBqNJsvp7dq1y7abVuYMSL6+vjRv3pwjR44QEhLCvn372LBhA61ateL777/PX8XzKXMCgMwqV67MJ598ku18mS8+O3TowP79+9m7dy9du3Zl586d6HS6PAcG2cnuGGXVClCuXDk2btzIiRMnOHnyJKGhoUyePNlwLj2py5GVlRXt2rVjy5YtPHz4EEtLS/bt20ezZs2eOP7oedCqVSuCgoL4+eefmTZtWpbHP6fndUFzdHRk5cqVnD59muPHj3P69GmmT59OQEAAs2bNonbt2gB88cUXHDlyhG7dulGvXj0cHBxQKpUcPXqUtWvXos3iYYjZ/UY97bcr89+TJk3CxcUly/JZBQ4FoTB/O56Ujjq3raHiObRxHKw7ou/SdvIqnPtXP2gll3TA2VZv8Id5S5r/dYp7Vbw4+V43WiRZcfYB3DC991AklIClCpRKqOYEW7sq8bQ3/b5v765kTqiWdRd1lLGDH5opeaWkjJd5nkmwI4rF/v37SUpKYvr06SbPgYiNjc3yuRI1a9Y0dLG4e/cu7777LgsWLMhVsOPu7k5YWBhardbooiYqKsqo+Rke3enN6q7w460Lnp6e+pSW/3XrygkXFxe6du1K165d0Wg0fP311+zZs4d+/frh7e1dYJlfbty4YTItMjKS+Pj4HF+QlS1blujoaBo0aJDtxWBmTZo0wdHRkR07dhiCHS8vr6eOuXJycsLW1pbr16+bfBYXF0dkZCSvvPKKYVrGMYqNjTXcgQbT45PBwsKCJk2aGLrIHTlyhNGjR7NmzRo+++yzJ9ate/fubNy4ke3btxu6xOW1C1tGHdPT041ad9LS0ggPD8fLy8swzcPDg3///Re1Wm3UYqNWq7l165bRMcxN2Qxt27alQYMGfP3113zyySfMmDHDEPDk5rx2cnLCxsaGf//91+SzrI5nTqlUKnx8fAy/E1euXKFfv34sWbKEWbNmER8fz5EjR2jfvj2ff/650byF0ZUM9N8H0AdjOf2+F6Si+u3ISsad6KyOc1bTxHPE3Az6N9e/MtPpQNkjV4vq+3OX/37bOlATaPGU8nfj1Yw/ADtuQHSa6ecqoHtl+KAuVHJSUrZE4Y3CUCkVjPZRMfrFfLzdS0nG7IhikXHB/Pjdwq1bt5r0cY2JiTGZ383NDScnJ0PXipxq1qwZkZGR7Nmzx2h6VskJbG1tcXZ25uTJk0b1vH37tsm4EUdHR9544w1+//13zp41fR6BTqcjOjoa0A8GzxjfkkGlUhnSbWcEVxnjELIKtnLj33//NanvihUrAHjzzTdztIwOHTrw8OFD1qxZk+Xnjx8zMzMz2rZty19//cXu3bu5devWUxMTgP68aNq0KZcuXeKPP/4w+mz58uVotVqj8UcZXe4ev6hdvXq1ybKzOo8yUmbn5DyqUqUK3t7eBAYGsm3bNkqXLk3jxo2fOl92EhMT2bhxo9G0jRs3kpiYaLSNb775JtHR0fz6669GZX/99Veio6ONgv3clM2sTZs2fPfdd5w+fZqPPvqIpCR9TtfcnNcqlYomTZpw/vx5o1TgOp2OlStXPnV/ZCWrY5bRCpzxvcjutyQyMtJkPxSUVq1aYWFhQUBAgMl3GfR999PSsrhiy6ei/u3IiouLCzVq1ODgwYPcvn3bMF2tVvPLL78U+PrEM0ChgDjT39SCVNrejFWdzIj6yAzdONOXepwZG7qa0by8WaEGOuLFJC07oli88cYbzJkzh6+//ppevXphb2/PmTNn+OOPP/D09DTqJrZkyRL+/PNPmjRpgoeHBzqdjsOHD3Pz5s1cD3weOHAgu3fvZtKkSZw7dw4vLy9Onz7N33//jaOjo8kd0V69erFgwQI++ugj3nzzTSIjI9m8eTOVKlXi/PnzRmUnTJjA4MGDGTJkCB06dKBq1apotVrCw8M5dOgQ7du3Z9iwYfz7778MHTqUt956i0qVKmFvb8/NmzfZtGkTHh4e1K2rT/ni6OhI2bJl+e233/D09KRkyZJYW1sbxozkVOXKlfnqq6/o2rUr5cqV49SpU+zbt4969erRunXrHC3jnXfe4fjx48yaNYuTJ0/SoEEDbG1tuXv3LidPnjRc+GXWsWNH1q1bx/fff49SqTRkv3uakSNHcvz4ccaNG4evry9ly5YlNDSU4OBg6tWrZxQ0tWnThvnz5/Pdd99x8+ZNSpQowbFjx7K8SB45ciT29vbUrVsXNzc34uPjCQoKQqFQ5DhjVbdu3Zg8eTIAQ4YMyVErV3Y8PT1ZvHgx165do3r16ly4cIHAwEC8vLzo06ePodzAgQPZt28fU6dO5dKlS1StWpVLly6xbds2ypcvb/QdyE3Zx7Vs2RIzMzP+97//MWrUKGbPno2dnV2Oz2vQj2H5448/GD16NL1796ZUqVIcPnzYEBDl1uTJk7l//z6NGjXC3d2d1NRUgoODSUxMNHSJtLW1pXHjxuzatQtLS0u8vb25c+cOW7ZswcPDI9c3RHLCzc2NCRMmMHnyZHr27En79u1xd3cnOjqaq1evcuDAATZu3Jjl+J/8KOrfjux8/PHHjBw5kkGDBuHr64udnR3BwcGG7qPyPJIXkL0N/K8rfP9rcdfkpSWpp/NOgh1RLDw9PZk9ezbz5s1j2bJlKJVKXn31VQICApg6dapRhpKMIGPv3r1ERUVhaWlJ2bJl+fLLL3PdjcjR0ZGff/6ZmTNnEhgYiEKhoH79+ixcuJABAwaYjD/IeN7Lzp07CQkJoUKFCnz11VdcuHDBJNgpXbo0q1evZsWKFRw8eJBdu3ZhYWGBm5sbTZs2pVWrVoD+Qqlz586EhIRw4MAB0tPTcXV1pVu3bgwcONBozMS3337L9OnTmTdvHikpKbi7u+f6gqVatWp88sknzJ8/ny1btmBra0uvXr0YOXJkji/WzczMmDlzJps2bWLnzp2GwMbV1RVvb+8sW22qVatGpUqVuHbtGg0bNjRKW/wk7u7uLF++nIULF7Jr1y7i4+Nxc3PDz8+PQYMGGXXPsrOzY9asWUyfPp1ly5ZhbW3N22+/zbfffmvSiuHr60twcDBbtmwxdHurWrUqn376qUlXyuy0adOGGTNmkJycTOfOnXM0T3ZKlSrFDz/8wMyZM9mzZw/m5ua0bduW0aNHG2UXs7OzY8mSJYYHhQYGBuLs7EyPHj0YNmyYUXKF3JTNSvPmzfnxxx/59NNPGTVqFHPnzs3xeQ367/XPP//MjBkzWL9+veGhot98802OA+vM2rdvT1BQEDt27CA6OhpbW1sqVqzIlClTaNHiUceYb7/9ljlz5nD48GF27NhB2bJl+eCDDzAzM2PSpEm5Xm9OdO7cmXLlyrF69Wq2bNlCfHw8jo6OlC9fnhEjRpgMTC4IRf3bkZ369eszZ84cw++3vb09rVq1om3btrz33nuFOo5LFKP/G5CjYOdBKQue75GM4kWj0MmoQyGIiYmhZcuWdO/e3aTf//Msqyeli7xLS0ujbdu21KhRg7lz5xZ3dYR4puzbt4/PPvuM7777ziS9v3hBKLo/tciRThVptPn7J2beFLm3X7Esx2Xf0pk+SPllJh0fxUsnqz72GWNYimOwsXh+7Nq1i7i4OJPn2AjxMtHpdCbPPMt48KxKpaJ+/frFVDNR6BpWemqROHe7p5YRuafLxUsYk25s4rmXnp6eo375Tk5OqFQqPv74Y9zd3alWrRparZaTJ09y+PBhateubfLwzWdRdHR0tqmvM9jY2Biedi7y79ChQ9y5c4dFixZRsWLFLM+T2NhY0tPTTWfOxMrKyuRZDC+jl+UcTkhIyPLmSmbm5uZGmQSfB2lpaXTq1Im2bdtSvnx5YmNjCQ4O5sqVKwwcODDbdNziBbB/Mtg++eGx6bbSjVE8WyTYEc+9M2fOMHz48KeWCwwMpEyZMjRt2pQdO3awf/9+UlNTcXNzo1+/fgwZMuSJz5l4VgwYMOCpT10eMmSIYdC4yL8ff/yRBw8eUL16db788sssz5Px48cTGhr6xOVIl0K9l+UcnjZtGtu3b39imXr16rFo0aIiqlHBMDMz44033uDgwYNERkYC+geKfvbZZ/Ts2bOYaycKlc3TAxnds//fqHjJyJgd8dyLi4vjwoULTy1Xp06dF2Lg7F9//WXSheRxHh4eT3xIpih4Fy5ceGqqX1dXVypWrFhENXp2vSzn8PXr13nw4METy5QoUYLq1asXUY2EKABPGbez4YvGdJv4iYzZKWC/52LMztsyZseItOyI516JEiVeqrE2derUKe4qiCzIBWvOvSzncMWKFSW4FS8eK3NIybrLrg6Id7cv2vq8JCT1dN5JggIhhBBCCJEzv/tn+5EO0JhLPzbxbJFgRwghhBBC5Mxr0ootni8S7AghhBBCiJwb9HaWk29Xeb4yCz5PdChy/BLGJNgRQgghhBA5t3gkmBl3V9MqYPe414qpQkJkT4IdIYQQQgiRcwoFpG+EPV9B2zrw29doUtcXd62EyJJkYxNCCCGEELnXuq7+BfCUhyqL/NEWdwWeY9KyI4QQQgghhHghSbAjhBBCCCGEeCFJsCOEEEIIIYR4IcmYHSGEEEIIIZ5hOqWklM4rCXaEEEIIIUSeRMRqWBoUw8EzKUSltKGu83X8irtSQmQiwY4QQgghhMi1HquSuHkkihSlinSlGaWS1YSkvkLLr6I4+INbcVdPCECCHSGEEEIIkUv7/tUScegBTe4+pFRyKikqJSGuzjinpHLOwpGbt1Px8rQs7mq+MHTSiy3PJEGBEEIIIYTIldUh6TS4G0Wp5FQArDRaXr/7gGSVirLxiZw6m1zMNRRCT4IdIYQQQgiRK1bHwnFLTjGapgCsdFrSFZCQri6eignxGAl2hBBCCCFErlhejkKtMO1bddPVnhvujpxeG1EMtXpx6ZSKHL+EMQl2hBBCCCFEjv3zdzy3rWxR6XRG0+/ZWnHO3RmHlHQOOLmQGJNeTDUU4hEJdoQQQgghRI6NXxqNc2oaj7chWKepKZmUQpS5BVoU/HkivljqJ0RmEuwIIYQQQogcS4zXYZdmOiZHqYOG1+/hGpNAspkZ/1xKKobaCWFMgh0hhBBCCJFjOq2GRHPTp5fYqdW8HvGA2tFxAERfiC3qqr2wdMqcv4Qxec6OEEIIIYTIkSNHYqj5MAZrrS7bMlWjYwlxLUkJV0tOdwvm4a+PkhWYl7HmjUvdMLMzL4rqCiEtO0KIwnHq1Cl8fHwICgoCICIiAh8fHwICAgp0Pf7+/vj4+BToMl90AQEB+Pj4EBHx/GdLiomJ4euvv6Zt27b4+PgwdOjQHM/bqVOnXJUvCEOHDqVTp05Fuk4hCsrDeA2jVibgnJxGyZS0bMupgOpRsZSeG0rkr8a/M+kRSRwtvYa7w3eTdiGykGsshLTsCCGeA0FBQcTHx9O3b9/irop4xsyYMYPg4GDef/99PDw8KFmyZHFXSYgXVpuJkXS4Gc4VR3teiUvASqMFQK1QoECHKlNjT/3IKOyS1CZJDFSosU+MJj3gCjcDTnIPF0pzm8on/FA0qFx0G/Oc0akkpXReSbAjhCgS7u7uHD16FJVKlet5g4KCuHPnTpbBzpdffsn//ve/gqiieA4dP36cxo0bM2TIkOKuihAvnGsxWqyUWr47pmX/zoe0uH6HM6VK4p6QzB/l3Wh24y7HSrty3cEehU5H1eg4Gt6PRIH+AaOJjlbY3H2UftqN29TgL1Ro0KIkEVdKE0Y4lQhtGEgJIik1qh4lfuqKwkIuUUXBkDNJCFEkFAoFlpaWBb5cMzMzzMzkp+xZlpiYiK2tbaEs++HDhzg4OBTKsotTYe4zIVLVOnToWH5Wy5TjEJYAOjJeOhQaLUqNDo25CvuEVJxjU6j2MIFDnu4kmZlx0cmRVHMVt7xt0Wn+W6hCwXlnRxzS0qgWo09QoEt/1NSjIp3q/wU6AEq02HGPh1TBmQeUJY50bFHODSZ67m9EUQoHkjBXpGOmTMf8NQ+UYzuic3bE7NXSKB/EgHtJsCn4/1fEi0WuEIQQRSIiIoLOnTszZMgQhg0bZpi+fft2NmzYwK1bt1Cr1Tg7O1OrVi3Gjh2Lk5MTnTp14s6dOwBGY3MWLlyIj48P/v7+bN++nVOnThk+y5h24MAB5syZw++//05iYiLVqlVjzJgx1KxZ06huMTExzJo1i0OHDpGWloa3tzejR49m+vTp3LlzxzDuKKeGDh3KnTt3WLp0KTNmzODYsWOkpaVRt25dxo8fT/ny5Q1lAwICWLx4MYGBgZQpU8ZoOZ06dcLd3Z1FixYZpvn4+NCxY0c6dOjA/PnzuXz5Mg4ODvTq1Yv33nuPuLg4Zs6cyeHDh0lKSqJBgwZ88cUXuLq6mtQzOTmZH3/8kb1795KQkEDlypUZOXIkDRs2NCl7/PhxVq5cyblz50hLS6NcuXL4+vri6+ubZZ3HjBnD3LlzOXv2LA4ODgQGBuZ4/yUnJ7NkyRKCg4O5f/8+JUqUoFGjRowYMQJ3d3ej/Qb6c2j79u0ATJw4MddjYi5evMjMmTM5d+4c5ubmNG3alI8//tikS1xaWhqrV69m9+7d3L59GwsLC+rWrcuwYcOoVq2aUdm4uDhmz57N/v37SU1NpUaNGnzyySdZrv9p+yw0NJSff/6Zc+fOoVar8fLyomfPnnTt2tVkWTktm3GOBgQEMH36dE6dOoVCoeDNN9/k008/xcrKiuXLl/Prr78SGRlJhQoVGD9+PHXq1DEsQ6vVsm7dOgIDA4mIiEChUODs7EydOnX4/PPP5SZEAVjyt5rR+yGhSJ/NqUCnUqFRgUNMMi6xKVSNjkWHgqRMx9QyXUO6UoEZxokKwuxsqRYTx3knByJqq+i6/wIKwI54zP4LdMKoQDjlUaCjJLE4kEYSVtgTgRUxKAAHoomhPGk6R9I0oDySQIkj3xOLJ1ps/usep8OcROy5hxI1KZQggVLYcQcFOlIpgTUxqEgDS3MSzd3RJaZjTRTmJKNAB442KD5sB1/1hEXB8OsJ8HSG8V2huqfRtqn/uUdcv01orkehrOyMw7pemL3iYrIHtfGpJE09TPofYZjXc8fms6YoXeTmRXGRXyIhRLHZsWMH/v7+1K1bl+HDh2Npacm9e/c4evQoUVFRODk5MXbsWObOnUtMTAxjxowxzFuhQoWnLn/UqFE4OTkxePBgYmNjWbNmDR9//DGBgYGGu+ZpaWl88MEHXL58mU6dOuHt7c2VK1cYOXIkJUqUyPO2JScnM2TIEGrVqsXIkSMJDw9n3bp1jB07lvXr1+epO1+GS5cucfjwYbp160aHDh0IDg5m7ty5WFpasn37dsqUKcPQoUMJCwtj/fr1TJw4kfnz55ssZ+LEiSiVSgYMGEBSUhJbtmzhww8/ZPbs2TRq1MhQbsuWLXz//ffUqlWL999/H2tra44fP84PP/xAeHg4H3/8sdFy7927x4gRI2jZsiVvv/02SUk5f9aGWq1m1KhRnDlzhhYtWtCvXz9u3brF5s2bDQGXm5sbb7/9NmXLluXrr7+mbt26dOvWDYDatWvnal/ev3+fESNG8Pbbb9OiRQsuXrxIYGAgFy5cYOXKlVhZWRnq9eGHH/L333/Tvn17evXqRUJCAlu3bmXQoEEsXryYGjVqGG3D+fPnad++PbVq1eLy5ct88MEH2bZCZbfPDh06xPjx43F2dqZfv37Y2Njw22+/MXnyZMLDwxk5cqRhGbkpC/pzdMSIEdSrV89Q38DAQFJTU3F0dOSff/6hV69eqNVqVq9ezZgxYwgKCjJ8d5YuXcrChQtp2rQpPXr0QKlUEhERYbhpIMFO/swN1fLh78Vbh0RbC2xT1HhHxXCwjFuO5omxNGdrhbLEWFnSLiWVf90d8LoTSyL2aFBxFw8u8eh7Go8j5blDKe5gTYxhugoN9twlBv1vvRYLknBHh22mcUAK0rED7qJEgw3RgIIEPFGRSkmu6wMagNR0zFJjsCYGJRrDEohOgG82wo4QCLn+aPrW43B+lr71CNAlpxPVYCGk6J8vpDl9h6i683GN/QKFmfHveWyXNaTvvwFA+u/XSfvtKk6nP0ChzHteMK1SxuzklfwSCSGKzYEDB7C1tWXBggVGF0bDhw83/N28eXPWrl1Lamoq7du3z9Xyq1WrxoQJEwzvK1asyIQJE9i9ezc9evQAYNu2bVy+fJkRI0YwaNAgQ9nKlSszZcoUQ0tCbsXExNC/f38GDhxomObk5MTs2bM5ceIEr732Wp6WC3D16lWWLVtmaKHq0qULHTt2ZPr06fTq1Yvx48cblV+7di03b97Ey8vLaLpKpeLnn3/G3FyfArZz5874+vry448/smnTJgAiIyOZNm0arVu35rvvvjPM27NnT6ZNm8aaNWvo0aMHnp6P7oCGh4fz5ZdfZtny8DRBQUGcOXOG/v37GwVRjRo1YvTo0cydO5dvv/2WKlWqUKVKFb7++ms8PDxyfW5kuH37NmPGjDEaD1axYkVmzJjBunXreO+99wBYv349ISEhzJkzx+jY+fr60rt3b2bOnGlogQsMDOT8+fMmrZgVKlRg+vTpWZ5TWe0zjUbD1KlTsba2ZsWKFYbWuV69ejFs2DBWrFhBp06dKFeuXK7KZoiJiWHAgAEMGDDAMC0+Pp69e/dSrVo1li1bZvheVqhQgbFjxxp9d/bv30+FChWYMWOG0bZ8+OGHOT8AIlvTT2mLuwqozVVEuNmhPKejVHIKD62tjD631GlJUygMiQnUKgW3XOwpGZdK2fhESien8Psbr9B/y0nQmnOJWiRiZ7KeaOwpwzWT6eYY3yhRY51FLRWkUgIz9JndrIglAXesiH0U6PzHmmiUZLNfMwc6ADGJsOYQjOsKQMrKvwyBjkFSOilr/8Z6QN1Hdbxw3xDoGKb9fY/0I7ewaOaV9bpFoZLU00KIYmNnZ0dKSgpHjhxBp8v+mQ159XhCg4xucGFhYYZphw8fRqVS8c477xiV7dq1K3Z2pv8p55RSqaRPnz5G0xo0aADArVu38rxcgFq1ahl1xTM3N8fb2xudTmeyzrp19f8JZ97mDH379jUEOgBubm60bduWmzdvcuOG/j/rvXv3kpaWRpcuXYiJiTF6NW3aFK1Wy4kTJ4yW6+DgkOf0yvv370epVOLn52c0vUmTJrzyyiscOnQIrbbgLgJtbW3p2bOn0bSePXtia2vL/v37DdN27dqFl5cX1atXN9oHarWaRo0acebMGVJSUgB9EK9SqXj33XeNluvr65vtOJys9tmFCxe4e/cunTt3NuqGaG5uzoABA9BqtRw8eDDXZTOoVCp69+5tNK1OnTrodDp69OhhdAMiq/PIzs6O+/fv89dff2W5Tc+KqKgoUlNTDe8TEhKIj483vE9LS+Phw4dG82R0nc3u/d27d41+swpjHanpGp4JCgV/lXGmTmQUrkkphsklUtOIKGlLmIcDD5yseVDShjD3EmgtVLQIi+Dt2/rteWBjxX1H/W9pBOWJw8lkFUp0WQYyj09TknV/PkWmlhoteWs1z/J/IM2j35rY+Lgnzm845pps/i/TaJ96zEXhkJYdIUSx8fPzIzQ0lHHjxuHg4EC9evV44403aNWqVYEMzvbw8DB67+joCEBs7KOneoeHh+Pi4oKNjY1RWXNzc8qUKWN0wZIbrq6uJgkZMrowZV5/Xjy+XYChy93j437s7e2zXWdWXQErVqwI6PdLhQoVuHnzJgAffPBBtvWJiooyqV9eu+lFRETg6uqaZRfCSpUqcfnyZWJiYgosxbSHh4dRwAdgYWGBh4cH4eHhhmk3btwgNTWVli1bZrusmJgYSpcubTinHg+WM5ab1TmV1T7LeA5SxjHJrFKlSgCGOuambAYXFxeTczS78yhjeubzaOTIkYwbN47Bgwfj6upK/fr1adKkCS1atDDZp8Xp8XMlq+Pi7OxsNO3x1rfH35cuXbrQ1/FJQzPGHyz4m0B5sb9iGdKUSl6PuE+klQVXHEpw39YGHaBRKYkr8ajFR6nWUiYxGSVww96OKKUZpWMSDZ/rHrvPrkCHMzGkUoIUSmCFPqjQoiKejH2ixo4HmJFCDF7wWEc2Kx6dl0m4AjpScMKaKKOWnCScsSYaFY+10ACKWuXh7L+PJthZQd9mhrduHzfnwddHITlTwGVjjlWfWvriGce8pj3mr5cj/Y9HN7VU1Vwwb+aFu8p423PTc0AnzRN5JsGOEKLYlCtXjo0bN3LixAlOnjxJaGgokydPNgw+z9w1Ki+yu+AujFakxymf0Dc78/oViuz7YWs0Wd/ZfVIgUdDbnDHfpEmTcHExHYgLpsFXxjiXF03lypWzTTIA+m6KeVUc++xJ52h2n2U+j2rXrs2vv/7KsWPHOHXqFCEhIezevZslS5bw888/v5BZ8orSuAYq0tRqvv0TUoq5kSfNQsX+qp4cL1sK5+hkzDRaYu0sSLH+L6jV6VBpdag0WkrEpbKnbBnSVEpUqRqG7P4LlTbr3x8FWmyJx4lI0rAjDncScUaJlnRsACVmJODEv2gwR4EOe8KIpxRKFCjQAlqScUCJlhQcSccWC2IwJ5kYyj5KUGCuQm3hSGyS/X8JChL1Y3dKWKP8oA183Qtm74BtJ8DDGf7XHco++s1TmKtw+usD4vtuRHP1IaoqzpRY0zPLFNkOQe+S+O0B0o+FYV7XHZuvmqNQSbRSXCTYEUIUKwsLC5o0aUKTJk0AOHLkCKNHj2bNmjV89tlnwJMDgvwqU6YMJ06cICkpyah1R61WExERYWgZKSwZd8zj4uKM7qanpqYSGRmZ74DvSW7cuMErr7xiNO36dX2/9YwApmzZsoC+VSxz0oLC4uHhwbFjx4iPjzfZ99evX8fW1tbQQlcQwsPDSU9PN2qJSEtLIzw83GiMU9myZYmOjqZBgwZPDBIytuH48eMkJCQY3eHPWG5OE19kHIOMY5LZ48cpN2ULko2NDS1atKBFixYAbNy4kSlTprBt2zajsUAibz5/zYzP8z68L1txqVqS1LDsby0Tj0I6YA6POolptfDf765ZuhbzdDVpZiq0QIKNOZXiE7hnZ4cm4wJeocBCo+Hdk5f5082V+7bWpKkU9Ay9QKW70dnWQ4cSK9Jw5BbRlCYdZzSYoSEFFQmYkYQtMaRhQbpneSymdcfC1R6XeuVRxKegKGvcWvZ4R7jH+wdYPG3HfNpN/8qG+SsulDw14mlLQVnSBvsZeRtHKAqehJlCiGITExNjMi0jhW/m7jI2NjbExcUVSotM06ZN0Wg0/PLLL0bTt27dSkJCQoGv73EZaaiPHz9uNH3t2rUFOjYlK2vXriU9/VGXjHv37rFnzx7Kly9v6OLWqlUrLCwsCAgIMIxJySwhIYG0tLQCq1Pz5s3RarUsX77caPrRo0e5dOkSzZo1e2qwkRuJiYls3LjRaNrGjRtJTEykefPmhmkdOnTg4cOHrFmzJsvlZB6P8eabb6LRaEzKbtq0icTExMdnzVa1atUoXbo0QUFBREZGGqar1WpWrVplSBWd27IF5Unf37i4J49vEMWrhKWS0rZK/veaGWnjzNCNe/SvbpwZuk8t0I0354KfksMDVXxaLQ0LtRqH+FTKP4zn1TsPSbJ4dIPALjENp6hkTruWpFp0LOh0tLwVQdvQ6xjfqjL+DVegxYsLaFGQTAk0pGPWw4tS/36Ks24WDrrFmOk2Yqlbh13YFCx6N0L1dg2UjrYmgc6LTqdU5PgljEnLjhCi2IwcORJ7e3vq1q2Lm5sb8fHxBAUFoVAojLJr1axZk8OHDzN16lRq166NUqmkQYMGBTJuo2vXrmzZsoUFCxZw+/ZtQ+rpvXv3UrZs2Wy7khWUhg0bUr58eQICAoiNjaVMmTKcOXOGs2fPFmgLRlY0Gg2DBw+mTZs2JCUlsXnzZlJTU42yubm5uTFhwgQmT55Mz549ad++Pe7u7kRHR3P16lUOHDjAxo0bTcZ45FWnTp3Yvn07K1asICIignr16hEWFsamTZtwdnY2SZ+cX56enixevJhr165RvXp1Lly4QGBgIF5eXkbJHt555x2OHz/OrFmzOHnyJA0aNMDW1pa7d+9y8uRJQ0AI+qx2W7duZfHixYSHh1O7dm0uXbrE3r178fT0zPE5pVKp+PTTTxk/fjwDBw6kW7du2NjYEBwczNmzZ/Hz8zNkV8tN2YLi6+tLrVq18Pb2xtXVlcjISLZu3Yq5uTmtW7cu0HWJ4lHNRd8ttnFvJ/yBOl8/pGx4Eg4paSh0OnQKBXaJabhF6oP4GEtLTrta0Pz2HbwSkrjvZINbdOaMagrsiUIJ2JCAB/pEKHcUlXD95xMsauQsvbUQuSHBjhCi2Pj6+hIcHMyWLVuIjY3FwcGBqlWr8umnnxo9QPTdd98lPDycffv2sXnzZrRaLQsXLiyQYMfCwoIFCxYwa9YsDh48SHBwMDVr1mT+/PlMnjw5y9aMgqRSqZg+fTrTpk1j/fr1mJub07hxYxYtWmSUCrswTJo0ic2bN7NixQri4+OpXLkyEydOpHHjxkblOnfuTLly5Vi9ejVbtmwhPj4eR0dHypcvz4gRI0wGXueHmZkZc+fONTxUdP/+/djb29OiRQs++OADk4Hh+VWqVCl++OEHZs6cyZ49ezA3N6dt27aMHj0aa+tHnWLMzMyYOXMmmzZtYufOnYbAxtXVFW9vbzp27Ggoa25uzrx58wzn1O+//06NGjWYN28eM2fOzFUGpmbNmjF//nyWLFnCqlWrSE9Px8vLK8vU3rkpWxD69evH0aNHWb9+PQkJCZQsWZKaNWvi5+dn0j1SvBj++saZVv2jKZmcRoOwB5woV4oS8anGhRQKrjo6UCYpGaeYx5+xpSXF2grH8kpKftaOEn2roLRQ4VhUGyBeSgpdUYzUFUKI54xGo6Fly5bUrFmTOXPmFHd1hBDimbDkSApnfjiPW0oqtxxsOeHqQvxj2ffKxSXQIvwud93t8D10Hs2teMxJxZMbaLrVpfKWd7NZusjONqe1OS7bJbrv0ws9Y8LDwzl06BD37983PLtNo9EYboTm50Hc0rIjhHjppaSkmGTD2rx5M/Hx8UUyKF8IIZ4Xg5pY4e3uSv2oWKrGxqPVwn7PRymUFTodNaJj0QHVKlvz5qre2S9M5JjuBR2Ko9PpGDt2LHPnzkWtVqNQKKhVqxaenp4kJCTg5eXFN998w+jRo/O8Dgl2hBAvve+++47U1FRq166NhYUFZ8+eZffu3ZQtW5Zu3fSZeRISEp7apc3c3FzS7WZBo9EQHZ19RqYMDg4O+X4+S2xsrFHShaxYWVnl64GxQrzs6kbFUClOP07HKz6RlmERXHYsgUIH1aJjKZ2UzD8uDnjZmj4oVIjMfvzxR2bNmsVnn31GixYtaNWqleEzBwcHunfvzubNmyXYEUKI/GjUqBEbN25kyZIlJCUl4ezsTNeuXRk+fLjh4abTpk1j+/btT1xOvXr1WLRoUVFU+bly7949Onfu/NRyCxcuNBqrlRfjx48nNDT0iWU6duyIv79/vtYjxMusuioN/hsFkahSUTYhibIJxuNzbrqUoOz91KxmF8Jg8eLFDBgwgP/7v/8zymqZoXbt2uzatStf65BgRwjx0uvYsaPRAPOsDBgwgHbt2j2xTE6fn/KycXZ2Zt68eU8tVxCD2j/55JOnpj12dXXN93qEeJm9+3klVo27gEapYHd5D7rcCMPssSHgZlodnZrYZLMEkVsvakrpsLAwXn/99Ww/t7W1zXcqewl2hBAiBypWrEjFihWLuxrPJUtLyyIb+1S9evUiWY8QLzOvOo5c9XQkJRniLC3429mJepFRhs+vOdrhGZ1As87yfRRPVqpUKcLCwrL9PCQkJN9p8+WhokIIIYQQIleuVSnFn6X1raRnXEuyo7wHoS4l2edRmkOlS9GiXf4fDSBefN27d2fhwoVcv37dME2h0Ldi/fbbbyxfvpyePXvmax0S7AghhBBCiFxxtjdDpX3Ude2+jTVnXEtys4QdNmoNnmUti7F24nkxadIk3N3dqVOnDgMGDEChUDBlyhSaNGlCu3btqF27Np9//nm+1iHBjhBCCCGEyJX/62qD2izry8jGd+7zRkP7Iq7Ri02ryPnreeLg4MCff/7Jp59+Snh4OFZWVhw8eJCYmBgmTpzI4cOHsbHJ39gveaioEEIIIYTItdErY9l+MhVQoANU6HgrLIIS3o78+J1XMdfuxbLZ9Zccl+3x4J1CrMnzR1p2hBBCCCFErs0c4MDZaS4MrQstI+/RLvxf3Gvd5P/8PYq7akIYSDY2IYQQQgiRJ9aWSj5935X0/o4sW7asuKvzwnpRU0+///77Ty2jUChYsmRJntchwY4QQgghhBCiyP3++++G7GsZNBoNd+7cQaPR4Orqani4d15JsCOEEEIIIYQocjdv3sxyenp6OgEBAcycOZPg4OB8rUPG7AghhBBCCPEM0yly/noRmJubM2rUKFq3bs2oUaPytSwJdoQQQgghhBDPnFdffZVDhw7laxkS7AghhBBCiALVZr0a82lq3t+pLu6qiOdYcHBwvp+zI2N2hBBCCCFEgUhJV2Ix69H7Zedh2Xk1yR8rsDJXFV/FxDPpm2++yXJ6TEwMhw4dIjQ0lAkTJuRrHRLsCCGEEEKIAvFxcn/AdOCI3Swd6nFFX58XhU7xggzGeYy/v3+W052cnKhUqRILFy5kyJAh+VqHBDtCCCGEEKKAZD1CQlPEtRDPB61WW+jrkDE7QgghhBBCiBeStOwIIYQQQgjxDNO+IL3Ybt26laf5ypUrl+d1SrAjhBBCCCGEKHReXl4o8jD+SKPJe0dICXaEEEIIIUS+TYprR1bJCYTIsHTp0jwFO/khwY4QQgghhMi3CNyKuwovLJ3yxQgi33vvvSJfpyQoEEIIIYQQBeDFuCAXLxZp2RFCCCGEEEIUm6NHjxIaGkpsbKxJOmqFQsFXX32V52VLsCOEEEIIIYQoclFRUXTo0IETJ06g0+lQKBTodDoAw9/5DXakG5sQotAEBQXh4+PDqVOnirsqzzzZVwWrU6dODB061Gja0KFD6dSpUzHVSAiRcRErck+nyPnreTJ+/Hj+/vtv1q5dy/Xr19HpdOzZs4fLly8zfPhw6tSpQ0RERL7WIcGOEOKFdODAAQICAoq7GkZOnTpFQEAA8fHxxV0VkQuXLl0iICAg3//hajQadu7cyUcffUSbNm1o3LgxzZo145133mHq1KmcO3eugGpcMOR8FQWtQkDe0weLF9POnTsZNmwYvXv3xt7eHgClUknlypWZN28eXl5ejB49Ol/rkGBHCPFCOnDgAIsXLy7uahgJCQlh8eLFWV48tm/fnqNHj1KvXr1iqNnLYd68eWzevDnX812+fJnFixfnK9iJiYlh6NChfP3110RHR9OjRw/+97//8eGHH1KnTh0OHjzIwIED+fvvv/O8joL2pPNViLz4N6G4ayCeNTExMXh7ewNgZ2cHQELCoxOldevW7NmzJ1/rkDE7QgjxDFCpVKhUquKuxgvN3Ny8WNar0+n47LPPOHPmDOPHj6d3794mZcaOHUtQUBAWFhbFUEMBQGwirDkEkfHQozF4l4P9Z2H/P1DNA3q+DuZmcPIKBJ6E+7FQ0g7qVIC1hyH0OjjbQ+3yYGcFV+/CpXCoVBp+eg/+uAT3Y8DCHPb8BWduQHwyZNWzS6kA7TPY5UsBuDlCqhoSUqCiG+z+CrxK5XwR09Q4mIP/GxCTqsDTXsE71RTYWjxn/a+KmK6In01TVMqUKcPdu3cBsLS0pFSpUpw5c4YuXboAEB4enu/n8kiwI4QodDqdjlWrVrFp0ybu37+Pu7s777//Ph07djQq9+uvv7Jx40Zu3ryJmZkZNWvWZMiQIdSpU8eo3JEjR1i5ciXXrl0jJSUFR0dHatSowahRoyhfvjxDhw4lNDQUAB8fH8N8EydOzPGYjQcPHrB69WpOnjzJnTt3SE1NxcPDgw4dOtC/f3+TwCQ9PZ21a9eyZ88e/v33X8zMzChXrhwdO3akd+/e+Pv7s337dgA6d+5smG/IkCEMGzaMoKAgJk2axMKFC/Hx8eHo0aN8/PHHjBs3jj59+pjUz8/Pj7CwMHbv3o2Zmf6n/NatWyxevJgTJ04QGxuLq6srLVu2ZOjQoVhbW+douzMEBASwePFi1q9fz5YtW9i7dy8JCQlUrlyZkSNH0rBhQ6PyPj4+dOzYkQ4dOjB//nwuX76Mg4MDvXr14r333iMuLo6ZM2dy+PBhkpKSaNCgAV988QWurq6GZcTGxvLzzz9z6NAhHjx4gLW1Ne7u7rRu3ZoBAwbkqv5ZGTp0KHfu3CEoKMgw7dq1ayxatIi///6bmJgYSpQogZeXF/3796dJkyaG/QAwfPhww3wdO3bE398/R+s9fPgwISEhtG3bNstAB8DMzIxu3boZTctYd2BgIGXKlDH6rFOnTri7u7No0SKj6cePH2flypWcO3eOtLQ0ypUrh6+vL76+vkblzpw5w5IlS7h06RLx8fE4ODhQpUoVhgwZQq1atZ54vtrZ2TFjxgzmzp1L48aNjZablpZGu3btqFKlCgsXLszR/nkmPIyHhp/C9Xv6999sAN/XYP3RR2WW/g69XodhT9iu2w/hzE3jabciod643NXnWQx0QB+Y3Y159P5SOFQYDjcWsDWxZI4XE5sOnxzIWKCOWaHwZ1+VBDwvoWbNmhEcHMwXX3wBQO/evZk6dSoqlQqtVsvMmTNp06ZNvtYhwY4QotDNmzeP1NRUunfvjoWFBZs2bcLf3x9PT09DIDN79mxWrlyJt7c3H3zwAUlJSWzdupVhw4bx008/0aRJE0DftWbMmDFUqlQJPz8/7OzsiIyM5MSJE4SFhVG+fHnef/99dDodp0+f5ptvvjHUo3bt2jmu85UrV9i/fz/NmzfH09MTtVrNsWPHmDt3LuHh4YYfZtAHOqNGjSIkJITGjRvTrl07LCwsuHr1Kvv376d37950796dxMRE9u/fz5gxY3B0dASgSpUqWa6/cePGODs7s2PHDpNg59atW5w9e5Y+ffoYAp0LFy4wfPhw7O3t6d69O6VKleLy5cusW7eOM2fOsGjRIkPZ3Jg4cSJKpZIBAwaQlJTEli1b+PDDD5k9ezaNGjUyKnvp0iUOHz5Mt27d6NChA8HBwcydOxdLS0u2b99OmTJlGDp0KGFhYaxfv56JEycyf/58w/wTJkwgNDSUHj16UKVKFVJTU7lx4wYhISEFEuw8LiYmhhEjRgDQo0cPSpcuTUxMDBcuXOCff/6hSZMmvP3220RGRrJ161b8/PyoUKECAJ6enjlez759+wDo2rVrgW9DZlu2bOH777+nVq1avP/++1hbW3P8+HF++OEHwsPD+fjjjwG4efMmI0eOxNnZmT59+lCyZEmioqL466+/uHz5MrVq1Xri+erq6sq8efMIDAw0CXb2799PbGxsoW9rgfs5+FGgA6DRwoY/jMvs+xtCrxVtvZ4XfaYz7J3J5PU5O/9Ewi8XdQyuLcHOy2bMmDEEBweTmpqKpaUl/v7+nDt3zpB9rVmzZsyZMydf65BgRwhR6NLS0li5cqWhG1GLFi3o0qULGzZsoE6dOty8eZNVq1bx6quvsnDhQkO5rl270rNnT6ZMmcJrr72GSqXi4MGDaLVa5s2bR8mSj+4kDh482PB348aN2b17N6dPn6Z9+/Z5qnO9evXYtm2bUfN53759+eqrr9i2bRvDhg3DxcUFgLVr1xISEoKfnx8jR440Wk7G8wJq165N5cqVDQHU43fqH6dSqWjfvj2rVq3i+vXrVKxY0fDZjh07AIxaxr755htcXFxYuXIltra2hukNGzZk/Pjx7Nq1K0+ZyFQqFT///LPhmHTu3BlfX19+/PFHNm3aZFT26tWrLFu2jJo1awLQpUsXOnbsyPTp0+nVqxfjx483Kr927Vpu3ryJl5cXCQkJnDx5El9fXz799NNc1zMvzpw5Q1RUFN9//z2tWrXKskyVKlWoXbs2W7dupVGjRkYthTl17Zr+AvmVV14x+SwmJsbovaWlZa5b4QAiIyOZNm0arVu35rvvvjNM79mzJ9OmTWPNmjX06NEDT09P/vzzT1JSUvjuu+8Mx+pxTztf33rrLUNg4+DgYJi+bds2SpQowVtvvZXrbSgsUVFR2NraYmlpCejHA+h0OsNg6LS0NDTXIjDZ61llDotJLNzKPq9uPyQmPX+LCP9vmEZaWhrx8fE4OzsbPrtz5w7u7u7Zvr979y5ubm6G3+ucHPNncR0vo1q1alGrVi3DeycnJ/bu3UtMTAwqlcqwP/NDEhQIIQpdz549jcZLlCpVinLlyhEWFgbAwYMH0el0DBgwwKicq6srnTp14s6dO1y6dAl4NIDx999/R61WF1qdraysDP+ppaenExsbS0xMDK+99hparZbz588byu7evZsSJUoYBVwZlMq8/8x26NABeBTcgL5L4K5du6hUqRLVqlUD9EHGlStXaNu2Lenp6cTExBhederUwdramj///DNPdejbt6/RMXFzc6Nt27bcvHmTGzduGJWtVauW0cWzubk53t7e6HQ6k9apunXrAhjOAUtLSywsLPjnn3/ynfUspzLOpT/++MNoQGxBS0zUXyBnDkIBkpKSaNmypdFr9uzZeVrH3r17SUtLo0uXLkbHPyYmhqZNm6LVajlx4gTwaLsPHjxIampqntbXrVs30tLS2LVrl2FaREQEJ0+epG3btoYLwGdByZIljepjZ2dndAFlYWGBde9mpjM6GR8vLM2hedbB4UtvZHs88nHIFUCnSvrfWwsLC6MAATAJCB5/X7p0aaMbUzk55s/iOp5Eq8j563mS+f/SzBwdHQsk0AFp2RFCFAEPDw+TaQ4ODoZBiRkXt5UqVTIplzEtPDycGjVq0KtXLw4ePMgPP/zAnDlzePXVV3n99ddp06YNTk5OBVZntVrN8uXL2blzJ2FhYSbPh4iLizP8fevWLapWrVrgF3iVK1emWrVq7N69m5EjR6JUKgkNDSUiIoKPPvrIUC4j6AgICMg23XZUVFSe6pDRbSuzjFam8PBwo8+zOs4lSpQAMGkZyPhPLDY2FtAHRmPGjOGnn36ic+fOVKxYER8fH5o3b24yPqig1K9fnw4dOhAUFMSuXbuoUaMGjRo1olWrVkYtafmVEeQkJiYa9gfoA7x58+YB+uOTn4fm3bx5E4APPvgg2zIZ50Dr1q3ZuXMny5YtY+3atdSqVYvGjRvTpk2bHF98+fj4UK5cOQIDAw2BbFBQEDqd7vnrwgbQojbMGQyTN0FUgn68zvguMGY5HPgHqnrADD+oWwGGLICdIaBUgloDriXgQdyTl/9KGYhO0C/bXAUp+WwGeZY0qAz/687F5HTs5+nIaVc2FfoRO2XsYfIbSuq5PWdX6aJA1KxZk5o1a9KnTx969epF5cqVC3wdEuwIIQpddq0beXnAnKOjIytXruT06dMcP36c06dPM336dAICApg1a1auxuU8yYwZM1i/fj2tWrXi/fffx8nJCTMzMy5evMicOXOK7OF4HTp04KeffuLkyZM0atSIHTt2GLq4ZcioS79+/XjttdeyXE7mi+zC8qRsctl9lnk/+vr60rx5c44cOUJISAj79u1jw4YNtGrViu+//77A6wswadIk+vfvzx9//MHp06dZvXo1S5cuZcyYMdkmE8itSpUqcfHiRS5fvmzUDU6lUhnGPWXVmvWkDEQajfHzSjL246RJkwzdKx+XEYxaWFgwf/58/vnnH/78809CQ0MNyRAmT56c4y5o3bp1Y9asWVy4cIGqVasSFBREjRo1suyu91wY1V7/0mr1gQzA/m+M3wMEff5oWsa/Op1xOZ1O/7dGA5nP/czzgT5YSkvTZ4C7Fw1m5lC3on7+B7FwLxZ0GvDcOV8AAQAASURBVPBw1mc/0+ogPR0UKjBTQuR/ZWKT4do9fXY4a3NITIU70fqECVbm8HZNWLIfrtwGextQKSE5DZJT9RnkdDr9PHejoWQJeOc1qOipzxbnVgLa1gNXB4iOB2cHff1T08DayrBpljm8orw7HBytlFiaKdHqdChf0CxjImcWLFjAhg0b+Prrr/nqq6+oU6eOIfApX758gaxDgh0hRLHLuAi7du2aycDv69evG5UB/UWij4+P4cLxypUr9OvXjyVLljBr1izgyReKObFz507q1atncpGd0e0qs/Lly3Pz5k3S0tKemDo4L3Vq27Yts2bNYseOHbz66qvs27ePRo0aGV3QlitXDtAHlY8nDcivGzdumFy8ZnVMCoqLiwtdu3ala9euaDQavv76a/bs2UO/fv0Mz2IoaJUrV6Zy5coMGDCA+Ph4Bg4cyNy5c+nVqxcKhSLf51KLFi3YsWMHv/76a67G/GQEqHFxcUYtY6mpqURGRhp9V8qWLQvobwbk9BzIuKMK+vEI7777LgsWLDAEO0/b7k6dOjF//ny2bdvGm2++yd27d3nvvfdyvH3PrMdvzmR1syZjWsa/CoVxUJOx7x4P8h+fz0KpT0VtZwtepY3Lli6pf2VwxVSlJ4/9M/JuAYyjcv5vfJZSaRTo5Iab3aNLTwl0cu5FTT09bNgwhg0bxr1799i4cSMbNmxgwoQJTJgwgYYNG9KnTx969uz51HGuTyJjdoQQxa5Zs2YoFApWrVplNA4nMjKSoKAg3N3dqVq1KmA6oBvAy8sLKysro65lGYO8M7pJ5ZZSqTRpvUlOTmbt2rUmZdu2bUtcXBxLliwx+SzzMmxsbADjLnBP4+TkxOuvv87+/fvZvXs3iYmJhrE8GapWrUqlSpXYvHkzt2/fNlmGWq3O835Yu3Yt6emPutzcu3ePPXv2UL58+Sy7uOVVSkoKKSkpRtNUKpUhW11u9llOxcbGGhJIZLC3t8fDw4OUlBTDeJaMcymvdWjatCn16tVj9+7drF+/PssyWbUUZtzVPH78uNH0tWvXmtS7VatWWFhYEBAQYLIfQT94Oi0tDcj6O+Tm5oaTk5PRefK089XR0ZHmzZuze/duNmzYgJWVFW3bts2yrBAAJ94t7hqIZ5WbmxujRo3i0KFD3Lp1i59++gmFQsHYsWPz3cIjLTtCiGKX8VyTlStXMmTIEFq1amVIPZ2UlMS3335r6AY1efJk7t+/T6NGjXB3dyc1NZXg4GCTIKBWrVps2LCBH374gSZNmhie25PT1ogWLVqwZcsW/ve//9GwYUMePnxIUFCQUeapDO+88w6HDx9myZIlnD9/nkaNGmFpacn169f5999/DemVM+6iz54925CeulKlSk/to9yxY0cOHTrEjBkzsLOzo3nz5kafKxQKvvnmG0aMGME777xjGPOSkpLC7du3+f333xk1alSesrFpNBoGDx5MmzZtSEpKYvPmzaSmpppkVsuvf//9l6FDh/LWW29RqVIl7O3tuXnzJps2bcLDw8OQ0KAg7dixg7Vr1/LWW2/h6emJmZkZoaGhHDt2jFatWmFlpb9z7e3tjVKpZOnSpcTFxWFtbY2Hh0e2mcwep1AomDp1KmPHjuXHH39k+/btNG3aFDc3N8Mx2rt3L2A8tqlhw4aUL1+egIAAYmNjKVOmDGfOnOHs2bOGVNAZ3NzcmDBhApMnT6Znz560b98ed3d3oqOjuXr1KgcOHGDjxo2UKVOGJUuW8Oeff9KkSRM8PDzQ6XQcPnyYmzdvGqX4zsn52q1bN4KDgzl8+DAdO3Y0JD8QIisN3OWyUzydu7s73t7eVK9enX/++ceQ5CWv5KwTQjwTPvroI8qWLcvGjRuZO3euIZPX5MmTjS5027dvT1BQEDt27CA6OhpbW1sqVqzIlClTaNGihaFcmzZtuHTpEr/99hv79u1Dq9UyceLEHAc7Y8aMwdbWluDgYA4ePIibmxvdunWjRo0aJoPAzc3NmTt3LqtXr2bPnj3Mnz8fCwsLypUrZxRg1KlThw8//JAtW7YwefJkNBoNQ4YMeWqw07RpUxwcHAzPL8kqEULVqlVZs2YNy5Yt49ChQ2zevBlbW1vc3d3p1KkTDRo0yNF2P27SpEls3ryZFStWEB8fT+XKlZk4caLJ81Xyy83Njc6dOxMSEsKBAwdIT0/H1dWVbt26MXDgQEPgUZDq169veDZQZGQkKpWKMmXKMHr0aHr16mUoV7p0ab7++mtWrFjBDz/8gFqtpmPHjjkOdkDfChIQEMCePXvYs2cPmzZtIjY2FktLS8qUKUPz5s3p1KkTNWrUMMyjUqmYPn0606ZNY/369Zibm9O4cWMWLVrEoEGDTNbRuXNnypUrx+rVq9myZQvx8fE4OjpSvnx5RowYYcgM9eabbxIZGcnevXuJiorC0tKSsmXL8uWXXxqeWg45O18bNGhA2bJlCQsLM5pXCFGwdC9mLzYDnU7HgQMHWL9+PVu3biUyMhInJyf69OmT7/GTCl1RjbIVQgjx3MgYsB4YGJivvtLixderVy80Gg2bN28u7qqIYpSeno7FLHhSNjbdOLnHnlcrKmx6eqH/DLzhW4g1KViHDx9mw4YNbNq0ifv371OiRAm6du1K7969admyZZ4ehv04OeuEEEIIkScnT57k+vXrjB49urirIoR4Dr355pvY2dnRqVMnevfuTdu2bZ+Y6CcvJNgRQrw0UlJScvTwyOxS9z7vnvftj46ONkm5/DgbGxvDwPrCpNFoiI6Ofmo5BwcHo4eyvihOnjzJ7du3Wb58OU5OTs/ns3VEIcj5c3aEANi4cSMdOnQolK7KGSTYEUK8NIKDg5k0adJTy506daoIalP0nvftHzBgAHfu3HlimSFDhjBs2LBCr8u9e/fo3LnzU8stXLgwV+mmnxeLFy/mzJkzVKhQAX9/f0lMIABoqTzNXm394q7GC0n7gqae7tGjR6GvQ8bsCCFeGpGRkVy7du2p5Qr6WTXPiud9+//66y9DOujseHh4mDyrqTCkpqby119/PbVc9erVi+SBrkIUt/T0dJYtW8awOD+ya92RMTt5t6xizsfE+V0v/ADieSJnnRDipeHi4vLMdtEqCs/79tepU6e4q2BgaWn5zAaFQgghHpFgRwghhBBCiGfYi556ujApi7sCQgghhBBCCFEYJNgRQgghhBAFwo176LOyGfu4rmlZIYqCBDtCCCGEEKJAfFNiJx62xtO6VICZLWTkRH7oFIocv543cXFx/PDDD7Rp04a6dety4sQJAKKiopg+fTpXr17N1/LlzBNCCCGEEAXmxmAwN5dLTPF0t2/f5s033yQsLIwqVapw8eJFw/PgSpYsSUBAAP/++y+zZs3K8zrkTBRCCCGEEEIUufHjxxMfH89ff/1FqVKlKFWqlNHnXbt2Zfv27flah3RjE0IIIYQQQhS53377jY8++ogaNWqgyKILXsWKFQkLC8vXOqRlRwghhBBCiGfY8zgWJyeSk5NxdXXN9vP4+Ph8r0NadoQQQgghhBBFrkaNGhw6dCjbz3/99Vfq1s1fKj8JdoQQQgghRKFQp2vRak1TUQsBMHr0aNatW8eUKVOIjY0FQKvVcvXqVfr378+xY8f45JNP8rUO6cYmhBBCCCEK1P6NdwheFo5Kp3/qjndjO96ZWK24q/Xc0r2Yvdjo168f//77L19++SVffPEFAG3btkWn06FUKvm///s/unbtmq91SLAjhBBCCCEKTNjVJH5fGm64yFQAF4/Ecnr7Hep2dC/Oqoln0BdffEH//v3ZvHkzV69eRavVUqlSJbp3707FihXzvXwJdoQQQgghRIG4eKsip766TenHputUSkLHnqRux87FUi/x7ElKSqJp06YMGTKE4cOH57u7WnZkzI4QQgghhMi3pFRLrkS8gnlWY3QUCqrEXSTtblLRV0w8k2xsbLhx40aWKacLkgQ7QgghhBAi346d80GnVHLH3pYbjiW46uzIDScHYqwsAbjvWpKwib8Xcy2fTzqlIsev50nbtm3Zs2dPoa5Dgh0hhBBCCJFvqclWoNORZm5OtK0NcVZWRNtYc93ZiUgba5RaBTdC7hd3NcUz5KuvvuLy5cv079+fI0eOEB4eTlRUlMkrP2TMjhBCCCGEyDc1KsimS9I9O1uS1Vbo4p6vlgdRuLy9vQE4f/48a9euzbacRqPJ8zok2BFCCCGEEPmi1erATKV/o9PhlJyCdbqaBEsL4qwsUWo0pKRbYpkSX7wVfU7pCnlcS3H5+uuvC33MjgQ7QgghhBAiX/4ISTb8XSkqBoeUVP2bhETu2dpgHxOPTqEkycymmGoonkX+/v6Fvg4JdoQQQgghRLbS1Bo8Z6TwIAFI02daq14Kjo+wwd5KP/z73/A0UCiwSUt7FOj8p1RiEp5hd1AAGktz0s6EY/GqRxFvhXhZSbAjhBBCCCGy9OGOROYe1cFj2aQv3IcSk5JY20fFO69as2NPEqDCQqM1WYYCUGgVmKVrsE9L4bjvdppeGVYk9X9RPG9Z1nLqm2++eWoZhULBV199led1SLAjhBCiWERERNC5c2eGDBnCsGHP/4XPxo0bWbduHREREaSnpxMYGEiZMmUKfD0+Pj507Ngxz90//P392b59O6dOnSrYiokXSmSiGtcZaZCoAzMFWKr0AU+KBjI9R6fvOg2+NXUk65SggDhLCzQKBSrdozI2iSlUu/oAgLj/Z+++w6MouwYO/3bTSK8QQkICBKRIE0MVEKVDEnoREaSDFBXBFytFfBU/lF5CpBiKdIQQigihS0kogvQSCCVACOk9u98feXfJsimbTjn3de2lO/PMzJmyYc48ZazNiFUZlfTuiOdUbn/HFAoFarW60MmODD0thBBCFFJISAgzZsygUqVKfPHFF0ybNg17e/vSDqvQ7t27h5+fH5cvXy7tUEQJSEpTk65S0+y3FMrOTIMEFZgqwcYUyhiDuTHYmsIztQymXyeg/F9yo1IqOV3BiQdWZVADdlHx1Dt1M7N2B7BISqNMShqh1eaQkZRe4vsoni8qlUrvk56ezvXr1/n000/x8vLi4cPCDVcuNTtCCCFEIR0/fhzIHFnI1ta2WLd15MgRjIxK5sn4vXv38Pf3p0KFClSvXr1EtilKVlh0BjtvqBjzlxqVZlQstRLMlZm1OQoyh5NWqyFdDUYKKGMEibqJSqJSSRlAoVJhnpzMksY16BByjS93ndEpZ5Ku4kyVqow47c9flRW0+rEeZh++XSL7Kl4MSqWSypUrM3PmTN5//33Gjh2b67DUeZFkRwghxCshPT2djIwMzMzMinzdkZGRAMWe6ADFEr94PsWkqDl6V001ewVV7RWERKiJTVXTwlWBiZGCC5FqwuPUVDBX888DNQ9TFdxLULP5KsSlqFGkq4jJUKBSKzFWQhkjNdGJKtQqNaSpwEiZmcQYKcAs6y2hOjPB0dTgpGZAXNrT2SaZTday9uPZ72BNu6g4bJJTsEtOp2x8MmerOKMms6h2UdJQm6tZ1Hwwj62cOL4mnTe/96fltWMYE0+8aRlSrCzB2hwL4wyMrS0wa+COWZcGqBLTSfv7FkbuthiPeAeszIvv4D9vXtKhp/PSsmVL/vOf/xRqHZLsCCHESywwMJCpU6eyaNEiLl26xMaNG3n48CEuLi4MHjwYb29vIPf+M35+fvj7++v0QdH0+/jrr7+YPXs2hw4dIi0tjYYNG/LFF1/g5OTE5s2bWbNmDffu3cPFxYWxY8fSqlWrbOPctWsXK1as4Pbt29jb2+Pr68uQIUMwNtb9ZyoyMhJ/f38OHz7M48ePsbOzo0WLFowaNQoHBwe9mNetW8fWrVv566+/iIyMZOHChXh5eRl8/Pbv309AQABXrlxBoVBQrVo1BgwYoN0PzXHT0Ky7QYMGLFmyxKBtaGLduHEjQUFBBAUF8eTJEypVqsTo0aNp3ry5Tvns+uxkZGSwfPly/vjjD6KionB3d2fw4MHcvHlT79xpxMfHM2/ePPbt20dCQgI1atRg/Pjx1K5dG3h67QBMnTpV+/+afVOpVKxdu5Zt27Zx7949FAoFjo6O1K9fny+//FLv3In8Cbquou92FfFpmcmCqxXcic+c524N9csp2Hb9f9mGpn+M5n5Y/b9khac1gGkqSFIpwOR/00z/N+iApuYmq6zf055JdDQrM1FA2tNsxz49AyUQb16GhDJmNAmLxDw5jtjyChwi0snACFNSqcwtzK7Hs+WNd7BJjqX5jWM4JTwm2sKa8onxlE2Ng6g4iMqyvTOXYNmfKABNqq/6ehWK0BkoalXMx1EVL5qQkBCUysL1upG/REII8QpYsGABKSkpdO/eHVNTUzZu3MiUKVNwc3Ojfv36BV7vuHHjKFeuHCNHjiQ8PJx169YxceJE3nnnHbZs2UKXLl0wNTVl3bp1/Oc//2Hz5s24uuoOOXvw4EHu3r1Lr169cHR05ODBg/j7+xMREcHkyZO15SIiIhg0aBBpaWl06dIFNzc3wsPD2bRpEyEhIaxcuRIrKyuddX/zzTeYmZnx/vvvo1AocHJyMnjfNmzYoO2HM3ToUAC2b9/OhAkT+PLLL+nevTv29vZMmzaNLVu2cPr0ae3IQlkTL0NNmTIFY2Nj+vfvT1paGr///jsTJkxg8+bNeQ508NNPP7Fp0ya8vLzo378/0dHRzJgxI9flxowZg729PUOHDiUmJobVq1fz8ccfs23bNiwtLXnjjTcYNGgQy5cvp1u3brzxxhs6+7Zs2TIWL15MixYt6NGjB0qlknv37nHw4EFSU1Ml2SmEDJWaEXsyEx3IzEk0iQ7A7Ti4HZelWiW3ZCUnCoVulUtOEnPoV5OmOzybbXqGdr1qhQKnuHgmbt3FfStbbrnbYKJKo1b0feziH2IdeZ/O55Op8egatilPXzL6zIBv+iFn+X9lcjLpI5ZifGiKATshnlcBAQHZTo+OjubgwYNs3rxZ+/e3oOQvkRBCvAJSU1MJCAjAxMQEgNatW9OlSxfWr19fqGTn9ddf12tisGbNGh4+fMi6deu0yUfDhg1577332LJlC2PGjNEpf/XqVQICAqhRowYAffr0YeLEiQQGBtK9e3fq1KkDZN7Qp6ens3r1apydnbXLt2nThkGDBrF69Wq9WikrKysWLlyY7xvv2NhY5s6di5ubGytWrNDuR8+ePXn//feZPXs2bdu2xdramk6dOnHixAlOnz5Np06d8rWdrOzs7Jg1a5b2beJeXl4MHDiQzZs36x2zrK5fv86mTZto2rQpc+bM0T4FbdOmDf369ctxuRo1ajBp0iTt9ypVqjBp0iR27dpFjx49cHNzo3Hjxixfvpy6devq7VtwcDCVK1dm1qxZOtPHjh2b730vTlFRUVhaWmqb/8XHx6NWq7G2tgYyfxtxcXE4Ojpql7l//z4uLi45fo+IiMDZ2Vl7rop6Gw8S4W6W5KZUqfJKQTJVSk7V+f7I1obddepgE5OISUY6no8jKZNozH1FJcpm3KLxndOFDk1x5S5Q/OejpLaRm5d16OkPP/wwx3lOTk5MmjSJb7/9tlDbkNHYhBDiFdCrVy9togNQrlw53N3dCQ8PL9R633vvPZ3vmqf/nTt31qllqVatGpaWlty+fVtvHY0bN9YmOpA53OiAAQOAzBtqyLyROHz4MC1btsTMzIzo6Gjtp0KFCri5uWkHCciqX79+BaphOH78OElJSfTt21dnP6ysrOjbty+JiYnZbq8w+vbtq72RgsxE0sLCIttjltWhQ4e0y2dt7lG1alWaNGmS43LPJkKaJniGXhNWVlY8fPiQM2fOGFS+tDg4OOj0c7KystLekAKYmprq3JACejegz34vX768zrkq6m2Ut4RKNnnuWvHSNI0zMeBWUa3GLJuk6LpzWQBqPbyPc0Jc5nDUahMeUYU0Ct/3TN20JlD856OktvEqunnzpt4nLCyMmJgYHj58yH//+1/KlClTqG1IzY4QQrwCnm06Bpmd6SMiIop0vZp/7LNrPmVjY0NMTIze9EqVKulNq1KlCgB372Y+uQ0LC0OlUrF161a2bt1qUCwA7u7uue9ADjTb1cSRW2xFxc3NTW+ara1ttscsq3v37gHg4eGhN8/Dw4OjR49mu9yzx8vOzg4gz+1pjB49mgkTJjB06FDKli3Lm2++SfPmzWndurVOYi3yT6lQsKyDkl6BKh4ngbESqtjClSeZ82vYQ0MXBasvqjMrXlTq7Pve5EeaKnMgAhMlpKogJQNsTMDCBNRpmdMgs68OiszyGgoFKrL2EMoUb14GpUqFU2LCs3tIIvbYovv3R4USJaqnXY/QbbqWkWV+qrsbpite/PdzveoUCgVly5bF3Dz7wSaSkpJ49OhRgf+WgyQ7QgjxSsipg6f6f09vFbncJGVkZOQ4L6chkHOarlYb1iQmJx07dtQOqvCs7EYpK+wTwZKU1zkqaoU9R3Xr1uWPP/7g77//JiQkhNDQUHbt2sXSpUv59ddfS2RkupfZO+5K7oxQcOoBVLYFFysFV6LUxKbCm86Zv9npzdXcjQc3CxX/PlQTnaEgOV3NpisQkaCGDDV3EkCpUGJvDvZlIDwWbsWrMxOkVFVmJpWmeto3J131NGlSKjNHZLM2zazpUashJg1UKr1409FPdqKtLUlVKklTGmGq0v07YkQa6RiRRhlMSSINJQ8tHbBUp6L0cCStlgcm1coCJlhUc8CsZnmUqRmk3kvGyNMR00aVivqQi1JQuXJlVq5cmWOT223bttGvX79c/x3KiyQ7QgghsLHJbDMTGxurN6+oazCeFRYWpjftxo0bwNPaBzc3NxQKBenp6TRu3LhY49FsTxNHo0aNdObdvHlTJ7bSpqlFu3Xrll7t0K1btwq17tySYAALCwtat25N69atgaeDOmzdulXbFFEUXBljBc2yXGavOeieD3cbBe42AEZUtHs6/cM6hm8jLlnF2QgVPVan8zCezHfpWP3vBaJZ61YUisx5OfThye5KSTc2Jty5HGFRUbz25OmLIY1JwphkErDBJnYeCmsLjIC8nt1nHY3tVaN+SYeezuvhSlpaWqFHY5M+O0IIIbC0tMTR0ZGTJ0/q/ONz584d9u/fX6zbPn78OJcuXdJ+V6vV2hF6NEM829nZ8dZbb7Fv3z7OnTuntw61Ws2TJ0+KLKbGjRtjbm7OunXrSEh42gQnISGBdevWYWFhkWt/mJLUokULANauXYsqyxP3a9eucezYsUKt28LCAsi+aVt0dLTeNE3fq+ySZvF8si6jpHklYx58ZYX6BytU/7XkXec0SEzLrO1J+98TdbU6s2lbDkxzmH6mhgdzundgZcsmRNuYojROwViZyKOKVbBVL0VhbVH0OyWea7Gxsdy+fVvbH/Hx48fa71k///zzD2vXri103yap2RFCCAFA7969WbRoEePGjePtt98mMjKSTZs24enpyYULF4ptu9WqVWPkyJH06tULJycnDhw4wIkTJ+jUqRN169bVlps0aRJDhw5l2LBhdO7cmerVq6NSqbh79y4HDx6kU6dOeqOxFZS1tTXjxo1jxowZfPjhh9qmc9u3byc8PJwvv/xSb5jr0uLp6Um3bt3YsmULH330Ea1atSI6OpoNGzZQvXp1Ll68mGcNTU4qV66MpaUlGzdupEyZMlhbW+Pg4EDDhg3p2bMnderU4fXXX6ds2bJERkayZcsWTExMaNeuXRHvpSgpCoWCvUOtiEtR0/7XBP6+owJFWq7jQqv+a4nPsOhs55mkZ1A2MYknto5satYKq/gEfI//TY3bk7ItL15+s2bN0g7Tr1Ao+OSTT/jkk0+yLatWq5k+fXqhtifJjhBCCAAGDhxIfHw8O3bsIDQ0lMqVK/PNN99w8eLFYk12WrZsiYeHBytWrODWrVs4ODgwdOhQvXcrlC9fnlWrVvHbb79x4MABdu7ciampKc7OzrRo0YK2bdsWaVya5GvlypX4+/sD8NprrzFz5swcX45aWiZNmkTZsmXZunUrc+bMwcPDg0mTJvHvv/9y8eLFbPszGaJMmTJ8//33LFq0iF9++YXU1FQaNGhAw4YN6d+/P0eOHGHdunXEx8fj4OBA7dq1GTRoEK+99loR76EoadZmCo6OtmLbvyl0WZUGpgpI1c94tn5gikKhQEH2+ZBKoaBcfIK2KVGa0oj7tcpSI5uyImdqxcvTGKtdu3ZYWVmhVqv5/PPPee+992jQoIFOGYVCgaWlJW+++Wa+XgSdHYW6uHo+CiGEEKJUffrpp5w8eZIDBw7kOCCBEHm5F5fOu8tTuB6pRp2ROSDbwDeULO7xtAnaxP/e4eKN7Jc3TUuj9sPHKNMzsI+OYUBgC+zLZz/6lsjegvo7DS47+kzHYoykaE2dOpUePXpQu3btYtuG1OwIIYQQL7jk5GS9keeuXr3K0aNHadasmSQ6olAqWBtzaVzut4xe9cy5eD0x2+GvU42NSVUqscxIpcLdSEl0hNbkyZOLfRuS7AghhHhlxMTEkJaWlmuZMmXKFLo/TnJyMvHx8XmWc3JyKtR2NLZv386OHTt46623sLe3JywsjC1btmBsbFxk/ZiEyE2X1las3JyYOZDBswmPQoEasIyNJ9kop6EMRG7UypdzNDaNI0eOcOrUKWJiYnQGWoHMJm3ffPNNgdctyY4QQohXxsSJEzl16lSuZby9vZkyZUqhtrNnzx6mTp2aZ7mQkJBCbUejRo0a7N+/n3Xr1hETE4OlpSVeXl4MHz5cO0KaEMXJyCjnPiVG6RlUuPcQhUqFeeUX591XovhFRUXRuXNnTpw4gVqtRqFQ6Lz/TTNNkh0hhBDCAJ9++mmewyKXLVu20Ntp2rQpCxYsKPR6DFW7dm3mz59fYtsTIntqUCgza3cAFAqM09JpcfoiVolJxNlYonS0LN0QxXNl4sSJ/PPPP6xZs4bGjRtTpUoVdu/eTeXKlZk1axZ///03O3ca3l8pO5LsCCGEeGXUrFmzRLbj5ORUZE3UhHhRmJsmkpRmhXl6Ok3OXAIF2MUnaecbp2VQ7q3CP0wQL48dO3YwYsQI+vTpw+PHjwFQKpVUrVqVBQsW0L17dz755BN+//33Am/j5RnHTgghhBBClJomNU6iUKmwTk4l0dEWy5TM/nFqINbOGvuYJBqNrFa6Qb6g1AqFwZ8XSXR0NK+//jqAtq9k1v6O7dq1Y/fu3YXahiQ7QgghhBCi0KzNk3irxhEskpJIMzPlnocL99zLc6eyKwk2VtikJmFqZVLaYYrnSIUKFYiIiADAzMyMcuXKcfbsWe38u3fvFvilyBrSjE0IIYQQQhQJB7s4Ri6uwrLuoUTbW5NmZgpqNZWv3qPZ4ialHZ54zrRs2ZI9e/bw1VdfAdCnTx9++uknjIyMUKlUzJ49m/bt2xdqG5LsCCGEEEKIImNZ1pxukzw4O+YY8eYWlI2KoeoHlXDsWrW0Q3txvVit0ww2fvx49uzZQ0pKCmZmZkyZMoV///1XO/pay5YtmTdvXqG2IcmOEEIIIYQoUpW7VqFy1yqlHYZ4ztWpU4c6depov9vb2/PXX38RHR2NkZER1tbWhd6GJDtCCCGEEEKI54adnV2RrUsGKBBCCCGEEOI59rKOxgZw+/ZtRo4cSfXq1XFwcODgwYMAREZGMm7cOE6fPl2o9UvNjhBCCCGEEKLEXbhwgRYtWqBSqWjcuDHXrl0jPT0dyHxf2eHDh0lISGDp0qUF3oYkO0IIIYQQQogS9/nnn2NnZ8exY8dQKBSUK1dOZ37nzp1Zt25dobYhzdiEEEIIIYQQJe7gwYOMGjWKsmXLZvs+HXd3d+7evVuobUjNjhBCCCGEMExyKlQcBpFxmd/fqQ37ppVuTK8AtfLF64tjCJVKhYWFRY7zHz16hJmZWaG2ITU7QgghhBDCMOZ9nyY6AMHnwaxn6cUjXmgNGjQgKCgo23np6emsXbuWJk0K9zJaSXaEEEIIIUTevL/LfnqqCsIelmws4qXwxRdfsGvXLkaNGsX58+cBePDgAX/99Rft2rXj4sWLTJo0qVDbkGZsQgghhBAib0E5DwGs7P0zjKpRgsG8Wl7EIaUN0bFjR1asWMHHH3/MkiVLAOjfvz9qtRobGxsCAgJo2bJlobYhyY4QQgghhCicW48ASXZE/n3wwQd0796dP//8k2vXrqFSqfD09KR9+/ZYW1sXev2S7AghhBBCiMJJSy/tCMQL4ssvv6Rv377UrVtXO83S0pJu3boVy/akz44QQgghhMjd3cjc58enlEwc4oX3448/avvnADx+/BgjIyP27dtXLNuTmh0hhBBCCJG7Wh/nOluenhevl7XPjoZarS62dcu1KYQQQgghchebVNoRCFEgkuwIIYQQQoicJSXnWUQBVDwdke28Lw+mo5iZ+TH9OZ2zD6R/jyg50oxNCCGEEELkzGmQQcUabrhA+Bvldaa9sSKdM1m6+6Spof5KUE8oygBffi9bM7awsDBOnToFQExMDABXr17Fzs4u2/INGjQo8LakZkcIIDAwEC8vL0JCQko7FJGDKVOm4OXlVdphvBCep+s5JCQELy8vAgMDSy0GHx8fhg8fXmrbF+KFplZDomGDDzg+TtX57r5IN9HJqv06qd15lX3zzTc0bNiQhg0b0qZNGwA++ugj7TTNx8vLi4YNGxZqW1KzI4TIUWBgIHFxcfTr1++l3J4QL7qQkBBCQ0Pp169fkbyPQgg9Vu/lq7hZVGbfnvux6YTHqyGHGok/wwsdmXhBLV++vES3J8mOECJHgYGB3L9/v0STnZy29/XXX/PFF1+USBwvuk6dOtGuXTtMTExKO5TnwqZNm1C8ZE1ANEJDQ/H398fHx0eSHVG0vl8PX6/N1yIK4IMvDpDx2UdUWJQBRka5l5+Zzrh68N+3jbA0fTl/o0XlZWrGNnDgwBLdniQ7QrwiEhISsLS0LO0wCszY2Bhj41fvT1ZycnK+993IyAijPG4yXiWmpqalHYIQz5eEZEjPgO0hsO8cJKfA2Vtw4Q4UYgRgNRBlbkmrT69ApeoGLTP3LMw9mwGAqQLaeYCbDXjYQFsPMDeB27FgbKSgflmwNlViZvzy3PiL4vfq3TkIkQu1Ws3KlSvZuHEjDx8+xMXFhcGDB+Pt7a0t8+eff7Jz506uXLlCVFQUFhYW1K9fn5EjR1KtWjWd9Z09e5alS5dy+fJl4uLisLW1pVq1agwbNow6deoYHFdgYCBTp05lwYIFnDlzhsDAQB4/foyHhweDBg2iffv2OuV9fHxwcXFh/PjxzJ8/n3PnzmFra8u2bdsAOHXqFL/++iv//vsv6enpVKpUiV69etG1a1edddy/fx9Ap6/M4sWLtd9v376Nv78/J06cICYmhrJly9KmTRuGDx+Oubm5TkyRkZEsX76cw4cP8/DhQ6ysrKhWrRoDBgygSZMmeW5vypQpbN++Xa8fytWrV/Hz8+P06dMkJSXh6uqKt7c3/fv317nh1yy/f/9+5s2bx759+0hISKBGjRqMHz+e2rVrG3w+NLZv38769eu5ffs26enpODo6UqdOHT777DPs7e215Qw9TpoY9+zZw9y5czly5AhPnjxh1apVDBo0iLfeeov/+7//04tj/vz5rFixgtWrV1O9enXt9ZL1XAGkpaWxZs0adu/eza1btzA2Nsbd3R1vb2/69OmjLRcfH8+yZcvYt28fDx48wNLSkkaNGvHRRx/h5uaW7+OksXbtWtavX09ERATly5end+/e9O3bV6eM5tpdsmSJzvSQkBBGjhzJ5MmT8fHxASAlJYUVK1awe/duHjx4gImJCc7OzjRr1oyPP/4413Vqpn355ZfMmjWL06dPo1AoaNy4MZ9//jlOTk462zf0mBga0+HDhwkICOD69eskJydjZ2dHrVq1GDNmDB4eHgYdT831AuDr66udPmzYMKysrJg1axbz58+nSZMmOsulpqbSsWNHqlWrxuLFi3WOx/jx45k9ezb//vsvJiYmtGjRgo8//hgHBwe9daxatYpdu3Zx584dTE1NeeONNxgxYgQ1atQwKH5RCuKSYMh82Hgssy9OEVMATkkJDDtzlE88XsuxCVtOUtWwPezp9y8OZ52bGa+xIoNPvRTMaKl8aWtsRdGSZEeILBYsWEBKSgrdu3fH1NSUjRs3MmXKFNzc3Khfvz4A69evx9bWlm7duuHk5MSdO3fYsmULQ4YMYdWqVbi7uwOZI42MHj0aR0dH+vbti4ODA1FRUZw5c4YrV67kK9nRmDdvHklJSfTs2RPITIK++uorUlNTtTeAGg8ePGDUqFG0adOGd999l8TERAAOHjzIxIkTcXR0pH///lhYWPDnn38yffp07t69y+jRowH47LPPmD9/PtHR0YwfP1673sqVKwNw8eJFRo4cibW1Nd27d6dcuXJcuXKFtWvXcvbsWZYsWaKtjbh37x5DhgwhKiqKTp06UatWLZKSkjh37hwnTpygSZMmeW4vOxcuXGD48OEYGxvTq1cvHB0dOXToEPPmzePq1atMnz5db5kxY8Zgb2/P0KFDiYmJYfXq1Xz88cds27YtXzVfQUFBTJkyhTfeeIORI0diZmbGgwcPOHLkCFFRUdpkJz/HSUNz3QwZMoSkpCScnZ1p2bIlBw4cICYmBltbW21ZlUrFzp07qVatGtWr5/wkNS0tjTFjxhAaGkqTJk3o2LEjpqamXLt2jeDgYG2yEx8fz+DBg4mIiMDX15cqVaoQGRnJxo0b+fDDD1m5ciUuLi4GHyeNdevW8fjxY7p3746FhQW7d+9m5syZxMbGFnjwgBkzZrBt2zY6d+7M+++/T0ZGBuHh4Zw8edKg5R89esSIESNo1aoV48aN4+rVq2zevJmEhAQWLFigLZefY2JITKGhoYwfPx5PT08GDRqElZUVkZGRnDhxgvDwcIOTne7du5OQkEBwcDDjx4/XjmJUrVo1ypYty4IFC9i2bZteshMcHExMTIzOww2Ahw8fMmrUKN59911at27NpUuX2LZtGxcvXiQgIIAyZcoAkJ6eztixY/nnn3/o1KkTvXv3Jj4+Xvt30N/fn1q1ahm0D6KEfbUaNvxd7JuxT4zPd6JjqHQ1/N9JNa87qhlYW5IdkTdJdoTIIjU1lYCAAG1fh9atW9OlSxfWr1+vTXbmzZunV2vRuXNn+vXrx5o1a5g0aRIAx44dIzk5me+//75AtQbZiY6OZu3atVhZWQHQs2dP+vbty6xZs2jbtq32ZgTg7t27fP311zo3NBkZGfz000+Ym5vz22+/UbZsWQB69+7NiBEj+O233/Dx8cHd3Z1WrVqxZs0aUlJS6NSpk14s06ZNw8nJiYCAAJ0koVGjRkycOJGdO3dqE7Aff/yRR48eMW/ePJo2baqzHpVKBZDn9rIzc+ZM0tLSWL58ubZWrU+fPnzxxRfs2rULX19fGjVqpLNMjRo1tOcIoEqVKkyaNIldu3bRo0cPg7YLsH//fiwtLVm0aJFOsjJy5Eidcvk5Thqenp589913OtO8vb3566+/+PPPP+nVq5d2ekhICA8ePOC993LvRLxmzRpCQ0MZNGiQNqHV0JwDyKxJu3v3LsuXL+e1117TTvfx8aFv3774+fkxZcqUXLeVndu3b7NhwwacnZ2BzGtuyJAhLF26lC5dumin58f+/ftp1qwZU6dOzfeyAOHh4fzwww+0bdtWO02pVLJhwwbCwsKoVKkSkL9jYkhMBw4cQKVSsWDBAp0ak6FDh+Yr/rp161K1alWCg4Np1aoVFSpU0Jn/zjvvaBObrAny1q1bsbGx4Z133tEpf+fOHcaPH6/TZ65KlSrMmjWLtWvX8uGHHwKZiWtoaKje77lnz5706dOH2bNn69XMiefEztMlspnL5SrkXaiQdtxUM7Bo/ml9IbxMfXZKmgw9LUQWvXr10unUXa5cOdzd3QkPfzpsjCbRUavVxMfHEx0djb29PR4eHpw/f15bTpOQHDhwgJQUw4btzEvPnj2169Vso0ePHsTGxhIaGqpT1tbWVu8m+uLFi9qn05pEB8DExIQBAwagUqk4cOBAnnFcu3aNq1ev0qFDB9LS0oiOjtZ+6tevj7m5OceOHQMyx8//+++/adasmV6iA5k3lwURFRXFP//8Q8uWLXWaDyoUCgYPHgxkPsF+1rODH2iaeWU9x4awsrIiOTmZw4cPo86hOUh+jlNW/fv315vWpEkTHB0dCQoK0pkeFBSEkZERHTt2zDXeXbt2YWNjk+0NteYcqNVqdu7cyRtvvEG5cuV04jU3N6d27drZxmuIDh066CQ0JiYm9OvXj4yMDA4dOlSgdVpZWXHjxg2uXbtWoOXLli2rk+iA/vWQ32NiSEya3/C+fftITy++4Xe7detGamoqO3fu1E67d+8eJ0+epEOHDpiZmemUt7S01EmkIfNvoqWlpc5vaefOnVSqVImaNWvqHI/09HQaN27M2bNnSU7O+yWUJSUqKkrnb3B8fDxxcXHa76mpqTx+/FhnGU2T2py+R0RE6PzuX5RtpFSwpSQkmRR/P7nKWXblRT0fz34XxUNqdoTIwtXVVW+ara0tERFP3wp96dIlFi9eTGhoKElJSTku365dO3bs2MHy5ctZs2YNderUoUmTJrRv375AzYAA7ZPmrDTNvO7evasXy7Od1O/duwdkPq19lqenZ7bryc7NmzcB8PPzw8/PL9syUVFRQOZNo1qtzrWJVUHkti+VK1dGqVRmuy/PnmNN0x/NS80MNWjQIE6dOsWECROwtbWlQYMGvPXWW7Rt21Zbg5Of45RVds2YjI2N6dChA6tXr+bWrVt4eHiQlJREcHCwNhHKze3bt6levbreDW5WT548ISYmhmPHjmnfe/Csgian2TVH1Jw7Q6657IwfP57JkyfTt29fXF1d8fLyokWLFrRs2dKgOHP6vcPT6yG/x8SQmHr37s2BAwf48ccfmTdvHvXq1aNZs2a0b99ep69XYXl5eeHu7s62bdu0faMCAwNRq9V6Tdgg83g8O4Kfqakprq6uOufo5s2bpKSk5Hg8ILMWunz58jnOL0nP9jfK+sAIMvfx2d/Ps3+jn/3+7L69KNsw+3EgtJli8HtzCiLVyIhNdRoX2/oB3K1hXIOnv7sX9XwU9F5A5I8kO0JkkdMNkuZpTkREBMOHD8fS0pIhQ4ZQqVIlypQpg0Kh4Oeff9ZJfkxNTVm4cCHnz5/n2LFjnDp1Cj8/P/z9/Zk+fbpeE5KilrVJW1HTHI/+/ftnW1sDYGNjU2zbL4ycRinLqXYmJ+7u7mzYsIETJ05w8uRJTp06xfTp07Xn2M3NrcDHKadz17lzZ1avXk1QUBAfffQR+/btIzExUWcAjcLQxNuoUaMSHxpUI6cOxxkZGXrTWrVqxbZt2zhy5AinTp3ixIkTbN26lTfeeIOFCxfmOfR2bgmR5ljk95gYEpOdnR0BAQGcPn2a48ePc/r0aX755Rf8/PyYM2cOdevWzXM7hurWrRtz5szh4sWL2sEratWqpdMcryCqVq3Kp59+muP8okzaRBFqWh2uLoDVByEoBA5dAFXeixkqVWlEmF1ZnGMec9uhXKHWZQTYmIFaBWkqMDOGWo4wsLaCPjWUWL9iQ1VLM7aCk2RHiHwIDg4mMTGRX375RWeUK8h8EpzdELe1a9fW9tmJiIjg/fffZ9GiRQVKdsLCwvSmaWoPsntK/SxNmRs3bujN00zLup6cbjw1gzAolUoaN879CV7FihVRKBRcvnw5z/jyM7KOpn9CdvsSFhaGSqUy6JgUhqmpKc2bN6d58+ZA5ghbn3zyCatXr+Y///lPvo6TIV577TVee+01du7cyahRowgKCsLa2pqWLVvmuayHhwdhYWGkpqbmOBSzvb091tbWJCQkFEm8WWmu06yyu+ZsbGyIjY3VK5tT7Y+trS2dOnWiU6dOqNVq5s2bR0BAAAcOHMi15sFQBTkmhsRkZGSEl5eX9u/I1atX6d+/P0uXLmXOnDkGx5fXb8bHx4eFCxeydetW3n77bSIiIrR9b5519+5d0tLSdJLE1NRU7t69q1OrXLFiRZ48eULDhg0LXNMnSlEFB5jYNfOTk0cxUGUkxOevBshUlUHVxxHs/ak6NgtUYOD18U1jmNZCbklF8ZC/UkLkQ9a+DVlt2bJFr21udHS03vLOzs7Y29vnu8mUxsaNG4mPj9d+j4+PZ9OmTVhbW/Pmm2/muXyNGjUoX748gYGBREZGaqenp6ezcuVKFAoFb7/9tna6hYUFsbGxevtbvXp1PD092bRpE3fu3NHbTnp6unYfbW1tadasGUePHuX48eN6ZbOuO6ftZcfBwYG6dety8OBBnf4RarVa+3bm4qw9y+78aobc1ex7fo6ToTp37sz9+/fZtWsXISEhtG3bNtemaRodOnQgNjaWpUuX6s3THG+lUkmHDh34999/+euvv7JdT3bN7gyxa9cuHjx4oP2uGQbbyMhImyxCZiIdFhbGw4cPtdNSU1PZsGGDzvoyMjJ02sdD5o2/prlkQX9jz8rPMTE0puyuHU0tcXaJXm4sLCwAclzOzs6OVq1asWvXLtavX0+ZMmXo0KFDtmUTEhL0jvOGDRtISEigVatW2mmdO3fm8ePHrF69Otv1PPu3ULyAytpC3O+QsTHfi15pUI4ypgqals/7FvP+CFBPMJZERxQrubqEyIe33nqLefPm8e2339K7d2+sra05e/YsR48exc3NTaepzdKlSzl27BjNmzfH1dUVtVrNoUOHCAsLY8CAAQXavp2dHQMHDtQOPBAYGEhERARff/21Qc3WjIyM+Pzzz5k4cSIDBw6kW7duWFhYsGfPHs6dO8egQYO0tRGQWSt16NAhfvrpJ+rWrYtSqaRhw4Y4ODgwbdo0Ro0axXvvvacdjjc5OZk7d+6wb98+xowZo43z888/Z/DgwYwbNw5vb29q1qxJcnIy//77Ly4uLowbNy7P7WVnwoQJDB8+nGHDhmmHnj58+DB///03HTp00BuJrSiNHj0aa2tr3njjDZydnYmLiyMwMBCFQqEdTU6hUOTrOBmiY8eOzJ07lx9//BGVSmVwE7b33nuPQ4cOsXTpUi5cuEDjxo0xMzPjxo0b3Lp1i4ULF2r36+zZs3zxxRfs3buXOnXqYGJiwv379zly5Ag1a9Ys0Ghs7u7ufPjhh/To0QMLCwt27drFhQsXGDp0qE5b+N69e/Pnn3/y0Ucf0aNHD9LS0tixY4fe9Z2YmEiHDh1o2bIl1atXx97ennv37rFx40ZsbGwMqu0ylKHHxNCYpk+fzsOHD2ncuDEuLi6kpKSwZ88eEhIS6Ny5c75i09Qaz507VzucuKenJ1WrVtWW6datG3v27OHQoUN4e3vr9S3QcHNzw9/fn+vXr1OzZk0uXrzItm3bqFSpks77kN577z2OHz/OnDlzOHnyJA0bNsTS0pKIiAhOnjyJqalpjn3UxAtGqYQnAWBv2L9ZauDIoHp4Aof6G2H8i37zUw0joLy13IYaSq2UZmwFJVeZEPng5ubG3LlzWbBgAcuXL0epVFKvXj38/Pz46aefdEZWefvtt4mMjOSvv/4iKioKMzMzKlasyNdff02XLl0KtP2xY8dy5swZNmzYQFRUFO7u7kyfPj3HJ7XZadmyJQsXLmTp0qWsXLmStLQ0KlWqpDdMNcD777/P3bt32bt3L5s2bUKlUrF48WIcHByoXr06q1evZvny5Rw8eJBNmzZhaWmJi4sLPj4+NGzYULseV1dXVq5cya+//sqRI0cICgrCxsaGatWq0a1bN4O2l51atWqxbNky/Pz82Lhxo/alomPHjs12RLOi1LNnT/bs2cPmzZu1Q/tWr16dzz//XKeJY36OkyEcHBxo1qwZhw4dwt3d3eD+HSYmJsyfP59Vq1axe/duFi5ciKmpKe7u7jrJlpWVFcuWLWPVqlXs2bOHgwcPYmRkRLly5ahfv362HdsN0adPHxISEli3bp32paKfffaZ3pDZ9evXZ8qUKSxbtow5c+ZQrlw5evToQa1atRg1apS2XJkyZXjvvfc4ceIEJ06cIDExEScnJ1q2bMmgQYN0RhssLEOPiaExderUicDAQIKCgnjy5AmWlpZUqVKFGTNm0Lp163zFVr9+fcaOHcvmzZuZPn06GRkZDBs2TCfZadiwIRUrViQ8PDzXvz3lypXjxx9/ZPbs2ezevRsTExM6dOjAJ598ojPcvrGxMbNnz2bjxo3s2LFDm9iULVuW119/vcj6kInnhF32yXF20oAM08x+kUZKBRc/VFJzRfadgq4OKYrghMibQp3fXrlCiBIXGBjI1KlTWbx4sV5fISGEyEvv3r3JyMhg06ZN2c738fHBxcVF3o8jsrf/PLzzbZ7FbtRx5K8xDRk0aJBO3y/jmelkrePxcoaTH8jz9vz46e2DBpf9/EDR1Wy/DORKE0IIIV5iJ0+e5MaNG3zyySelHYp4UbXK++2dauBk9xrZzkufYMz+Wxn8cU3NqHoKqjtlPyqmEMVBkh0hSklaWppBnahlCNeSlXXghpxYWVkV69Dez7uMjAyePHmSZzlbW9s8h38W+pKTk3UGIsmJk5NTrvNPnjzJnTt3WLFiBfb29gVugiiEoWIqWOc4r5WHEa30XyEmDCRDTxecJDtClJKzZ88ycuTIPMtt27atBKIRGob0f5o8eXK+BhV42Tx48ABfX988y0mzy4LZs2cPU6dOzbNcSEhIrvP9/f05e/YslStXZsqUKTkOTCCEQRYMhdG/5ji7CF/XI0SRkj47QpSS2NhYLl68mGe5+vXrGzS0sCga2Q2P/SxPT888n6q/zFJSUjhz5kye5WrWrPncvlz2eRYZGcn169fzLFfU70ISIk+K7jnOyrAwYemszAE2nu2zIwpvRqtDBpf9z/4WxRjJi0dqdoQoJTY2NnKz8hySc5I3MzMzOU7FyMnJ6ZVOpsULSppZFStpxlZw8lJRIYQQQghROJavbj9G8XyTZEcIIYQQQuTNOOfaBfWAViUXhxD5IMmOEEIIIYTIW/zvOc5Sf9OrBAMRwnCS7AghhBBCiLyZmcLiEfrTj/8I5qYlH88rRK1QGPwRumSAAiGEEEIIYZgR7TM/j+PAwhTM/zdaaFpa6cYlRA4k2RFCCCGEEPnjmPMLRIV4nkiyI4QQQgghxHNMmqcVnPTZEUIIIYQQQryUJNkRQgghhBBCvJSkGZsQQgghhBDPMWnGVnCS7AghhBBCiCKTmKri4zFnsbz6iDQbC8b9WIfaNWRAA1E6pBmbEEIIIYQoEhlqBX0/+Jd/E8zZWqsul81sONxjO6fPRJd2aOIVJcmOEEIIIYQoEkfPVOSukzNPbG1wj4/noYM9c5o2Y/X4U6UdmnhFSTM2IYQQQghRJEJTX6NCUgIdwm7zwMaKZBNTIk2MuW5hVdqhvdCkz07BSbIjhBBCCCGKhKlazeRD60kyN6blidOoFQp2Vm/KD426cO9JOhXs5dZTlCxpxiaEEEIIIYrEwH8OEmNpTLurJ0g2NifcpiJtroYy9PwBZm+KKu3wxCtI0mshhBBCCFFoKhU4J0dRPv4J617vwG2711AAaqBC7HUSjz2AoeVKO8wXklpasRWY1OwIIYQQQohCUyhge80G/FPWg1v/S3QAFEC4bVXSEzJKMzzxipKaHSGEEEIIUWhHztZif6WqhFu68N6F69SPOIdVagLXHKpww6EyiqiY0g5RvIIk2RFCCCGEEIW2w7I6iUamxJkl0//sOmxS4wGo++Bf/qrSkqP1WpZyhOJVJM3YhBBCCCFEoSUrjHCOTqDHv39rEx2NhndPYa40LaXIXnxqhcLgj9AlyY4QQo+Pjw/Dhw8v7TDyzcvLiylTppRqDH5+fnh5eXHv3r08yz4P8RbElClT8PLyKvbtZHd8iuPaDAwMxMvLi5CQkCJdrxCvkmuhj6l97wmxpqaYoOLb1r0Y1H0ky9/szJbanTnh3gDPmEhUKnVphypeMZLsCCGEeOmFhITg5+dHXFxcaYfyUlqzZg2BgYGlHYYoRf+ciSbOyJhx/xyg2+WjDDu5l3duXOe2Y23OuNXlsOdbqI3K8MmXN0o7VPGKkT47Qgg9mzZtQiFV4cXuyJEjGBkZlXYY+fb111/zxRdflMq2C3pthoaG4u/vj4+PD9bW1jrzOnXqRLt27TAxMSmqMF85v//+Oy4uLvj4+JR2KKKUrA5V0OvCSSaHrNFOG3BmD8GeSeyv1gIApcKIh5cTSivEF5o0Tys4SXaEeAElJCRgaWlZbOs3NZV21SXBzMystEMoEGNjY4yNS+efj+K4No2MjF7IpFOIvKjUajJUkJqh5vQDFZsvweyzme+9MZQJKmqYprHpfTOqOWb/u09NSOVhWgb9/j2mN88xMZJ4MzMylEqMVCos1LDJ7wI9RtQq4F4JkT+S7AhRCgIDA5k6dSoLFizgzJkzBAYG8vjxYzw8PBg0aBDt27fXlvXx8cHFxYXx48czf/58zp07h62tLdu2bQPg9u3b+Pv7c+LECWJiYihbtixt2rRh+PDhmJubAzB37lwCAgL4/fffqVatmk4s8fHxtG/fniZNmvDzzz/rbHPJkiU6Zffv309AQABXrlxBoVBQrVo1BgwYQKtWrXTKeXl54e3trdffQrPfixcv1vb5iImJ4ddff+XgwYM8evQIc3NzXFxcaNeuHQMGDCjQ8T1+/DiLFi3i6tWrWFlZ0bZtWz766CMsLCx0yt27d49FixZx/Phx4uLiKFeuHO3atWPIkCGUKVOmwGWflZGRwYwZM9iyZQtjxoxh4MCBOR4nzbTu3bszf/58Lly4gJmZGa1ateKzzz7T24fQ0FDmz5/PlStXtPvarVs3+vTpw7BhwxgxYgQAKpWKtWvXsm3bNu7du4dCocDR0ZH69evz5Zdf5it5mTJlCtu3b9fp46KZtn//fubNm8e+fftISEigRo0ajB8/ntq1axu8/txkd22ePXuWpUuXcvnyZeLi4rC1taVatWoMGzaMOnXqaGMD8PX11S6nOT7ZXZeaaYsWLeLSpUts3LiRhw8f4uLiwuDBg/H29taJKyMjg+XLl/PHH38QFRWFu7s7gwcP5ubNm/j7+7Nt2zYqVKiQr32Nj4/nt99+Izg4mHv37mFubk6lSpXo3bu3zt+Iq1ev4ufnx+nTp0lKSsLV1RVvb2/69++vk8QNHz6c+/fv6zU3u3fvHr6+vjrXS0hICCNHjmTy5Mmo1WpWrVpFeHg4jo6O9OrVS3sNA9pjdv/+fZ2+XAXZZ5G7w3fUTD+m4m68mq5VFXzTVMn6y2p+OqHi4mNIL4buMGkoOZdqxmvL1Jnf1Gqm/PEXVZ4kE2tugWliKjfsTahWzgiPpHCdZdOVRqx9oxtGKhVKtZo0IyPKpqeyMdiUgJ3/kIKawzXdSTEyoWx8IlO3HKBCbDzJRiYkWJVhT/NqXHO2ZMytE7zfoyK816Lod1C89CTZEaIUzZs3j6SkJHr27Alk3mB99dVXpKam6jQHefDgAaNGjaJNmza8++67JCYmAnDx4kVGjhyJtbU13bt3p1y5cly5coW1a9dy9uxZlixZgrGxMd7e3gQEBBAUFMQnn3yiE8OePXtISUnRu3l71oYNG5gxYwaVKlVi6NChAGzfvp0JEybw5Zdf0r179wIdg0mTJnHq1Cl69OhBtWrVSElJ4ebNm4SGhhYo2bl06RJ79+6la9eudO7cmZCQENauXcv169dZsGABSmVmV8X79+8zcOBA4uPj6dmzJ+7u7oSGhrJ8+XLOnj3LwoULtQlAfso+Kzk5ma+++oojR44wdepUOnXqlOc+XLlyhU8//RQfHx/at29PaGgoW7duRalU8tVXX2nLnTlzhjFjxmBjY8PAgQOxtrZmz549nD17Vm+dy5YtY/HixbRo0YIePXqgVCq5d+8eBw8eJDU1tchqasaMGYO9vT1Dhw4lJiaG1atX8/HHH7Nt27ZiqY0MCwtj9OjRODo60rdvXxwcHIiKiuLMmTNcuXKFOnXq0L17dxISEggODmb8+PHY2dkB6CX+2VmwYAEpKSl0794dU1NTNm7cyJQpU3Bzc6N+/fracj/99BObNm3Cy8uL/v37Ex0dzYwZMwp8sx8XF8eQIUO4ceMGrVu3pmfPnmRkZHD58mUOHz6sTXYuXLjA8OHDMTY2plevXjg6OnLo0CHmzZvH1atXmT59eoG2r7Fp0yaioqLw9fXF2tqanTt3Mm/ePJydnenQoQMA06ZN45dffsHOzo7Bgwdrl7W3ty/UtoWua0/UtN2YQXJ65vfzkWpORmSwO6yEAvhfMyqfkEvYpRtz39EBgASLMjyxtWbS0RWYkYYatC8TPelWD2MVmKjSAFApFMSbmVE5No6dnh7cNjEiwSTzYdF9G2s+6t+Rwz+uwkSVBI9jqXn7EcOGdqb/Gz2x/G4mXS3NwLdRCe3w80UlzdgKTJIdIUpRdHQ0a9euxcrKCoCePXvSt29fZs2aRdu2bbU1Bnfv3uXrr7+ma9euOstPmzYNJycnAgICdG4kGzVqxMSJE9m5cyc+Pj5UqVKFWrVqsWvXLsaOHavztDcoKAhbW1uaN2+eY5yxsbHMnTsXNzc3VqxYoRPv+++/z+zZs2nbtq1eX4i8xMfHc/LkSXr27Mnnn3+er2Vzcu3aNWbOnKmtberVqxczZ85k7dq17NmzR3uTuGDBAp48ecLs2bO1+96rVy/mzJnDypUr2b59u/Z456dsVjExMXz66adcu3aN2bNn06RJE4P24erVqyxfvlxbG9KjRw8SEhLYtm0bn376qbZ255dffkGhULB06VLc3Ny0cWU3WllwcDCVK1dm1qxZOtPHjh1rUEyGqlGjBpMmTdJ+r1KlCpMmTWLXrl306NGjSLcFcOzYMZKTk/n+++9zrD2qW7cuVatWJTg4mFatWuUrAUlNTSUgIEDbn6d169Z06dKF9evXa5Od69evs2nTJpo2bcqcOXO0CXWbNm3o169fgfZrwYIF3LhxI9sHCSqVSvv/M2fOJC0tjeXLl2uTtz59+vDFF1+wa9cufH19adSo4DeHERERbNy4Ufub79KlC97e3qxbt06b7HTq1IlFixbh4OBgUDIvCmbtJbU20dH461bJx9H+wk0SbG10pnlGx1Ar8i5J2JOCNWbEYkwiV8q9RtZbdKVajVl6OsqMdBxS0vjHzkpnPelGRgTWr0r3U1cAMFKr6Xz6Gmc9yrPijbfpuiL4lU12RMHJaGxClKKePXtqbyIArKys6NGjB7GxsYSGhmqn29ra6nX8vXbtGlevXqVDhw6kpaURHR2t/dSvXx9zc3OOHXvafrpz585ERkZy/Phx7bS7d+9y9uxZ2rdvn2vn7OPHj5OUlETfvn314u3bty+JiYk66zWUmZkZpqamnD9/3qChmg3h4eGh16zuww8/BDKb4UHmzeLBgwepXr26XpL34YcfolQqC1Q2q/v37zNkyBDu3r3LkiVLDE50AOrUqaN3496wYUMyMjK0x+nx48dcuHCBt99+W5voQGZ/mvfee09vnVZWVjx8+JAzZ84YHEdBPHtzr2nWFB4enl3xQtNcjwcOHCAlJaXI19+rVy+d30a5cuVwd3fX2Z9Dhw4B0LdvX22iA1C1atV8nXcNlUrFn3/+SeXKlbOtMdVsIyoqin/++YeWLVvq1FIpFAptDUtwcHC+t5+Vj4+Pzm++TJky1KlTh9u3bxdqvSUpKipK59qIj4/XGZUvNTWVx48f6yxz//79XL9HRESgVj9tM1YS21CnJurtm1JR8sM4J5lk079NrSIFaxIoTzqWKMnAhFSSTPSb+FomJ3LN3p5UpRKV/pqwSk7V+Z76v+2VSU+DMpl99p6H81Ec2xDFQ5IdIUpRpUqV9KZVrlwZyExENFxdXfU6UN+8eRPIfK9LmzZtdD5t27YlKSmJqKgobXlNQhMUFKSdFhQUhFqtpnPnzrnGqYmlSpUqevM007LGaygTExPGjx/P9evX8fX1pXfv3vz000+cOHEi3+vS0By/rJycnLC2ttbG+OTJExITE7PdH1tbW5ycnApUNqvx48dz//59fv31V2rUqJGvfXB1dc12W5BZWwRokx4PDw+9stlNGz16NGZmZgwdOpSOHTvy9ddfs2vXLtLS0vIVW16ejV3TZEwTd1Fr164djRo1Yvny5bz77ruMHDmSFStWFNlNRE7nIuv+5Pdc5CU6OprY2Fhee+21XMtptpvdtVm5cmWUSmWBfpdZGbL/zzsHBwedwUCsrKx0aqFNTU1xdHTUWcbFxSXX7+XLl9cZFbAktjHcyxInc919+6CWEqMSbt20umkdrBKSdKY9MTPlrsXTa8WUzBeKVovUH2b6gaUllx1tuWFljtsT3aHgbZJTaHMhTPs9ycSYTQ1rYJyRztiQPTCmI/B8nI/i2IYoHtKMTYgXQHYd4DVPmPr370/Tpk2zXc7G5mlTAzs7O9566y3279+vHc1tx44dVK5cmddff714An9GRkaG3rSePXvSqlUrDh8+TGhoKHv37mX9+vW0bduWH374oUTiKg7t27dn8+bNLF26lG+//VbniX9echsZLOuTxfyoW7cuf/zxB3///TchISGEhoaya9culi5dyq+//qpNpgorp9gLGndeTE1NWbhwIefPn+fYsWOcOnUKPz8//P39mT59Ou+8806h1p/TeSuu/SlOOQ3Znd3vUkNGqXt+OFsqOP6+EXNOqbgXD12rKni/lpKhddXMDs3gQDg8TDRgpLWs164h/UDU6sxy/1vugqsjtxzUNAy7S5SlDUbxGbS4H0ai0hrb/yU5CSYWWKUl0PL6EWLK2HDOJXPktRSMCCnnSFp6Bg2vhJGhSMM6w57YMhZUe/iEifuOcdvDijhjCzIqWBPS3JO30x4w4v4Bmvz+ITTKu5/dy0qN9NkpKEl2hChFYWFhetM0NTbZPVHNyt3dHci8GWvcuLFB2/P29mb//v389ddfeHh4cOfOHcaMGZPncppmUjdu3NBr/59dvDk9+c3pKbOTkxNdu3ala9euZGRk8O2337J792769++f70RME09WkZGRxMXFaWO0t7fH0tKSGzf0nzrGxsYSGRmpfaqen7JZffjhh7i5uTF37lwyMjKYMmVKkd44ap4I3rql32g/u2kAFhYWtG7dmtatWwNPB53YunVrgUe+e17Url1b2/QvIiKC999/n0WLFmmTneJ8b5SmD9CtW7d0mhRqpuWXnZ0dNjY2XL161aDtZndthoWFoVKpdH6XNjY2XLp0Sa9sYWt/oHiPr3iqip2COe/q/h1pWkFB0wqG3c5FJmYw/SgcvJ7B41uJhNtZos4hobc0AjdrmNFCgYs1NKqgac5pAl/q9806aPcT5VGTZGKK31s9mXRgJSaqDLqf207du6c5bNuSUE93OoScZ+Tudyhf1u2ZNVQAdP/ePx3uoq5B+ydEdqQZmxClaOPGjcTHx2u/x8fHs2nTJqytrXnzzTdzXbZ69ep4enqyadMm7ty5ozc/PT1dL+Fo3rw5dnZ2BAUFERQUhFKpNKhDcePGjTE3N2fdunUkJDx9IVxCQgLr1q3DwsJCp2+Cu7s7586dIzk5WTstNjZWO1y2RnJysk4ZyHySrOl/EBsbm2dsz7p165ZeH5rffvsNgLfffhvITBBbtGjB5cuXOXr0qE7ZFStWoFKptP1+8lP2WQMGDGD8+PHs3LmTr7/+mvT09GzLFYSTkxO1atXiwIEDOuc/PT2d33//Xa98dHS03jRN87qCHOfnRXb75ezsjL29vc71rxnUoTj2tUWLzOFw165dqzN4wLVr13T6zRlKqVTSvn17bty4wR9//KE3X1Or5ODgQN26dTl48CDXrl3Tmb98+XIAnZotDw8PEhISOH/+vHaaSqVizZqnL4EsKHNz8xf6OnpVOFkYMbuNMadGmHHrv/aoPjdFPcE420/8p8ZcGmpMl+rGNDIgmTreoQnHKzgT4WjMvtcaMqTXl/g38uWnt/szrutnhJdzovnNGzyxsaB82dyH6xeiKEnNjhClyM7OjoEDB2oHHwgMDCQiIoKvv/46z3e3KBQKpk2bxqhRo3jvvffw9fWlSpUqJCcnc+fOHfbt28eYMWN0BjYwNjamffv2rF+/nkuXLtGoUSPKlSuXZ5zW1taMGzeOGTNm8OGHH2qHqd6+fTvh4eF8+eWXOp2Ye/fuzTfffMPIkSPp1KkTcXFx/PHHH7i4uOh02Lx16xbDhw/nnXfewdPTE2tra8LCwti4cSOurq688cYb+TqekNkp/JtvvqFr1664u7sTEhLC3r17adCgAe3atdOWGz16NMePH2fChAn07NmTihUrcurUKfbs2UODBg10huLOT9ln9evXDxMTE3766SfS09P54YcfimyY548//pjRo0czZMgQ7WAXe/bs0SZVWZ+29+zZkzp16vD6669TtmxZIiMj2bJlCyYmJjrH5UWzdOlSjh07RvPmzXF1dUWtVnPo0CHCwsJ0aqs0tT5z586lY8eOmJqa4unpSdWqVQsdg6enJ926dWPLli189NFHtGrViujoaDZs2ED16tW5ePFivms+Ro0axcmTJ5k+fTrHjx+nXr16AFy+fJn09HS+++47ACZMmMDw4cMZNmyYdujpw4cP8/fff9OhQwedmthu3bqxatUqJk6cSN++fTExMWHv3r25NmMzVJ06ddi6dSuLFi2icuXKKBQKWrZsqX3Xl3j5NerowuHzybS4cx7jjHTC7cqztn55ABRqNRWSYrFNTqbBx/Iy0YJQS+1pgUmyI0QpGjt2LGfOnGHDhg3aFxFOnz5dO6RrXqpXr87q1atZvnw5Bw8eZNOmTVhaWuLi4oKPjw8NGzbUW0YzbGxiYmKeAxNk1atXL5ycnFi5ciX+/v4AvPbaazrDPGt07NiRR48esX79embNmoWrqytDhw5FqVTqPFV2dnbG19eX0NBQ9u/fT1paGmXLlqVbt24MHDgwz4QvOzVq1ODTTz9l4cKFbN68GUtLS3r37s3o0aN1+l+4uLiwYsUKFi9ezM6dO4mLi8PZ2ZlBgwYxZMgQnYQkP2VzOnbGxsb897//5fPPP2fGjBm5jn5nqDfffJN58+axYMECli9fjrW1NW3btqVDhw58+OGHOp1n+/fvz5EjR1i3bh3x8fE4ODhQu3ZtBg0alGdH+OfZ22+/TWRkJH/99RdRUVGYmZlRsWJFvv76a7p06aItV79+fcaOHcvmzZuZPn06GRkZDBs2rEiSHch8X1TZsmXZunUrc+bMwcPDg0mTJvHvv/9y8eJFnXNhCBsbG5YvX86yZcsIDg4mODgYS0tLKleuTJ8+fbTlatWqxbJly/Dz82Pjxo3al4qOHTuW/v3766zT1dWVmTNnsnDhQhYvXoytrS2dOnXC19dX+66vgvroo4+IiYlhw4YNxMXFoVar2bZtmyQ7r5AmPSuyc2E4MRnOvHXmBgffqJrZRE6t5u3LV3n3/L9sbtKYz7qVLe1QxStGoX4Re1kK8YLL7o3tQhSVvXv38p///Ifvv/9e+14hUTo+/fRTTp48yYEDB6Szv3ippaWl0afnv3Q7fZNKDx9iZZJEWFkn3CMf4xwXhwpY9m4rpuzN+Z1uImffdArNu9D/fLcj92bwrxqp2RFCiBeUWq0mNTVVp9YgPT2d1atXY2RklGe/L1F0kpOT9Woir169ytGjR2nWrJkkOuKVkIaCU/XcMbmSQfMrlyibpU+qAkik6PotvmqkGVvBSbIjhHiuPXnyJM8+BRYWFtoO6K+S1NRUfHx86NChAx4eHsTExLBnzx6uXr3KwIEDcXJyMnhd8fHxeoNFPMvExKTQQ1RHRkbmWcbKyqpATRhL0/bt29mxYwdvvfUW9vb2hIWFsWXLFoyNjRkxYgSQmRBlHZAkJ/k5b0I8Tyo1COdxiCthTg40CDPFIvXpC0Kvl3fmfJXypRideFVJsiOEeK4NGDAgzxdEDhs2THtD+SoxNjbmrbfe4sCBA9okwsPDg//85z/06tUrX+uaOXMm27dvz7VMgwYNWLJkSYHjBQzqjzZ58mSdgTVeBDVq1GD//v2sW7eOmJgYLC0t8fLyYvjw4dpR7/bs2cPUqVPzXFdISEhxhytEsajlfJ/4eyacrlaRWIvm1Lt5E7cn0Vwu70y4jROOGVKzI0qe9NkRQjzXzpw5Q0pKSq5lXF1d9d5vIvLnxo0bPHr0KNcyNjY21KxZs1DbOX78eJ5lPD09X8rajcjISK5fv55nOUPfmyXE8yQtLY1ly5Zzb9VrnPVwZWtlV+1LS13jE/G4/5i3bZP572J5Z05BfN35lMFlpwc1KMZIXjxSsyOEeK7Vr1+/tEN4JVSpUoUqVaoU+3Ze5Rt5JyenlzKJEyKrWEtL9ro5axMdgLtWFthZJVK25qvX3LioSJ+dgpOXigohhBBCiEJTKOCehRnxpvpD6ycrFQweJH12RMmTZEcIIYQQQhSJCAsT3GOeGYhDraZGbAS2NtKgSJQ8SXaEEEIIIUSR6FDuFLEKBbZJmaM7GmWoKJOShqsqoZQje7GpFYZ/hC5JdoQQQgghRJFwrJFA08cRWKekYZmYTMWYWHpcP8v3S+VloqJ0SLIjhBBCCCGKzNZl1ZnfTk3rpEh8asCy9S1wspIX64rSIY0nhRBCCCFEkeri7UwXb+fSDkMISXaEEEIIIYR4nqlk6OkCk2ZsQgghhBBCiJeSJDtCCCGEEEKIl5I0YxNCCCGEEOI5ppZmbAUmyY4QQgghhCgSKjU0WQOnHqVjroTrw8DFWm43RemRZmxCCCGEEKLQ1GoYFTeIU48yayGSVFDBD7puSi/lyMSrTFJtIYQQQghRaFPivAH95lZbb4JarUYhTbEKTJqxFZzU7AghhBBCiEKLwCnHeRciM0owEiGekmRHCCGEEEIUK5XkOqKUSLIjhBBCCCGKVUJqaUcgXlXSZ0cIIYQQQhQBdY5zHieVYBgvIZX02SkwqdkRQgghhBBFIOcbchfrEgxDiCwk2RFCCCGEEMXK3KS0IxCvKkl2hBBCCCFEsar1W2lH8GJTKwz/CF2S7AghhBBCiCKQc58dgJT03OcLURwk2RHiFRUYGIiXlxchISGlHcpzT45V0fLx8WH48OE604YPH46Pj08pRSSEKBq5Vys8SJDxp0XJk2RHCFHi9u/fj5+fX2mHoSMkJAQ/Pz/i4uJKOxSRD5cvX8bPz4979+4VaPl79+7h5eXFjBkzcizj4+ND7969CxqiQQq7H0KUtoQ0yCvZuRldEpEIoUuSHSFEidu/fz/+/v6lHYaO0NBQ/P39s012OnXqxJEjR2jQoEEpRPZqWLBgAZs2bcr3cleuXMHf3/+FTxJelv0Qr67+2yGvZKfVhhIJ5aWkRmHwR+iSZEcIIfJgZGSEmZkZSqX8ySwuJiYmmJqalnYYQogC2nXbsHLBN9KLNxAhniEvFRXiFadWq1m5ciUbN27k4cOHuLi4MHjwYLy9vXXK/fHHH2zYsIGwsDCMjY2pXbs2w4YNo379+jrlDh8+TEBAANevXyc5ORk7Oztq1arFmDFj8PDwYPjw4Zw6dQoALy8v7XKTJ082uM/Go0ePWLVqFSdPnuT+/fukpKTg6upK586d+eCDDzAyMtIpn5aWxpo1a9i9eze3bt3C2NgYd3d3vL296dOnD1OmTGH79u0A+Pr6apcbNmwYI0aMIDAwkKlTp7J48WK8vLw4cuQIH3/8MRMmTKBv37568Q0aNIjw8HB27dqFsXHmn9nbt2/j7+/PiRMniImJoWzZsrRp04bhw4djbm5u0H5r+Pn54e/vz7p169i8eTN//fUX8fHxVK1aldGjR9OoUSOd8l5eXnh7e9O5c2cWLlzIlStXsLW1pXfv3nz44YfExsYye/ZsDh06RGJiIg0bNuSrr76ibNmy2nXExMTw66+/cvDgQR49eoS5uTkuLi60a9eOAQMG5Cv+7AwfPpz79+8TGBionXb9+nWWLFnCP//8Q3R0NDY2NlSqVIkPPviA5s2ba48DwMiRI7XLeXt7M2XKlELHlJdTp07x66+/8u+//5Kenk6lSpXo1asXXbt21SlX2P1ISEjgt99+4/jx49y5c4fExEScnZ1p3bo1w4YNo0yZMgCkpqbyzjvv0KZNG6ZOnapdz/fff8+WLVvo27cvEyZM0E7/4osvOHr0KHv37sXY2Njg31VwcDATJ07kq6++olu3bnrHpXfv3qSmprJlyxYUz+uLEMMjYZQfXL4L79SBeUPBLMvYyAf/hbWHwdYSRrSDSuXg6CVYfTBzfkoaHL8K8UlgbgqJqZCUChZmmd9T0yBdBZZmcDsSklIABahV6NV+qNWZ/fqNlKBUQIYKVC9eR/6fmrTlsx7D8iz37mYA/YRHCdQrC20qKRheV0lV++f02hEvHEl2hHjFLViwgJSUFLp3746pqSkbN25kypQpuLm5aROZuXPnEhAQwOuvv85HH31EYmIiW7ZsYcSIEfz88880b94cyGwKNn78eDw9PRk0aBBWVlZERkZy4sQJwsPD8fDwYPDgwajVak6fPs20adO0cdStW9fgmK9evUpwcDCtWrXCzc2N9PR0/v77b+bPn8/du3f56quvtGXT0tIYM2YMoaGhNGnShI4dO2Jqasq1a9cIDg6mT58+dO/enYSEBIKDgxk/fjx2dnYAVKtWLdvtN2nSBEdHR4KCgvSSndu3b3Pu3Dn69u2rTXQuXrzIyJEjsba2pnv37pQrV44rV66wdu1azp49y5IlS7Rl82Py5MkolUoGDBhAYmIimzdvZuzYscydO5fGjRvrlL18+TKHDh2iW7dudO7cmT179jB//nzMzMzYvn07FSpUYPjw4YSHh7Nu3TomT57MwoULtctPmjSJU6dO0aNHD6pVq0ZKSgo3b94kNDS0SJKdZ0VHRzNq1CgAevToQfny5YmOjubixYucP3+e5s2b8+677xIZGcmWLVsYNGgQlStXBsDNzS3f20tNTSU6OjrbeSqVSm/awYMHmThxIo6OjvTv3x8LCwv+/PNPpk+fzt27dxk9enSR7cejR4/YunUr7777Lh06dMDIyIhTp04REBDA5cuXmT9/PgCmpqbUrVtXbyCNkydPolQqOXnypHaaWq0mNDSU+vXra689Q39XLVq0wNHRkW3btuklO+fOnePGjRt89NFHz2+iE58E1cdkJicA1yLg4AW4NC/z+9rD0G9WZhIC4Pcn/Pd9+GjJ02kFon7mv8/IUMEL3H9fYVS4W0oVcPoRnH6kZvHZDE68b0QNx+f0GioFquf19/QCkGRHiFdcamoqAQEBmJhkPtVs3bo1Xbp0Yf369dSvX5+wsDBWrlxJvXr1WLx4sbZc165d6dWrFzNmzKBp06YYGRlx4MABVCoVCxYswMHBQbuNoUOHav+/SZMm7Nq1i9OnT9OpU6cCxdygQQO2bt2qczPVr18/vvnmG7Zu3cqIESNwcnICYM2aNYSGhjJo0CDtDaiG5ia2bt26VK1aVXujV6FChVy3b2RkRKdOnVi5ciU3btygSpUq2nlBQUEAOjVj06ZNw8nJiYCAACwtLbXTGzVqxMSJE9m5c2eBRiIzMjLi119/1Z4TX19fevbsyf/93/+xceNGnbLXrl1j+fLl1K5dG4AuXbrg7e3NL7/8Qu/evZk4caJO+TVr1hAWFkalSpWIj4/n5MmT9OzZk88//zzfcRbE2bNniYqK4ocffqBt27bZlqlWrRp169Zly5YtNG7cWKemML+2bt3K1q1bc5yf9RxnZGTw008/YW5uzm+//aatAevduzcjRozgt99+w8fHB3d39yLZD1dXV4KCgnQS4t69e7No0SKWLl3K+fPntefVy8uLkydPcvv2bdzd3YmIiODOnTt07NiRnTt38vjxYxwdHbl+/TpRUVE0bNhQu05Df1fGxsb4+vqyfPlyvet/69atGBkZPd8j6/3f1qeJjsblu3D+NtR2hx836yY1T+Jh2vpCJjovvzktOxfZuuJSYf5pFfPbGOVdWIg8SAN0IV5xvXr10t4sA5QrVw53d3fCw8MBOHDgAGq1mgEDBuiUK1u2LD4+Pty/f5/Lly8DYGVlBcC+fftITy++dtllypTR3pClpaURExNDdHQ0TZs2RaVSceHCBW3ZXbt2YWNjo5NwaRSmD07nzpn/sGuSG8h8Wr5z5048PT2pUaMGkJlkXL16lQ4dOpCWlkZ0dLT2U79+fczNzTl27FiBYujXr5/OOXF2dqZDhw6EhYVx8+ZNnbJ16tTR3hBDZh+Z119/HbVarVc79cYbbwBorwEzMzNMTU05f/58iXWg11xLR48eJT4+vti39/bbb7NgwYJsP46OjjplL168SEREBL6+vjpN/UxMTBgwYAAqlYoDBw4U2X6YmJhoE5309HRiY2OJjo7WNlc8f/68tqwmedHU4pw8eRIjIyNGjBiBQqHQTtfU/mRNrPLzu+ratSsKhUInQUxKSmLPnj00a9ZM57iUtqioKFJSUrTfU+9FZl/w8f8GJ4lO0Julik8qjtBeKmmFrNl5VvTTU8b9+/d15j37PSIiAnWWZPTZcx4fH68z+ExqaiqPHz/OdZ2lsQ1RPKRmR4hXnKurq940W1tbIiIiALQ3t56ennrlNNPu3r1LrVq16N27NwcOHODHH39k3rx51KtXj2bNmtG+fXvs7e2LLOb09HRWrFjBjh07CA8P1/kHCCA2Nlb7/7dv36Z69eqYmZkV2fYBqlatSo0aNdi1axejR49GqVRy6tQp7t27x7hx47TlNEmHn59fjsNtR0VFFSgGTXOnrDRP2e/evaszP7vzbGNjA6BXk2VtbQ1k9tOBzJvt8ePH8/PPP+Pr60uVKlXw8vKiVatWev2Disqbb75J586dCQwMZOfOndSqVYvGjRvTtm1bnZqEolKuXDm9pn8azw6coPlNZBdH1t8EFN1+bNiwgU2bNnHjxg29ZnVZb7Bq1aqFpaUlISEh9OjRg5MnT1KzZk3c3NyoWrUqISEhdOjQgZMnT2Jra0v16tW1y+bnd+Xq6kqjRo3YsWMHY8eOxdjYmD179pCQkECXLl0M3q+SkLWWGcB0Ynf4dZ9uIasy0KJm5v+/1yKzdicLZfcm8Nv+Yozyxdfh0mmWNW5dZOt7r8bTGkYXFxedec9+L1++vM73Z8+55qGDhqmpqd5DjOdhG7lRSzO2ApNkR4hXXE61G8/e6BjCzs6OgIAATp8+zfHjxzl9+jS//PILfn5+zJkzJ1/9cnIza9Ys1q1bR9u2bRk8eDD29vYYGxtz6dIl5s2bV6DYC6Jz5878/PPPnDx5ksaNGxMUFKRt4qahiaV///40bdo02/Voko7i9OygDYbMy3oce/bsSatWrTh8+DChoaHs3buX9evX07ZtW3744Ycijxdg6tSpfPDBBxw9epTTp0+zatUqli1bxvjx4+nTp0+xbLM4FHY/Vq1axezZs2nSpAl9+/bFyckJExMTHj16xJQpU3SSH2NjY+rXr09ISAhqtZqQkBBtLaSXlxcHDx5EpVJx6tQpvLy8dJqs5fd31a1bNyZNmsSBAwdo3bo1W7duxdHRUduH77n1WgVYMQY+XQ4xieDuBH9MAs3fwmn/q+lcfRDsLGFSN+j9FlR0goD9mV1uUlLhcTyoVKBQPB1kQHM4NYdKQY5ddF42PwT+xrJG72YejwJSAtUdYEJDJZ09pfGRKBqS7AghcqWpEbh+/bpex+8bN27olIHMG2cvLy9t85irV6/Sv39/li5dypw5cwAK3XF5x44dNGjQQO8mW9PsKisPDw/CwsJITU3NdWjjgsTUoUMH5syZQ1BQEPXq1WPv3r00btxY218IwN3dHchMKnOqOSiomzdv8tprr+lMy+6cFBUnJye6du1K165dycjI4Ntvv2X37t3079+f119/vci3B5k1aFWrVmXAgAHExcUxcOBA5s+fT+/evVEoFKXSCV5zbDXHOqucjn9h9mPHjh1UqFCBuXPn6jycOHr0aLblGzZsyJEjR9i7dy8PHz7UNm1r1KgRv//+O/v27SMuLk6nv45mO4b+rgBatWqFg4MDW7duxdPTk7NnzzJw4MACDbZR4ga+m/nJjokx/NA/85PVd/0yPy+S1LTM/YHMxOxhdOZn7k5o5AnWFpCRAbcfwZNESEwGFzsIuQlxydC6FvRvBelq+OMkpCTD7tNw9wmkp4ONBfynO7zfiiq/pIHKsN/jyg7Qs4aCMsbSJ0cUvxfgL5IQojS1bNmSefPmsXLlSt566y3tjUxkZCSBgYG4uLhom8JER0drRzLTqFSpEmXKlNFpAqMZajkmJgZbW9t8x6RUKvWeMiclJbFmzRq9sh06dGDu3LksXbpUOyqWhlqt1t5kWlhYAJlNdfIaoEDD3t6eZs2aERwcTIMGDUhISNA+RdeoXr06np6ebNq0ie7du+sljOnp6SQkJBToOKxZs4Z3331X22/nwYMH7N69Gw8Pj2ybuBVUcnIygHaIY8hMaqtVq8bu3bt1zm1RiYmJwdraWufm3traGldXV8LDw0lJSaFMmTLaa6k4YshJjRo1KF++PIGBgQwYMECb3Kanp7Ny5UoUCgVvv/12ke2HkZERCoVC55rXNDnLjuZBg5+fH6amptSrVw/I7ItlZGTEkiVLAPSSnfz8riCzFsnb25tVq1Zph85+3pqwvfJMswynbWQELo6Zn6Vj8r+uz/43LP+XvbOd3dAZ9hvQBUU9QW49RcmSK04IkSvN+0ACAgIYNmwYbdu21Q49nZiYyHfffadtBjV9+nQePnxI48aNcXFxISUlRduOP2sSUKdOHdavX8+PP/5I8+bNte/tMbQ2onXr1mzevJkvvviCRo0a8fjxYwIDA7NNGN577z0OHTrE0qVLuXDhAo0bN8bMzIwbN25w69Yt7fDKms77c+fO1Q5P7enpSdWqVXONxdvbm4MHDzJr1iysrKxo1aqVznyFQsG0adMYNWoU7733nrbPS3JyMnfu3GHfvn2MGTOmQKNXZWRkMHToUNq3b09iYiKbNm0iJSVFb2S1wrp16xbDhw/nnXfewdPTE2tra8LCwti4cSOurq7aAQ2KUlBQEGvWrOGdd97Bzc0NY2NjTp06xd9//03btm21idfrr7+OUqlk2bJlxMbGYm5ujqurq85gDEXNyMiIzz//nIkTJzJw4EC6deuGhYUFe/bs4dy5cwwaNEhbo1cU+9G6dWvmz5/PuHHjeOedd0hISGD37t051qBUr14dW1tbbt68yZtvvqntr2ZlZUXNmjU5f/48Tk5Oeglxfn5XGt26dWPlypXs3r2bBg0aaPdbvHo2dwWHRVnb8um7NKjEwnnpSJ+dgpNkRwiRp3HjxlGxYkU2bNjA/PnztSN5TZ8+XedGt1OnTgQGBhIUFMSTJ0+wtLSkSpUqzJgxg9atn3Zcbd++PZcvX+bPP/9k7969qFQqJk+ebHCyM378eCwtLdmzZw8HDhzA2dmZbt26UatWLT766COdsiYmJsyfP59Vq1axe/duFi5ciKmpKe7u7joJRv369Rk7diybN29m+vTpZGRkMGzYsDyTnRYtWmBra0tMTAxdu3bNdiCE6tWrs3r1apYvX87BgwfZtGkTlpaWuLi44OPjo/eE3VBTp05l06ZN/Pbbb8TFxVG1alUmT55MkyZNCrS+nDg7O+Pr60toaCj79+8nLS2NsmXL0q1bNwYOHKhT41NU3nzzTe27gSIjIzEyMqJChQp88skn9O799Mly+fLl+fbbb/ntt9/48ccfSU9Px9vbu1iTHcis8Vy4cCFLly5l5cqVpKWlUalSJb7++mudl4oWxX588MEHqNVqtm7dys8//4yjoyNt27bF19eXXr166cWmUCho0KABwcHBetdWw4YNOX/+fLbDdOfnd6VRsWJF7XDXUqvzarMyBd2OS/rszOSGXZQ8hbqkevIKIYQoEn5+fvj7+7Nt2zaDm9wJUVzGjRvHuXPn2LlzZ7EkvuLFkJaWhukcFZBzP5z4cUosTWXggYIY1+uiwWXnbqhZjJG8eOSKE0IIIUSBhIeHc+zYMTp27CiJjiC3Wh1AEp1CUCkM/whd0oxNCPFcSE5ONuili1lHOnuZvOj7/+TJEzIyMnItY2FhoR0IojhlZGTw5MmTPMvZ2trqvJRVGO78+fPcvHmTtWvXYmJiQv/+/fNeSLwCcm4sFD6kBMMQIgtJdoQQz4U9e/YwderUPMtp3vz+snnR93/AgAF5vg182LBhjBgxothjefDgAb6+vnmWW7x4cbZ9V0TeNm7cSFBQEK6urnz33XfSnFLkKa20AxCvLOmzI4R4LkRGRnL9+vU8yxX1u2qeFy/6/p85c4aUlJRcy7i6uuoNvV0cUlJSOHPmTJ7latasWSIvdBXiVZBXn52HI6GslTxjL6jRfS4ZXHbBuhrFGMmLR646IcRzwcnJ6bltolUSXvT9r1+/fmmHoGVmZvbcJoVCvKpuxUFZq9KOQryKpKeYEEIIIYQoAjk3FkqTdmyilEiyI4QQQgghikDOQ4GZyVggopRIsiOEEEIIIQrNkzs5zqtTVsZELgwVCoM/QpckO0IIIYQQotA+t9lLTk3ZTIxzftmoEMVJkh0hhBBCCFEk5lquIGvCY66EjM8k0RGlR0ZjE0IIIYQQRcLMSE3qx2BiIreYRUmtkOZpBSU1O0IIIYQQQoiXkiQ7QgghhBBCiJeSJDtCCCGEEEKIl5I0qBRCCCGEEOI5ppIuOwUmNTtCCCGEECL/rtyD6/dLOwohciU1O0IIIYQQwnDf/g7fbXj63VgJl+eVXjxC5EJqdoQQQgghhGH2nNZNdADSVRhXHQ2q7F8oKgpPpVAY/BG6JNkRQgghhBCGafddtpMVami87kIJByNE3iTZEUIIIYQQhVZnf3hphyCEHkl2hBBCCCFEoeXWgOpGtIrl5zJ4mJBRYvG8TNQKhcEfoUsGKBBCCCGEEHk7fDHX2QrA+kGCzjSVWo3rwgwikp5Oc7VM584ouQUVJUNqdoQQQgghRN5afJVnkdf/uqnz/b9HdRMdgLsJUNkvvSgjEyJHkuwIIYQQQojcZRjW/MwkIVXn+zd/Z18uLA5S01WFjUqIPEmyI4QQQgghcmfgqNIqI8P7jHyyV5IdQ6kUhn+ELkl2hBBCCCFE7hpNMKiYx+kHBq9y0bmCBiOE4STZEUIIIYQQuTt9y6BilmlP//9eXN41N1ejpO+OKF6S7AghXkmBgYF4eXkREhJS2qE8V7y8vJgyZYrONJVKhZ+fH126dKFx48Z4eXkBMGXKFO3/lxY/Pz+8vLy4d+9eqcYhxEstOTXvMtk4eCfvZKfusgKt+pWjRmHwR+iScf+EEELkavv27fj7++Pr60uDBg1QKkv2Odn+/fu5fPkyI0aMKNHtCsOFhIQQGhpKv379sLa2Lu1wRFHr+3OBFhu5O+8yyWQOVGBqLM/fRfGQK0sIIYTWkSNH+Prrr3WmHT9+HCsrK7755hu8vb3p1KkTAF9//TVHjhwp9pj279+Pv79/tvOGDBnCkSNHcHFxKfY4RM5CQ0Px9/cnLi6utEMRxWHryQItFmNgCzWz2SqCb6WjVhs4CoIQ+SA1O0II8YpLTk7G2NgYY2NjzMzM9OY/fvwYa2trFM+8mVuzTGl6HmIwREJCApaWlqUdhhC5u/kAev4El+9BQkqBVqEAFN9t4MYnvfO13LsbAHSHty6jBGcL8CoPl59AcgaMrg8fv2mk9/fo3CM1JyLUeDkrqFeuYE25ktPVbL+uJkMN3lUUWJo+P03CVIrnJ5YXzfP/L4QQQhQjtVrNypUr2bhxIw8fPsTFxYXBgwfj7e2tLfPnn3+yc+dOrly5QlRUFBYWFtSvX5+RI0dSrVo1nfWdPXuWpUuXcvnyZeLi4rC1taVatWoMGzaMOnXqGBTTkSNH+Pjjj5kwYQJ9+/bVmz9o0CDCw8PZtWuX9kb/9u3b+Pv7c+LECWJiYihbtixt2rRh+PDhmJuba5edMmUK27dvZ8+ePcydO5cjR47w5MkTtm7dSoUKFfDy8sLb25spU6YQEhLCyJEjtctq+udo5mvW9Wy/p8jISJYvX87hw4d5+PAhVlZWVKtWjQEDBtCkSRMAzp8/z8aNG/nnn3948OABRkZGVK1alQ8++IB33nlHu67hw4dz6tQpne0DTJ48GR8fH/z8/PD392fbtm1UqFBBO//evXssWrSI48ePExcXR7ly5WjXrh1DhgyhTJky2nKa5Tdu3EhQUBBBQUE8efKESpUqMXr0aJo3b27QOctKcww7deqEn58fV65coWbNmixZsgSACxcusGzZMk6fPk1iYiIuLi507tyZgQMH6iVu+/fvZ8mSJYSFhWFvb4+3tzdvvPEGY8aM0R6DrPvx7HEA8PHxwcXFRbt9jePHjxMQEMC///5Lamoq7u7u9OzZk549e+qUy+ua1lwHAL6+vtrlhg0bJk0PXyRHL8Jbeb801BDG322kZcY7YF+2UOtJVsGteLh17em0T/fDr+cyOD/o6W9lypEMpv79tFboi8YK/tvCKF/buhunpvnvGYTFZn53sYSDfY2oai9JxotOkh0hxCttwYIFpKSk0L17d0xNTdm4cSNTpkzBzc2N+vXrA7B+/XpsbW3p1q0bTk5O3Llzhy1btjBkyBBWrVqFu7s7AGFhYYwePRpHR0f69u2Lg4MDUVFRnDlzhitXrhic7DRp0gRHR0eCgoL0kp3bt29z7tw5+vbtq70xvnjxIiNHjsTa2pru3btTrlw5rly5wtq1azl79ixLlizRu4nWxDlkyBCSkpKwsLDQi6Ny5cpMmzaNZcuWER0dzfjx4wFwc3PLMfZ79+4xZMgQoqKi6NSpE7Vq1SIpKYlz585x4sQJbbKzf/9+wsLCaNOmDS4uLsTExLB9+3YmTpzI9OnT6dChAwCDBw9GrVZz+vRppk2bpt1O3bp1c4zh/v37DBw4kPj4eHr27Im7uzuhoaEsX76cs2fPsnDhQr3jMWXKFIyNjenfvz9paWn8/vvvTJgwgc2bN+slD4a4cOEC+/bto2vXrjqJ8+HDh5k4cSIVK1akf//+2NjYcO7cOW1SNGPGDG3Z4OBgPv/8cypUqMDQoUMxMjIiMDCQw4cP5zueZ23evJkffviBOnXqMHjwYMzNzTl+/Dg//vgjd+/e5eOPPwYMu6a7d+9OQkICwcHBjB8/Hjs7OwC9BwHiOdf9pyJdnWtMFHcLmezk5N/HcOC2irfdldyNUzP9mG7ztxkn1Iyoq8bD1vBE5aeTKm2iA3A/Ab77W8VvnfKXNInnjyQ7QohXWmpqKgEBAZiYmADQunVrunTpwvr167XJzrx583RqRwA6d+5Mv379WLNmDZMmTQLg2LFjJCcn8/3331O7du0Cx2RkZESnTp1YuXIlN27coEqVKtp5QUFBADo30NOmTcPJyYmAgACdplKNGjVi4sSJ7Ny5U1sDoOHp6cl3332XaxyOjo506tSJP/74g5SUFG1fndz8+OOPPHr0iHnz5tG0aVOdeSrV05GZhgwZwpgxY3Tm9+3bl379+rF06VJtstOkSRN27drF6dOnDdo+ZCawT548Yfbs2dqamV69ejFnzhxWrlzJ9u3b6dq1q84ydnZ2zJo1S9s0xsvLi4EDB7J582a9OA1x48YNFixYQOPGjbXTUlJS+O6776hduzaLFi3SJlw9evSgWrVqzJo1i5CQELy8vMjIyGDmzJnY2Njw22+/aROIHj16ZFvblx+RkZHMnDmTdu3a8f3332un9+rVi5kzZ7J69Wp69OiBm5ubQdd03bp1qVq1KsHBwbRq1apAyWFxioqKwtLSUttEMz4+HrVarR1IITU1lbi4OBwdHbXL3L9/X6cf2LPfIyIicHZ21l4vL8U2niTk46jmrd79W5yoVL1I15nViQh42x2uRUPGM119VGo4/zAVD1vDj9WZeymAqc56LkY9XXFJnA9RPGSAAiHEK61Xr17aRAegXLlyuLu7Ex4erp2mSXTUajXx8fFER0djb2+Ph4cH58+f15azsrIC4MCBA6SkFKy9u0bnzp2Bp8mNZvs7d+7E09OTGjVqAHDt2jWuXr1Khw4dSEtLIzo6WvupX78+5ubmHDt2TG/9/fv3L1R82YmJieHvv/+mWbNmeokOoDOKW9bkMTk5mejoaJKTk2nYsCE3b94kPj6+QDGoVCoOHjxI9erV9ZqgffjhhyiVSvbv36+3XN++fXX6ALz++utYWFhw+/btAsXx2muv6SQ6kNls7PHjx/j4+GivI83nrbfe0paBzNq6Bw8e4Ovrq010IPMa69GjR4Fi0vjrr79ITU2lS5cuOjFER0fTokULVCoVJ06c0G4PiuaaLi0ODg46fdGsrKx0RowzNTXVuSEF9G5An/1evnx5nevlpdhGgyoUFTXwt/trRba+7Ax4PfO/bzqDjW6OgpUJtHB/OtGQY9WpWhme9a770+NfEucjNyqFwuCP0CU1O0KIV5qrq6veNFtbWyIiIrTfL126xOLFiwkNDSUpKSnH5du1a8eOHTtYvnw5a9asoU6dOjRp0oT27dvn++ld1apVqVGjBrt27WL06NEolUpOnTrFvXv3GDdunLbczZs3gcw+G35+ftmuKyoqSm+ah4dHvuIxRHh4OGq1murV836aGxUVxaJFizhw4EC28cXHx2tvtPPjyZMnJCYm6tSGadja2uLk5MTdu3f15mXXNM/W1paYmJh8xwBomzZmpTlXWZvjPevx48cA2hizO0+VK1cuUEwaYWFhAHz00Uc5ltGck6K8psVzbs9kqDAE4pILvSo18Ngy/79fQ333FjhbZj48sTJV8Lu3kiG7VUQkZA5osKSdEhuz/N30f/KmgjOPFKy/rEatBh9PBV83kTqBl4EkO0KIV1pO74zRDIEaERHB8OHDsbS0ZMiQIVSqVIkyZcqgUCj4+eefdZIfU1NTFi5cyPnz5zl27BinTp3SdhyfPn26Tsd7Q3Tu3Jmff/6ZkydP0rhxY4KCgrRN3J6Ns3///tnWpgDY2NjoTcvaSb+kqdVqxowZw82bN+nbty+1atXCysoKpVJJYGAgu3bt0mnyVhLyug7yK7vjq1nXxx9/zGuvZf/Uu2zZgvVxeHZkqqwyMnRHuNLEMXXqVJycnLJdRpPEF/U1LZ5jVuYQuwZOXYer9+HCbThyCfaez3vZLNRAxumfuFe/PIqZBo49nUUFc2jiAlZloI4juNtCdQclqFVEJkNLNyUmRrq/105VlNweriA8Dipag4lR/ms3zIwV/O5txNx31ajU4GwpNSQvC0l2hBAiF8HBwSQmJvLLL7/ojAYGmc22TE1N9ZapXbu2tn9DREQE77//PosWLcr3jWGHDh2YM2cOQUFB1KtXj71799K4cWOdG1RNDYJSqdRrNlXSKlasiEKh4PLly7mWu3r1KleuXMl2tK4//vhDr3xuN/LPsre3x9LSkhs3bujNi42NJTIyMsdEo7hpzpW5uXme50qTbNy6dUtvnqaGKCtNQhsbG6vTZyYlJYXIyEidmquKFSsCmf2UDL1m8rqm83OOxHOugWfmJytF9/yt4/X81RzbGcOTT/K6Jc29lsXESEEVu3xtNltlLZ7Pa1n1fIb1QpD6OSGEyIXmif+zT/i3bNmibXKkER0drbe8s7Mz9vb2BWoOZW9vT7NmzQgODmbXrl0kJCRo+/JoVK9eHU9PTzZt2sSdO3f01pGenl7gplj5ZWtrS7NmzTh69Ki270lWmmOY0zG9du1atv1pNP17DNkPpVJJixYtuHz5MkePHtWZt2LFClQqFa1atTJkd4pc06ZNcXBwYMWKFdnuS3JyMgkJmZ3Ea9asibOzM9u2bdO5ruLj49m0aZPesprmbs8e9zVr1ujVkrVt2xZTU1P8/PxITtZvshQfH09qaipg+DWtGc0vNjZWr7x4Cfw8qECLtTJwrIq8Ex0hCk6uLiGEyMVbb73FvHnz+Pbbb+nduzfW1tacPXuWo0eP4ubmptNEaOnSpRw7dozmzZvj6uqKWq3m0KFDhIWFMWDAgAJt39vbm4MHDzJr1iysrKz0btQVCgXTpk1j1KhRvPfee/j6+lKlShWSk5O5c+cO+/btY8yYMXqjsRWXzz//nMGDBzNu3Di8vb2pWbMmycnJ/Pvvv7i4uDBu3DgqV65MlSpVCAgIIDk5GQ8PD27fvs3mzZupWrUqFy9e1FlnnTp1WL9+PT/++CPNmzfH2NiY2rVrZ9vfCjKH1T5+/DgTJkygZ8+eVKxYkVOnTrFnzx4aNGigM5JdSTI3N2fq1KlMmDCBHj164OvrS8WKFYmLiyMsLIzg4GD+7//+Dy8vL4yMjPj000/54osvGDhwIF27dsXIyIht27bp9SmDzJH3PDw88PPzIyYmhgoVKnD27FnOnTunM8ABZCYrkyZNYvr06fTq1YtOnTrh4uLCkydPtAnnhg0bqFChgsHXtKbWZ+7cuXTs2BFTU1M8PT2pWrVqsR9XUQLG+8Bny/O92HfNocX63Mv0LZ2KVvEKkWRHCCFy4ebmxty5c1mwYAHLly9HqVRSr149/Pz8+Omnn7h//7627Ntvv01kZCR//fUXUVFRmJmZUbFiRb7++mu6dOlSoO23aNFC21G+a9euOqP/aFSvXp3Vq1ezfPlyDh48yKZNm7C0tMTFxQUfHx8aNmxY4P3PL1dXV1auXMmvv/7KkSNHCAoKwsbGhmrVqtGtWzcgc2jtOXPmMHv2bLZv305SUhKenp5MmTKFK1eu6CU77du35/Lly/z555/s3bsXlUrF5MmTc0x2XFxcWLFiBYsXL2bnzp3ExcXh7OzMoEGDGDJkiN47dkpS06ZN+e233/jtt9/YuXMnT548wcbGBjc3N95//32dd9O0adMGpVLJr7/+ypIlS3BwcNB5qWhWRkZG/PLLL8ycOZN169ZhYmJCkyZNWLJkCUOGDNGLw9fXF3d3d1atWsXmzZuJi4vDzs4ODw8PRo0apR1FytBrun79+owdO5bNmzczffp0MjIyGDZsmCQ7LxMTI0jLyLNY1vra5u7GQO79dpZ2lEZGongp1AXtfSmEEEKIEhcSEsLIkSOZPHlyidXYCcHNCKiS8wh+GlF2xlg/XK0d0j+vQQrUE+S5uyH6DgwzuOza3yoVWxwvIkmnhRBCCCFE7iqXN6jYjYaGv1R2SMHfvSyEwSSdFkKIEpKWlmZQJ3t7e3uMjIxKICJhqCdPnugN4fwsCwsLbUd9IV5Vxql5N3XT+LWD3IaK4idXmRBClJCzZ88ycuTIPMtt27ZNZ/hgUfoGDBig0z8rO9kNpS3ES0WBbqecbNyuW47Xs3xf2wn67tAvt71rEcb1ClDL8O4FJsmOEEKUkNdee40FCxbkWU7TOVw8P7777jtSUlJyLZPTgAlFzcvLi5CQkBLZlhA6YlaBTf8cZ6uBB7XK6UzrU8uY4PB0/M49nTbnHehcVW5BRcmQK00IIUqIjY1Nqb/4UxRM/fr1SzsEIUqfde7NNNWAWqlfA7G4vTGL2xdTTELkQZIdIYQQQghRaEmmpR3By0slrdgKTEZjE0IIIYQQhaIG1v/YurTDEEKPJDtCCCGEEMIwp3/OdrKqqjNpliYlHIwQeZNkRwghhBBCGKZ+ZbgwJ3NkNo329VBdmFtqIQmRG+mzI4QQQgghDFezIqg2605LSyudWF4RKhl6usCkZkcIIYQQQgjxUpJkRwghhBBCCPFSkmZsQgghhBBCPMdUSDO2gpKaHSGEEEIIIcRLSZIdIYQQQgghxEtJmrEJIYQQQogiE5sCFeenk5SR+f01O7g8VG45RemQmh0hhBBCCFFknBajTXQArkTDa/7ppRbPyyBDYfhH6JJkRwghhBBCFImvYrtkO/1qTAkHIsT/SLIjhBBCCCGKRCQOICOHieeIJDtCCCGEEKLYrTwvTdkKSqVQGPwRuiTZEUIIIYQQhXYiyT3X+Z/sK6FAhMhCkh0hhBBCCFFoAWlvkVsTtqjUkotFCA0ZB1AIIYQQQhRaGmalHcJLSyWt0wpManaEEEIIIUQRyPuOXKVWl0AcQjwlyY4QQgghhCgRO69l5F1IiCIkyY4QQgghhCgR/YJKOwLxqpFkRwjxygoMDMTLy4uQkJDSDkUIIV5oK86DIc3YYmX06QJRoTD4I3RJsiOEEKVg//79+Pn5lXYYL7Q1a9YQGBhY4OUDAwNZs2ZNEUZU8kJCQvDy8mLlypU5lvHy8uKTTz4p9jj8/PyIi4sr1u2I59fWa6UdgRDZk2RHCCFKwf79+/H39y/tMF5ov//+e6GTnd9//70II3p1hYaG4u/vL8nOy+BmBPy8BdyHgUVvUHTP/uM+DG7c1y5244nhm0hNl347ouTI0NNCCCGEEC+6mAS4/wReqwDJqTBrO9SqCKZGcO0+HLsKdpaQmJyZ0Jy+lfn/qgJuL/wxeI7Wfv3i9YYMGDgBFHk3ozKbrWZB63Sq2Clo7a7ExEiaXuUlw4DjKrInyY4Q4pWnVqtZuXIlGzdu5OHDh7i4uDB48GC8vb11yv3xxx9s2LCBsLAwjI2NqV27NsOGDaN+/fo65Q4fPkxAQADXr18nOTkZOzs7atWqxZgxY/Dw8GD48OGcOnUKyGxipDF58mR8fHwMivnRo0esWrWKkydPcv/+fVJSUnB1daVz58588MEHGBkZ6ZRPS0tjzZo17N69m1u3bmFsbIy7uzve3t706dNHWy4+Pp7ffvuN4OBg7t27h7m5OZUqVaJ37960b99eW+7q1av4+flx+vRpkpKScHV1xdvbm/79++tse/jw4dy/f1+vBubevXv4+voybNgwRowYAWQ2hRo5ciSTJ09GrVazatUqwsPDcXR0pFevXgwcOFC7vOa43b9/X+cYbtu2jQoVKuR5/Hx8fLh//77OugAWL17MmjVrOH78OLt378bKykpnuX///ZeBAwcyYsQIhg0bprMfHh4erFixgtu3b2Nvb4+vry9DhgzB2Fj3n9rIyEj8/f05fPgwjx8/xs7OjhYtWjBq1CgcHBzyjL2o7N+/n4CAAK5cuYJCoaBatWoMGDCAVq1a6ZQ7e/YsS5cu5fLly8TFxWFra0u1atUYNmwYderUYcqUKWzfvh0AX19f7XJZz60oZj9sgu82QFIq2JhDbFKJhxBr62BQoqMxei+AGmNFBoHdlXSoLI2NRPGQZEcI8cpbsGABKSkpdO/eHVNTUzZu3MiUKVNwc3PTJjJz584lICCA119/nY8++ojExES2bNnCiBEj+Pnnn2nevDmQ2Zxn/PjxeHp6MmjQIKysrIiMjOTEiROEh4fj4eHB4MGDUavVnD59mmnTpmnjqFu3rsExX716leDgYFq1aoWbmxvp6en8/fffzJ8/n7t37/LVV19py6alpTFmzBhCQ0Np0qQJHTt2xNTUlGvXrhEcHKxNduLi4hgyZAg3btygdevW9OzZk4yMDC5fvszhw4e1yc6FCxcYPnw4xsbG9OrVC0dHRw4dOsS8efO4evUq06dPL9T52LRpE1FRUfj6+mJtbc3OnTuZN28ezs7OdOjQAYBp06bxyy+/YGdnx+DBg7XL2tvbG7SNzz77jPnz5xMdHc348eO10ytXrky3bt04ePAgu3fvpkePHjrLbd26FaVSqXNTD3Dw4EHu3r2rPR4HDx7E39+fiIgIJk+erC0XERHBoEGDSEtLo0uXLri5uREeHs6mTZsICQlh5cqVegmWIZKTk4mOjja4/IYNG5gxYwaVKlVi6NChAGzfvp0JEybw5Zdf0r17dwDCwsIYPXo0jo6O9O3bFwcHB6Kiojhz5gxXrlyhTp06dO/enYSEBIKDgxk/fjx2dnYAVKtWLd/7IQog5Bp8ufrp91JIdADOO7sVaLl0NfTcpuLJGIXU8IhiIcmOEOKVl5qaSkBAACYmJgC0bt2aLl26sH79eurXr09YWBgrV66kXr16LF68WFuua9eu9OrVixkzZtC0aVOMjIw4cOAAKpWKBQsW6Dyl19xQAjRp0oRdu3Zx+vRpOnXqVKCYGzRowNatW1FkeZLar18/vvnmG7Zu3cqIESNwcnICMjvyh4aGMmjQIEaPHq2zHpXqaRuWBQsWcOPGDZ2b3ezKzZw5k7S0NJYvX669oe3Tpw9ffPEFu3btwtfXl0aNGhVovyAzIdi4caP2pr9Lly54e3uzbt06bbLTqVMnFi1ahIODQ4GOYatWrVizZg0pKSl6yzdr1gxnZ2e2bt2qk+wkJyeze/dumjRpgrOzs84yV69eJSAggBo1agCZx2PixIkEBgbSvXt36tSpA8BPP/1Eeno6q1ev1llHmzZtGDRoEKtXry5QbYifn5/BA17ExsYyd+5c3NzcWLFihfY49+zZk/fff5/Zs2fTtm1brK2tOXbsGMnJyXz//ffUrl072/XVrVuXqlWrapNvQ2rWRBE68G9pRwBAzYd3C7xsQhpceQKvOxVhQC8ZleSBBSZ1hkKIV16vXr20CQxAuXLlcHd3Jzw8HIADBw6gVqsZMGCATrmyZctqm0NdvnwZQHvjuG/fPtLTi2+M1TJlymgTnbS0NGJiYoiOjqZp06aoVCouXLigLbtr1y5sbGx0Ei4NpTLznwGVSsWff/5J5cqV9RKdrOWioqL4559/aNmypc6Te4VCoa1hCQ4OLtS++fj46NRulClThjp16nD79u1CrddQRkZG+Pr6cuHCBa5dezrE1F9//UVCQgJdunTRW6Zx48baRAcyj8eAAQOAp8cjPj6ew4cP07JlS8zMzIiOjtZ+KlSogJubG8ePHy9QzN26dWPBggXZfp51/PhxkpKS6Nu3r85xtrKyom/fviQmJmrj0Mw/cOAAKSkpBYqttEVFRenEHh8frzOQQmpqKo8fP9ZZRtPEMafvERERqNXq52Mbr1fkedDo9jWMMwr2N89YocbdJvP/X/jzUYhtiOIhNTtCiFeeq6ur3jRbW1siIiKAzP4lAJ6ennrlNNPu3r1LrVq16N27NwcOHODHH39k3rx51KtXj2bNmtG+fXuDm1gZIj09nRUrVrBjxw7Cw8N1/hGGzKf3Grdv36Z69eqYmZnluL7o6GhiY2Np2rRprtvVHIsqVarozatcuTJKpZK7dwv+hBdyPh8xMTGFWm9+dOnShWXLlrF161Y+++wzILM/kIODA2+//bZe+UqVKulN0xwjzfEICwtDpVKxdetWtm7dmu12s9t3Q7i7u9O4cWODymriye4cPhtzu3bt2LFjB8uXL2fNmjXUqVOHJk2a0L59e1xcXAoUa0l7th/Us80ETU1NcXR01Jn27L49+718+fLPzzbavwE9m8LGvylNTcKv8fe8r+gw9EseW9nma9kfWiixNs18ePPCn49CbEMUD0l2hBCvPE2txbOeTSAMYWdnR0BAAKdPn+b48eOcPn2aX375BT8/P+bMmZOvfjm5mTVrFuvWraNt27YMHjwYe3t7jI2NuXTpEvPmzStQ7MVBkUOH5YyMnIeefXZwhdJQvnx5mjZtyo4dOxg3bhz379/n1KlTfPDBB3oDDuRXx44d9Qa/0MgtIS0NpqamLFy4kPPnz3Ps2DFOnTqFn58f/v7+TJ8+nXfeeae0QxQKBWyYCMcuw40H8G6dzKZt/90ETjZQ1gYuhMODGFBlZI7UlpAKRfwnItbEjME9Rxic6FS1gcYVYHIzJdUcpKGRKD6S7AghRB40T9uvX7+Om5tuJ9wbN27olIHMm3UvLy/tKF9Xr16lf//+LF26lDlz5gA5JwGG2rFjBw0aNOCHH37Qma5pepeVh4cHYWFhpKamYmpqmu367OzssLGx4erVq7luV9MfQ7PfWWlqLrIeCxsbGy5duqRXtrC1P1D4Y5jX8t26dePw4cPs379f20wxuyZskLnvz3r22nBzc0OhUJCenm5wLUxx0FzDN27c0OtbdfPmTUC/hql27draPjsRERG8//77LFq0SJvsFPZciCLQpHrmB6BP88xPfkXFwc9b4dc/4WF83uUHvg2/DAYHayrNTuNJumHXQdRosDeXW9D8yEB+YwUlqbQQQuShZcuWKBQKVq5cqdMPJzIyksDAQFxcXKhePfMmI7sRsSpVqkSZMmV0mpaZm5sDFLhpllKp1Ku9SUpKYs2aNXplO3ToQGxsLEuXLtWbp1mHUqmkffv23Lhxgz/++CPHcg4ODtStW5eDBw/q9GdRq9UsX74cQOdpv4eHBwkJCZw/f147TaVSZRtnfpmbm+sc0/yysLAgNjY2x1qw5s2bU7ZsWTZv3sz27dupV69ets3VILMfTNakTq1WExAQAKAdytnOzo633nqLffv2ce7cOb11qNVqnjzJx5sZC6hx48aYm5uzbt06EhIStNMTEhJYt24dFhYWNGnSBMj+enZ2dsbe3l7n2rWwsAAo1PkQzwEHa/i+PzwIAPXmvD8rPs5cBrAuY/hmJNERJUmuNiGEyEOlSpX44IMPCAgIYNiwYbRt21Y79HRiYiLfffedtunV9OnTefjwIY0bN8bFxYWUlBT27NlDQkICnTt31q6zTp06rF+/nh9//JHmzZtr39tjaJ+N1q1bs3nzZr744gsaNWrE48ePCQwMxNZWvwnJe++9x6FDh1i6dCkXLlygcePGmJmZcePGDW7dusXChQsBGDVqFCdPnmT69OkcP36cevXqAXD58mXS09P57rvvAJgwYQLDhw9n2LBh2qGWDx/+//buOzqK6m3g+Hd303sgkISE3kEQSCihBBACSO8iHaSroIiKWADl/SGKVEFBpUvvoUmRUKUXRXoJBAglpPdkd94/4q4su0k2IRCIz+ecPbp37szcOzMb5plb5iB//PEHrVq1Mmot6NSpE8uWLePDDz+kR48eWFtbs2fPniy7sVmqWrVqbNq0iR9++IHSpUujUqkIDAw0BJLZeeWVVzhw4ADffPMN1atXR61WU7t2bUNffP1EBfog8cmZ7B5Xvnx5hg0bRrdu3fDw8GDfvn0cO3aM1q1bG3VdHDt2LIMGDWLw4MG0adOGihUrotPpuHPnDvv376d169bP/N00zs7OjBw5kilTptC/f39Dl7otW7YQFhbGuHHjDOMPfvnlF44cOULDhg3x8fFBURQOHDhAaGioYQIGwNDqM2vWLMPU5mXLlqVcuXLPtC7ixdGmFPxwLttsQjx3EuwIIYQFRo4cSfHixVmzZg3ff/891tbWVK1alUmTJlGzZk1DvtatWxMcHMzWrVuJiorC0dGRMmXKMGXKFJo1a2bI17JlSy5dusTOnTvZs2cPOp2O8ePHWxzsjB49GkdHR3bt2sW+ffvw9PSkU6dOVKlShREjRhjltba25vvvv2fZsmX89ttvzJ07FxsbG0qUKGH0ElMXFxcWLlzIggUL2Lt3L3v37sXR0ZHSpUsbvXi0SpUqLFiwgHnz5rF27VrDS0XfffddevfubbRvHx8fpk6dyty5c/nxxx9xdXWldevWtG/fnq5du+boHDxpxIgRxMTEsGbNGuLi4lAUhc2bN1sc7PTq1Ys7d+6wZ88e1q1bh06n48cffzQaeNyxY0cWLlyIvb09zZs3z3RbgYGBhpeK3rx5k0KFCjFo0CCTGfC8vLxYtmwZixcvZt++fWzfvh0bGxs8PT1p1KgRQUFBuTsYOaQPypYuXcpPP/0EQIUKFZg6darRS0UbN25MREQEu3fvJjIyEltbW4oXL85nn31m1KWvRo0avPvuu6xfv55Jkyah1WoZPHiwBDv/ITNegx/+UrJ9sWj+j8h7OWmlF1uuqZQXZRSrEEII8YKJiIigTZs2tG/f3uhFrXp3796lffv2DB48+Jm3yAjxIktLS8NmBtkGOyd6gZ+3PGvPqUbDLJ+m+sCPMsvb42TMjhBCCJGJtWvXotVqzb57SAiRcxLoiOdNrjghhHhBJCcnEx+f/QxIHh7ymvHMxMfHk5ycnGUea2trs2ObHvfbb79x7949li5dSkBAAJUrV87LYmZJ/5LY7Li7u78Q03QLYaDSIR3VxItGgh0hhHhB7Nq1i4kTJ2ab78SJE8+hNC+nqVOnsmXLlizz1KpVi/nz52eZ59NPP8XW1pYaNWrw+eef52URs3X27FmGDRuWbb7NmzcbpgIX4kVgQyqpWDZmTuSMTqZ3zzUZsyOEEC+IiIgIrl27lm2+/HxHy4vu+vXrPHz4MMs8Li4uz7WlJqdiY2O5cOFCtvlq1Kjxwr2EVPx3paWlMezHvSxIaQpZvBNGGSPP2XOjwfB7Fuc99IPXMyzJy0euOCGEeEF4eHhIF7WnVKZMGcqUKZPfxXgqLi4uEtCKl1Jd21AWpGS+/DO5rEU+kGBHCCGEEEI8c+MbyHie3NJKN7Zck9nYhBBCCCFEnlCTlukyK7XcsIvnT4IdIYQQQgiRJ+Y4/wqYDge3kThH5BMJdoQQQgghRJ5QqxTO9XkiDXjwtkQ7TyM9Bx9hTMbsCCGEEEKIPFOhUMasa9ejdTjbQBEHebYu8o8EO0IIIYQQIs+VcZMgR+Q/uQqFEEIIIYQQBZK07AghhBBCCPECk6mnc09adoQQQgghhBAFkgQ7QgghhBBCiAJJurEJIYQQQogc02kVTkw/z98/XcImJQ0POysiBmjzu1gFUrr0Yss1adkRQgghhBA5tqX7Lv5YFIpWC8lW1kRo3bGb50L8o5T8LpoQBhLsCCGEEEKIHEmJTeXvWwpOySnoGx00ikKylQ17PzyZr2UT4nES7AghhBBCiBy58Vc0ibb2JukancL5UOnKltfSUVn8EcYk2BFCCCGEEDnyx6gQkm2sTdITba1xjYzJhxIJYZ4EO0IIIYQQwmJKqpbSl+8zNCSEovGxhvR0tZpUKyvsUxR+/+BgPpZQiH/JbGxCCCGEEMJilz2/olJcMim4UP3+XWKjHpFiZY1G0eKQmsqfnj6cCInjtSfWu/hIy74w6FhOhaeTPG8Xz4cEO0IIIYQQwjIHz1Mi+jrxeBqSXFJTIPXfGdhq373F0XIlSU3TYWOdEdQUmZNORFLG8mG7FXpU0LGivdyGWipNhuLkmoTVQgghhBDCIvF952NPPLbEm1mqA+CBoxO1wu4wedJNAHoF/xvo6K28DLdjZSID8exJsCOEEEIIIbKn0xF9J6MFx5kH2BNlWGRDPHeLqbniVZQiCfFodSruHHsIwPJL5jf3yiLlmRdZCAl2hBBCCCFEtpLbfIdX6iMAVCgUVl0nvHgal8rZ4GAbRpI9zGzdkj9LlsAxLZXiETE8StCh0unMbi8mFeJSzC8TxtJUKos/wpgEO0KI/7y7d+/i7+/PvHnz8rsoeWLNmjV06dKFgIAA/P39uXv3bn4XKUdOnDiBv78/wcHBhrRneY7mzZv3Uh6nrAwZMoR27drldzFEQXLsMrE77mBFOgDpKjW/VazP9426MatxD4Z0/ZxDPn7Ypqaxu1oVYm3t0OgUmnwbhaJk3oLjMlvH+ivpz6sW4j9IRoYJIUQBcuLECaZMmULjxo3p168fVlZWuLu753exhBAvs7M3SKj7f+jwRAFUgJWio/XFQ9S8c5FPg97FMTENXaotLY6cJcyrMFq1hn2VS3DO0QWyaW3osgniRio42UirhMh7EuwIIUQBcvToUQC++OILXF1d87k0ecfb25tDhw6h0WjyuygvhTlz5mT5NF0Ii92PRFvjAxwAR+J48qqaX68LD9wLgTvc8PGkZPhDal26wd7KJdn5atlsAx29IrO0JI2R21KR9+SqEkKI5yw9PR2tVoutrW2ebzsiIgKgQAU6ACqV6pkcr5dBQkICjo6OOVrH2tr0zfZCGKRr4UE0uDiAkz0oCkQnQEIyfLseQs5DQjLaO5Gok9NRk9Gaw2P/BbjiUZzjJV4x2vRNLw8qhd4htKhbRqCjKBYFPMlAsbnphLyhoqSrGlsraeV5XFp+F+AlJsGOEOK5CA4OZuLEifzwww9cvHiRtWvX8uDBA7y9vRk4cCBt27YFMsZmtG/fnsGDBzN06FCjbcybN4+ffvqJzZs3U6xYMQAmTJjAli1b2L17NzNmzODAgQOkpaVRu3ZtPvnkEzw8PFi/fj3Lly/n7t27eHt78+6779KkSROz5dyxYweLFi3i1q1buLu70759e9566y2srIz/XEZERPDTTz9x8OBBHj16hJubG40aNWL48OEUKlTIpMyrVq1i06ZN7N69m4iICObOnYu/v7/Fxy8kJIQlS5Zw+fJlVCoV5cuXp2/fvoZ66I+bnn7btWrVYv78+Rbt4+HDhyxbtozjx48THh5OSkoKPj4+tGnThj59+hi1qujP55w5czhz5gzBwcE8evSIkiVLMmDAAFq2bGm07Xbt2uHt7c3o0aOZMWMGf//9N9bW1jRq1IhRo0YZHTNzsroudu7cyapVq7hy5QparZZy5crRp08fmjdvbpRPp9OxePFiNmzYQEREBL6+vgwYMMCiY2NOTEwMP//8M/v37+fhw4fY29vj7e1NixYt6Nu3b67K6O/vT9u2bWndujXz5s3j8uXLVK5cmRYtWvD111/z3Xff0bhxY5N6tW3bFjc3N5YvXw5kjNkJDw83GvcEEBYWxoIFCzh69CiRkZG4ublRpUoVBg8eTOXKlQ35zp8/z4IFCzh9+jSJiYl4e3vTpk0bQ9dIvWvXrjF//nz+/PNPoqOjcXFxoVSpUvTp04eGDRvm+tgKCzyIhlEL4LczUMYTvu4NzV/NWLb/b/hoCVy6C5V9IDoR7kdD+9pw7T4cOG/RLrJrR422czZNVKlItbYitKi74bulwhOh4kIF0GJvBc5W4GQLVQqrOPswo01peA01Y+uoUMlAfGEhCXaEEM/VnDlzSElJoXPnztjY2LB27VomTJiAr68vNWrUyPV2R44cSdGiRRk2bBhhYWGsWrWKDz/8kKZNm7JhwwY6dOiAjY0Nq1at4uOPP2b9+vX4+PgYbWP//v3cuXOHbt26UbhwYfbv389PP/3EvXv3GD9+vCHfvXv3GDBgAGlpaXTo0AFfX1/CwsJYt24dJ06cYOnSpTg5ORlt+/PPP8fW1pZevXqhUqnw8PCwuG5r1qxhypQplCpVikGDBgGwZcsWxowZw7hx4+jcuTPu7u58+eWXbNiwgdOnT/Pll18CZBtEPO7KlSvs3buXJk2a4OvrS3p6On/88Qfff/89d+7c4dNPPzVZZ/bs2SQlJdG1a1cgIwj69NNPSU1NNRkg/+DBA4YPH85rr71Gs2bNuHjxIps3b+bChQssWbIEOzs7i8uqN3fuXBYsWED9+vUZNmwYarWavXv3MnbsWD766CO6d+9uyDt9+nRWrFhBrVq16NmzJ5GRkUyZMsXkOrDU2LFjOXXqFF26dKF8+fKkpKRw48YNTp48aRTs5KSMkBFo/P7773Ts2NHwEKBZs2ZMmzaNrVu3mgQ7x44d48GDB/Tq1SvL8p4/f57hw4eTnp5Ohw4dKFu2LLGxsZw6dYqzZ88agp2DBw/y4YcfUrx4cXr37o2Liwt//fWXIfiaMmUKANHR0QwfPhyALl264OXlRXR0NBcuXODcuXMS7DxrvWfCrrMZ/38yHtpNhivfg40VtP6/jFYagD8u/7vOor15WoTyD25hl5JC8mOtro6JyYS5O5NuY2Nxq445SekZnwfJcD3m385z4w7oKGynZsirEuwIy0iwI4R4rlJTU1myZImhm02zZs3o0KEDq1evfqpgp2rVqnz88cdGacuXL+fBgwesWrXKEHzUrl2bN998kw0bNvDOO+8Y5b9y5QpLliyhUqVKALzxxht8+OGHBAcH07lzZ6pVqwbAN998Q3p6Or/++iuenv++Rbx58+YMGDCAX3/91aT1wcnJiblz55q0EGUnNjaWWbNm4evry6JFiwz16Nq1K7169WLGjBkEBQXh7OxM69atOXbsGKdPn6Z169Y52g9ktAJt2rTJ6Ilpz549+fzzz9m0aRNDhw41CdKio6NZuXKlUbl69OjB9OnTCQoKMgpgbt++zejRo+nZs6chrUyZMkyfPp2VK1fSv3//HJX34sWLLFiwgAEDBvD2228b0nv06MEHH3zAnDlzaNOmDY6OjoSGhrJy5Upq167N999/b2ileu211+jTp0+O9gsQHx/P8ePH6dq1Kx999FGelFHv+vXrzJkzh7p16xptq1GjRhw4cIDY2FhcXFwM6Vu3bkWj0fD6669nWg5FUZgwYQJpaWksXryY8uXLG5YNGDAA3T9TA6ekpPDVV1/xyiuv8MMPPxiuV31AN336dMNseWfPniUyMpLJkycTFBRk4ZETeSIq/t9ARy85FTYfB3ubfwOdZ8wlNZ52Jw6z5xV/YpwcKBQTzytXb3GgVmX870Tz0MGGY8Xdcx3wZGb1JYUhr+bpJl94idKSlWsy9bQQ4rnq1q2b0XiCokWLUqJECcLCwp5qu2+++abR95o1awLQpk0bo1aW8uXL4+joyK1bt0y2UbduXUOgAxnjRPRP6PfuzXgiGh8fz8GDBwkMDMTW1pbo6GjDp1ixYvj6+homCXhcz549cxzoQMaEA0lJSfTo0cOoHk5OTvTo0YPExESz+8sNOzs7Q6CTlpZGTEwM0dHRBAQEoNPpOH/etOtL165dTcrVpUsXYmNjOXnypFFeR0dHunXrZpTWrVs3HB0dDcc3J7Zv345KpaJNmzZG5yE6OprAwEASEhL466+/ANi3bx+KotCrVy+j7niVKlUyCSosYWtri42NDefOnctyyuqclFGvQoUKZsvUtm1bUlNT2blzpyEtMTGRkJAQ6tevn2Ur3qVLl7h+/Trt2rUzCnT01OqM24GjR4/y6NEj2rVrR3x8vFF5GzRoYMgDGM774cOHiY+Pz3Tf+S0yMpKUlBTD9/j4eOLi4gzfU1NTefTokdE64eHhWX6/d++e0QQQz30f9jYojqZj2OJsVODhYpL+rKiB9tf30ODsRdofOEmDPy9SKDWRarfC0Gi1FE5MxS4t79+j40CS0fd8Px95tA/xbEjLjhDiuTLXZcjV1ZV79+7l6XadnTP6kuvH9jzOxcWFmJgYk/RSpUqZpJUpUwaAO3fuABAaGopOp2PTpk1s2rTJorIAlChRIusKZEK/X305sirb00pPT2fRokVs27aNsLAwk9m8YmNjTdYxd8xKly5ttlw+Pj4mA+dtbGzw8fHJVR1u3LiBoiiGLnTm6G829NvPrLxHjhzJ0b6tra0ZPXo03333He3bt6dMmTL4+/vTpEkT6tSpk6sy6mV2rQQEBFCoUCG2bdtm2N7vv/9OUlISbdq0ybK8+ocJFStWzDLfjRs3AAzdILMqr5+fH23atCE4OJjt27dTpUoV6tatS1BQkNnrNb88GQQ+2cXUxsaGwoULG6V5e3tn+d3Lyyt/92Fng+rDjjBh1b9p1Uri3KcZaNTgVxZOXiMvpWONlZlh8q6pcdilp2KfpqXW3VtY63S8dukS4a6uDO/flWSbvJ1B0d4KPm9kPGFHvp+PPNqHeDYk2BFCPFf6J8hP0t9YZzXoVKvVZrossymJM0t/2ml5X3/9dcN4iieZmzUsN+NRnrfp06ezatUqgoKCGDhwIO7u7lhZWXHx4kVmz579Qk5lrFKpmDVrVqbXVdmyZZ/Zvrt27UqTJk04ePAgJ0+eZM+ePaxevZqgoCAmT56c6zJmdq1YWVnRsmVLVqxYQVhYGMWLF2fr1q24uLgQGBiYJ3XSn+NRo0ZRoUIFs3mKFCli+P+JEyfSp08fDh8+zOnTp1m2bBkLFixg9OjRvPHGG3lSJpGJ8W9kBDU7TkM5LxjYDGz/eZgQ8mXG+JyLd6BOObgXDbcfQYc6UKoIdPgaLt8FKzXY20JMAmjN/771qfeohAvhuBBhtFyNgktqHCUiE7DW/duK4x0TQ9O/L3DGNwdjtxQFVOBkpaJrJShsp8LBChr7qth9K6Mk/V9RU7HQf69LV9J/r8p5RoIdIcQLRT8WwVwrQl61YGQmNDTUJO369evAv601vr6+qFQq0tPTc9X9Kad8fX0N5Xi8xQD+fQqf2wH2T9q2bRu1atUyulEHsuxiaO6YZVauO3fukJaWZtS6k5qayp07d8y2uGSnePHiHD58GC8vL0NrUmb0ZQkNDTUc0yfLmxseHh507NiRjh07otVq+eKLL/jtt9/o3bs3VatWzVEZLdG2bVtWrFjB1q1b6dixIydPnqRTp07Y2NhkuZ6+tejy5csW5bO3t7f4+i5XrhzlypWjb9++xMXF0a9fP77//nu6d+8uM2Y9a239Mz5PcrKHd7IYt3duZvbbTkwBGyvSrbthhQottsTijTMRRtNPa7Ei2saFSmlRJpuoeO9h9vsxULgzTEUxZ/O3ps1K5WBTQjxGxuwIIV4ojo6OFC5cmOPHjxu1JNy+fZuQkJBnuu+jR49y8eJFw3dFUViyZAmAYYpnNzc3GjRowO+//24y1kK/TlSU6T/6uVW3bl3s7e1ZtWoVCQkJhvSEhARWrVqFg4MD9erVy5N9qdVqk9abpKQkw3TG5qxdu9ZovEZ8fDzr1q3D2dkZPz8/o7wJCQmsWbPGKG3NmjUkJCRkOhV4VvSTMMyZM8dsq9/j3cMaN26MSqXi119/Ncp78eJFjh07luN9Jycnk5xsPAhco9EYxsPog/WclNESFStWpHz58mzfvp1t27YZpp3OToUKFShTpgybN2/m2jXT7k36867vKrdo0SKzXT2Tk5MN12FMTIxhYgM9Z2dnfHx8SE5ONhrPIF5CDrZgpcE6fQ3pag3WxKPFliiKo/sn3NGi4RGlKGbmWgFwTrLwGlAUxtfLPNAR4mnIVSWEeOF0796dH374gZEjR9K4cWMiIiJYt24dZcuWNTtIPq+UL1+eYcOG0a1bNzw8PNi3bx/Hjh2jdevWVK9e3ZBv7NixDBo0iMGDB9OmTRsqVqyITqfjzp077N+/n9atW5vMxpZbzs7OjBw5kilTptC/f3/Dje2WLVsICwtj3LhxJn3Fc6tZs2asX7+eTz75hDp16vDo0SOCg4OzfEGpm5sb/fr1M0wzHRwczL179/jss89MumP5+vry008/ce3aNSpXrsyFCxfYvHkzpUqVokePHjkub9WqVRkyZAjz58+nZ8+eNG/enCJFihAREcGFCxc4dOiQYSxOqVKl6NatG6tXrzZMfx0ZGcnq1aspX748ly5dytG+b968yZAhQ2jatClly5bF2dmZ0NBQ1q5di4+Pj2GCjJyU0VJt2rRhxowZLF68mBIlShhmCcyKSqVi/PjxjBgxgn79+hmmno6Li+PUqVMEBATQo0cP7O3tmThxImPGjKFLly60b9+e4sWLExcXR2hoKHv37uXbb7/F39+frVu3snz5cpo2bYqvry9WVlacOnWKP/74w2QmPvES02iw1q7G3aofD7VliMOTBApjRQpp2HPTpRAVIiNQ8++DEoWMl496JCRjn5JCUjYvBHa1VjGhodySimdDriwhxAunX79+xMfHs23bNk6ePEnp0qX5/PPPuXDhwjMNdgIDAylZsiSLFi3i5s2bFCpUiEGDBhnebaPn5eXFsmXLWLx4Mfv27WP79u3Y2Njg6elJo0aN8nwaXn3wtXTpUn766Scg40n91KlTc9UikpnRo0fj6OjIrl272LdvH56ennTq1IkqVaowYsQIs+u8++67nDlzhjVr1hAZGUmJEiWYNGkSrVq1MslbtGhRvv76a2bMmMFvv/2GtbU1rVq14r333sPe3j5XZR4yZAhVqlRh5cqVrFixgqSkJAoVKkTZsmUZM2aMUd4xY8ZQuHBhNmzYwMyZMylevDgff/wxt27dynGw4+npSfv27Tl58iQhISGkpaVRpEgROnXqRL9+/Yxu9HNSRku8/vrrzJ49m4SEBJOXl2alatWqLF68mF9++YXdu3ezbt063NzcqFq1qtG07wEBASxevJjFixezfft2oqKicHFxwdfXl169ehlar/z8/Lh06RIHDhwgIiICjUZDsWLFeO+990zeHSRefvbpi3FSDWVvGX+KP4rFPc6GOFs7VGAU6EBGsHOpmBeb/Kuzpw3U3535dgtbQ8QouR3NTirSJTS3VMqLOOJUCCHECy04OJiJEyfy448/4u9vZszAE9q1a4e3tzfz589/DqUTQjwLujOh3PBbxIEqJXnk4E3NK7ew0aZTPDbaKN8jR0e+6NEF25Rk1i0th2pqeqbbVMZIoGMJ1XuRFudVZlj+Mun/ArnChBBCCCFEttQ1SmGrxOB37TbptuGkpTkT6lYIn9hoo0HgNwplTLms/qc1opQLhJrOOUOL3M3IL0SOSLAjhBD5ICYmhrQ003dWPM7Ozu6px+MkJydb9MJHDw+Pp9pPQSHHS4is3Z3aF5ePdvLQwZ5S0XGEO7tyqlgJSkZHYqXTsr9yRW4U9sAxKYlOXTJaGA69qcJnnmlHok2d8/YdPAWa9GLLNQl2hBAiH3z44YecOnUqyzxt27ZlwoQJT7WfXbt2MXHixGzznThx4qn2U1DI8RIia9VGvMrVj3dx36EIKWonykRHoFVUXPMsyqa6tYh0ccY74hFd9x+hzc+9ACjmrCGku5b2GxTi0sDTAY73VmFnJXfw4tmTMTtCCJEPLly4YPZdQo8rUqTIU7+JPiIiwuxUw096Hu8MehnI8RIie/em7+H417d44OzK77WqEO9oj/axFzjXuHqdJBsrvttZPx9LWbCo3s/BmJ3pMmbncRLsCCGEEEKIHFlWYikqlTVXfLw5UaWsId0qXUvn/YfxW9mSqnXkpjuvSLCTe9KNTQghhBBC5EjKK0UI2PUXqRorbNPSuOXpgXV6OqXvPiDa3kkCnbymki5/uSXBjhBCCCGEyJHe8+uxukE0ikpF0ahYikY91i3XSW4vxYtDnX0WIYQQQggh/mXr64ZzegrKky0OikKdr2rkS5mEMEeCHSGEEEIIkWPNdrShUGIc6Id/KwoppXVUauWdvwUT4jHSziiEEEIIIXLMuZoHne72I/KPcCKuxrA3fj9W8uoc8YKRlh0hhBBCCJFrhQK8Kd2jLCoJdMQLSFp2hBBCCCGEeJHJbGy5Ji07QgghhBBCiAJJgh0hhBBCCCFEgSTBjhBCCCGEEKJAkjE7QgghhBAiVy6cimHTr/eoWCQdnAHr/C5RASVDdnJNgh0hhBBCCJFj4yfcJPJEKGkaW25fUqh304a4lmn5XSwhjEiwI4QQQgghciQuUcvJa0lE+VSgaHQ80Y52/OVdgk4HTuV30YQwIsGOEEIIIYTIkUu30nGPTmHw1t+xT00j3s6GA6+U4WiJshSbepnun1TN7yIWMNKPLbdkggIhhBBCCJEjsUfvMOy3oxSPisEjIZESj6IJOn2FeCsbDp5MNeQ7d19HtdmJFJmcyLcHUrPYohDPhgQ7QgghhBAiR/7+5gL2aemG72rALTGRivceccPNDYCDoVqqzUni3AOFiASFj3amUWJqQv4UWPxnSbAjhBBCCCFypHBcnEmatVbHAzcn4v6Zo6DRz8mgAzSqjF5YCoRFw9WIdJN1RTZUOfgIIxLsCCGEEEIIi/3Y/gBFtHdN0m95uHHZ2wM1sPtqGlirwcUabDVgpwHrjDvxuj8kP+cSi/8ymaBACCGEEEJYJPxyHPcSrFCKF+OaowM1r9/FWqvjcrEi/BJUB4AkO1v6b0wFW+uMlh1rDSgKKECalsiUfK2C+I+RYEcIIYQQQlhk+fATRDsXpmiEK7eKOrMysBY26VpiHewMeYrGJ3Ak1g0cAKt/OhGpVGBnBekKpOtI0ypYa6TPlXj2pBubEEIIIYTIVmqKDqfYGFCrefXSbWId7dFp1EaBjkarpUxEFOiUjLE6T/qnK1vFudKVLUdkzE6uSbAjhHhhBQcH4+/vz4kTJ/KtDO3atWPIkCHZ5nsRyvqyOXHiBP7+/gQHB+d3UZ6aTqdj3rx5dOjQgbp16+Lv7/9M9nP37l38/f2ZN29errcxZMgQ2rVrl4elEv8V6/53mateJUGl4veAV7B2sqNmRBTlYuJQKQqQ0Wst0TYNrOD1v0+x7ef/sWveV/Q4fTBjI9qMfGmXH+RTLcR/jXRjE0IIIZ7Sli1b+Omnn2jfvj21atVCrS4YzxIvXbpESEgI7dq1o1ixYvldHJHPzv4RjbNWR6SNDY8KuQAZDQkeySnEWVtx38EeRa3mbLEytLz8J1tWTEVNRnDT/OpfWKWls6xCAADhzq7citFRwrVg/FbEi0uCHSGEyAOtW7emRYsWWFtb53dRRD44evQoTk5OfP7556hUz64fibe3N4cOHUKj0TyzfTzu8uXL/PTTT/j5+Umw8x935NdQKl4NJ87dkRgnJ7RWxtege3Iy9x3sM8bmqFSMOLHXEOjoDTmy2xDs+CTGUvJ7G5RPHZ5bHV5u0j8ttyScFkKIPKDRaLC1tS0wT/QLouTkZNLTn837PR49eoSzs/MzDXQAVCoVtra2WFnJs0rx/Oi0WmI/3I7K1orbxYqi1Zj+nYu1tTX6bmXm5lz32O8j3toO9+QkJvyeQnK6YpJXiLwi/yoLIV54Wq2WefPm0bZtWwICAujRowe//fabSb6QkBAGDhxIw4YNadSoEQMHDiQkJMTsNnOS90l37tyhc+fOtGrVisuXLwPmx+zo044fP87SpUvp0KEDAQEBdO7cmS1btpit588//0zbtm2pX78+PXr0YOfOncybNw9/f3/u3jV9r0VW9OuFhoYyZ84cWrduTUBAAG+++SYHDx40ypvV+JkJEyaYjEHRj/u4e/cuY8aMoUmTJjRt2pQJEyaQmJiITqdjwYIFtG/fnvr169OrVy/OnDmTaVlXrlxJ586dqV+/Pp07d2blypVm8926dYvPP/+cli1bUq9ePdq1a8fMmTNJSkoyW+aoqCgmTpxIixYtaNSoEQ8e5GycwMaNG+nVqxcNGjSgcePGvP3220b10B+3EydOEB4ejr+/P/7+/kyYMMHifejLGh8fz+TJkwkKCqJ+/foMHDiQc+fOGeXNbMxOcnIy06ZNo2XLljRo0ID+/ftz7Ngxs+dO7+HDh4wbN46mTZvSoEED3nnnHW7evGlYPm/ePCZOnAjAsGHDTOqWkpLCvHnz6Ny5Mw0aNKBJkya88cYbzJw50+K6ixeL7uBVUt9cwPmqP7LLfSF/WM9jv/3P/OX8HVFWHpypUoZUG+uM1pvHWKclct/ezihtY5WGaJ/IN9evueH/42zt8I2KIGFqMJ2HHKX2uxcoO/Y29l8n4jkpnp+6HeLu50dJj858nuplZ9JpvyyZt9ancO6+DoDT9xX6b9fScaOWNZd0T3tIRAEgj4aEEC+82bNnk5SURNeuXYGMIOLTTz8lNTXVMNB6zZo1TJkyhVKlSjFo0CAgYxzFmDFjGDduHJ07dzZsLyd5n3Tx4kVGjRqFs7MzCxcuxNvbO9vyz5kzh5SUFDp37oyNjQ1r165lwoQJ+Pr6UqNGDUO+b775hnXr1uHv70/v3r2Jjo5mypQpT919aMKECVhZWdG7d2/S0tJYsWIFY8aMYf369U+17aSkJIYPH06tWrV45513OH/+PJs3byYlJQU3NzfOnTtH9+7dSU9PZ9myZYwePZrg4GAcHR2NtrNq1SoePXpE586dcXBw4LfffmPq1KnExsYaTQ5x4cIFhg0bhrOzM507d6Zo0aJcvnyZlStXcvbsWebPn2/S4vH2229TuHBh3nrrLZKSknBwsLzLzKxZs1iyZAlVq1ZlxIgRJCYmsmHDBoYOHcp3331Hw4YNKV26NF9++SULFiwgOjqa0aNHA+Dr65vj4/nOO+/g7u7OoEGDiImJ4ddff2XUqFFs3rzZ5Jg96eOPP+bQoUM0adKEOnXqcPfuXT788MNMz29SUhKDBw+mWrVqvP3229y5c4eVK1fywQcfsGrVKjQaDa+99hoRERFs2LCBAQMGULp0aaO6TZkyhc2bN9OmTRt69eqFVqslLCyM48eP57juIv/pDl4ltckMQq29uKcqRuF/HiDYpmuJs3blYVFXs+tZp6eiSYlCqy5hSEtTq1j/Sg22Vvqe/idCqHfzCr/UaMymiv8G3mlOdvzlUoZz7j4ozrag/jcwSraCYbVrs3nySsruuk2lI11M9jv1YBof7kg1fF99Lp21vezoFKyQ9E8D7qarCj8kwbAa8mz/v0yCHSHECy86OpqVK1fi5OQEQNeuXenRowfTp08nKCiI1NRUZs2aha+vL4sWLTLK16tXL2bMmEFQUBDOzs7ExsZanPdJR44c4aOPPqJcuXJMmzYNNzc3i8qfmprKkiVLDON5mjVrRocOHVi9erUh2Ll27Rrr1q0jICCAmTNnGrrDNW/enJ49ez7N4cPNzY3p06cbulj5+/vTr18/1q9fzzvvvJPr7UZHR9O3b1/69u1rSIuLi2P37t1UqlSJhQsXGoKP0qVL88EHH7Bjxw66dDG+cbl16xZr1qzB09MTgO7du/PWW2/xyy+/0KFDB0P6l19+iYeHB0uWLDG6+a9Tpw4ffvgh27dvN5llrGzZsnz11Vc5rltoaChLly7l1Vdf5ccffzScu44dO9KtWzemTJlCQEAAhQsXpnXr1mzcuJGUlBRat26d433pVapUibFjxxq+lylThrFjx5o9Zo87ePAghw4domPHjnz22WeGdH9/f9577z2z60RHR9OnTx/69etnSHN3d2fWrFkcO3aMgIAAypcvT/Xq1dmwYYPZGeZCQkKoX7++ofVHvNzS5+4HrY4brj4UiTKeFlpRqXFOTTK7XpqVDfcLlzZ816rgnI8rqdYawJ7/teoGSemQov13JTuN4f07ilqdscze+JZUp1azLLAaH27+g4Sj93Gs62m0fNYfaUbf41Phi71pJKUbb2fWKV3BCHZkyE6uFYCzL4Qo6Lp27WoISgCcnJzo0qULsbGxnDx5kqNHj5KUlESPHj1M8vXo0YPExESOHj0KkKO8j9u2bRvvvfce/v7+zJ071+JAB6Bbt25GExcULVqUEiVKEBYWZkg7cOAAAD169DAa91OuXDnq1atn8b7M6dGjh9FYkqpVq+Lg4MCtW7eearsajYY33njDKK1GjRooikKXLl2MWllq1qwJYFRnvVatWhkCGgBra2t69uyJVqs1HJerV69y5coVWrVqRVpaGtHR0YZPjRo1sLe358iRIybb7t27d67qtm/fPhRFoW/fvkbnrkiRIrRr147w8HAuXbqUq21n5smgVh9cmDtmj9Mfo169ehml61uezFGr1fTo0cMorXbt2gAWXxdOTk5cv36dq1evWpQ/v0RGRpKS8m9XqPj4eOLi4gzfU1NTefTokdE64eHhWX6/d+8eivLvOJMCsY+0jGBEhQKK8Rga+9Q01LqMLmEuMQlUuBRGhUu3cY5NBMA1JRWn1IzgI9zZ7p9A5zG2GtAAzlbgapPxclE9BcN01E/ST2cdEW7c/TQ8PFxfXCPpZtJSdS/P+RDPhgQ7QogXXqlSpUzS9Ddxd+7c4c6dO0DGk/An6dP0eXKSV+/ixYuMHz+eOnXq8O2332JnZ2eyblZ8fHxM0lxdXYmJiTF814/HKVmypElec2k5Ya5L1ZP7zw0PDw9snxiU7OKSMR3tk92n9Onm9mnuhvzJc3Hjxg0gYxxJ8+bNjT5BQUEkJSURGRlpsp3cHjv9+ShbtqzJMn3ak9fJ03ryOtEH1Nmdp7t376JWqylevLjJsszqX6RIEZNz5+rqatH+9EaPHk1cXBw9evSgQ4cOfPXVV4SEhKDTvVjjJAoVKmRUVycnJ6OWWxsbGwoXLmy0zpPdU5/87uXlZfQAoSDsQ/NWfQDKxd8i3s742lDUKpJtrHGPjKPGmWt434vC+14kNc5cwyUmAQ1QOSoGG60WK8wELipAC8Q90cKj02W8fNTKtNlCo9XRf+9Z7Kq4U6L9Kyb1eMvPuAXHRgMfNbTWNxgZDK6mfmnOh3g2pBubEEJko3jx4lhZWXHixAn++OMPGjZsmKP1M5uhTVGezwxEluw/q1nEtFozj0uz2K6l+8wJ/Xq9e/cmICDAbB59QPW4nAam+Smz6aSfxXWS1bmzdH9NmjRh8+bNHDp0iFOnTnHs2DE2bdpEzZo1mTt3rkzD/pLRtKoK64dQYnYIaTfiuBvlilNcCjq1ilQrDelpanxuPzTqTaVWFHzuRBDr6ogGKJScgtv9FG4WdjSexCDtsQA4WQsaFVhrABVeCdFUePiA+y7uaNVqHjq54qCFSfuPU7FHKbwn1EalNv379GUza9zsVaw5l46Hg4qPG1kTWFpDYScdU48rRKco9Kys5t2aBaX/V0Gpx/MnwY4Q4oUXGhpqkqZ/0u/j42OYiev69evUqVMn03zwbyuHJXn1HB0dmTZtGiNHjuTDDz9k8uTJNGnS5Okq9QR9S8jNmzdNWmIenyHrWcnqqX5et2A8SX/cH3f9+nXg33NRokTG4Ge1Wk3dunWfaXke3++1a9dMzseTZctv3t7e6HQ6wsLCTFrJnvbayW4qbVdXV1q3bk3r1q1RFIXZs2ezZMkS9u3bR/PmzbNcV7x4NJ1qoOlUg8pA5ccXJKVwu/oWVGaG7Wi0/wYyhZNTcU5P572QnWx+5VWuFy4KaQqGGQP00nQZwY5OoXdbTz5v4IWL3ZPBftbXj1qtYkxDa8Y0NA6qm5dU0/zpGsNFASPd2IQQL7y1a9cSHx9v+B4fH8+6detwdnbGz8+PunXrYm9vz6pVq0hISDDkS0hIYNWqVTg4OBjGveQk7+OcnJz4/vvveeWVVxg7dix79uzJ0zo2atQIyJiC+fFuQFevXjU7FiWvFStWDI1Gw7Fjx4zSz549y19//fVM971jxw7u379v+J6Wlsby5cvRaDSGVrSKFStStmxZ1q1bx+3bt022kZ6e/tTd8h4XGBiISqVi6dKlRu/miYiIIDg4GG9vbypWrJhn+3sagYGBACxfvtwo/eDBg2YDyZywt7cHIDY21ihdq9UajU+AjMBIf0zy8lyIF4C9Ld59y1MkLtZk0X1PdyBj6I1zejqa9BSmbfuFnfMnQUyqaaCjpyio07V828zKTKAjRN6Rlh0hxAvPzc2Nfv36GWbaCg4O5t69e3z22WfY2dlhZ2fHyJEjmTJlCv3796dt27ZAxnTSYWFhjBs3zjAZgbOzs8V5n+Tg4MCsWbN4//33GTduHF999RUtWrTIkzqWLVuWTp06sWHDBkaMGEGTJk2Ijo5mzZo1VKxYkQsXLjzTF1Y6ODjQrl07Nm7cyLhx4/Dz8yMsLIzg4GDKly9veJ/Qs1CiRAn69+9Ply5dcHBwYMeOHZw/f55Bgwbh5eUFZNxIf/nllwwfPpw333yT9u3bU6ZMGZKTk7l9+za///4777zzjslsbLlVqlQp+vTpw5IlSxg8eDBBQUGGqacTExP56quvMu129rw1aNCAgIAANmzYQHR0tGHq6fXr11O+fHmuXLmS621XrVoVtVrNggULiI2Nxd7eHh8fH0qWLEmrVq0IDAykYsWKuLu7c/fuXdauXYuLi4shABMFx2ufV2fytvuUDY1Aq7Ii3UrDPS93HhbJaBVWARptOgOOrSHO1oGhrQaYvI/HIE0HShoPx0hXR4tJL7Zck2BHCPHCe/fddzlz5gxr1qwhMjKSEiVKMGnSJFq1amXI061bNzw8PFi6dCk//fQTABUqVGDq1KkmXc5ykvdJ9vb2zJgxgzFjxvD555+j1Wp5/fXX86SeY8eOpUiRImzatImZM2dSsmRJxo4dy99//82FCxdMBpTntdGjR6MoCiEhIezbt4/KlSszbdo0NmzY8EyDnTfeeMPQsnbv3j28vLz44IMPePPNN43yVaxYkV9//ZWFCxeyf/9+1q1bh6OjI97e3rRr184wm1heGTlyJMWLF2fNmjV8//33WFtbU7VqVSZNmmSYXe5FoFKp+Oabb5g7dy6//fYbhw8fply5ckydOpU1a9Y81ax7Xl5efPHFFyxevJivv/6a9PR02rZty6effsqbb77JsWPHOHbsGImJiXh4eBAYGMiAAQMoUqRIHtZQvCiKNfEhYW0Cp6uXo1h4FEUfROEak8if5YsR4eKI/61LXHUtxoct+rOnuA9YqzNmdkt/YhyYAipFRyFHCXbEs6dSntcIWSGEELny/vvvc/z4cfbt2/fCtCaIl8Mbb7xBeno669aty++iiAJAURS2F17K3+VKUO56OKk2GiI8nUmztUZBIeDmWTa/UpMDJStwsFghcLbJaMVJfKIrmxpe0Ubx1//l/OW7/1WqsXHZZ/qH8rXpe+L+y2TMjhBCvCCSk5NN0q5cucLhw4epXbu2BDoiU+aunYMHD3Lt2rXnMqGD+G9QqVTc83KnWPgjFOChtytpthmtMypUHCpVk0MlK6JTa0CtyujGZqPJeImovhuWGtBB8IjCme1GiDwl3diEEOIFsWXLFrZt20aDBg1wd3cnNDSUDRs2YGVlxdChQ4GMm9rHJ2vIjIeHx7Mu7kspKioq06m09RwcHHBwcHiq/SQmJpKYmJhlHo1Gg7u7+1PtR+/nn3/m0qVL+Pn54eTkxOXLl9m8eTOurq7069cvT/YhBEDLdYHsb7aTdGsN6U+8PFSjKHjGJ3DHxZEKhRQupygZAY+dVcZHp4O4NEChlI99/lTgZSVjdnJNgh0hhHhBVKpUiZCQEFatWkVMTAyOjo74+/szZMgQKlWqBMCuXbuYOHFitts6ceLEsy7uS6lv377ZvrV88ODBhuAytx4fD5YZb29vgoODn2o/ejVq1ODs2bMsXbqU+Ph4XF1dee211xg+fDienp55sg8hAHwquxLp44LnzaiMF4I+8Q6ceFsbvOMi+bKdJ82XazNadlSqjLE7KTpQ4HXftHwqvfgvkjE7QgjxEomIiODatWvZ5pOuS+adOXOGlJSULPP4+PiYvFsnp27fvp3t+4lsbW2pUaPGU+1HiPyypPg6Ytwd0Dr8O8lAmJsLh8qUpPSjcFasqoHqs3+m99eoMgKjf+44lUmO+VDil5vqkxyM2ZksY3YeJy07QgjxEvHw8JAuak/heQUXvr6+Tx0wCfEiu+Ljwf5XylL/QigPPFyIdLIn3NkJq/R0ChfJmL7/l05WvLUhHbT/PldvVVGGi+eO9GPLLQl2hBBCCCFEjtg2LcZru65SPTSclGsa7hZ2xS0+iZBXy+JRIePGfKCfLa96aXhjQzoJKTCjlRVvVJVbT/F8yRUnhBBCCCFypFUTV84v/RMA23Qtpe9HAlAm/BEVq9oZ8vn5WHH1HbndFPlH2hKFEEIIIUSO1HzNg3h70xcdu6XE0OqdqvlQIiHMk2BHCCGEEELkiMZajVXDYqRp/r2VTLSzgopJOBW1y2JNkSuqHHyEEWlXFEIIIYQQOTZkYS3+3u3LgRlXsHG2IqnmeRzcZFpp8WKRYEcIIYQQQuRK1eZFqdq8KGlpaSxceDa/iyOECQl2hBBCCCGEeJGppH9absmYHSGEEEIIIUSBJMGOEEIIIYQQokCSYEcIIYQQQghRIEmwI4QQQgghck6rhSV74bfT+V0SITIlExQIIYQQQoicWfw79P/e8NUKsJrWjHRH6/wrkxBmSMuOEEIIIYTImccCHch4l2Xvj3/Pn7IIkQVp2RFCCCGEEJa7F2U22TpNec4F+Q+RmadzTVp2hBBCCCGE5f66mekih4iE51gQIbInwY4QQgghhLDcwNlmk1VAg8Vnn29ZhMiGBDtCCCGEEMJyt813YwMocTnWJC1dp5AkXdyekioHH/E4GbMjhBBCCCHyhBrQ/fP/6y6l0zXYePm9YWo8neRZu3h+5GoTQgghhBB5KjFNMQl0ALx+1JkmCvEMSbAjhBBCCCEsc+JK9nluP6LYD9pMF/92PT0PC/QfIb3Yck2CHSGEEEIIYZmmX2SfJzaBmNTMF4/Zm3fFESI7EuwIIYQQQgjLxKdkmyWpsHuWy89lPr+BEHlOgp0XWHBwMP7+/pw4cSK/iyIAf39/JkyYkOfbnTdvHv7+/ty9ezfPt12QyO8hZ4YMGUK7du3yuxgATJgwAX9//3zb/4kTJ/D39yc42MwAAiFEnvNbrcnvIghhIMGOEEII8RJbvny5BHLi+dh1OtssKuBaQvYDR1LSZaKCHJExO7kmU08LIV4KrVu3pkWLFlhbW+d3UV4Kc+bMQVHkvRYAtWrV4tChQ1hZFcx/8lasWIG3t/cL05InCrB3f7Iom3dCHHftHbLMYzdDhzJGnrmLZ69g/uUXAkhISMDR0TG/i/HSUhSFpKQkHByy/gfredFoNGg0/82uEbm5liUo/JdarcbW1ja/iyHEyykpBSasgmmbIN2yByglY6O46+GZbT7VVONZ2TztwMYKHKwhMQ2cbGCMPwysnv3t6tFwhV2hCuXdoXN5FdYaaeIQGSTYeQkoisLSpUtZu3YtDx48wNvbm4EDB9K2bVtDnp07d7J9+3YuX75MZGQkDg4O1KhRg2HDhlG+fHmj7Z09e5ZffvmFS5cuERcXh6urK+XLl2fw4MFUq1bN4nLNmzePn376ic2bN1OsWDGjZe3atcPb25v58+cb0vz9/Wnbti2vv/46P/zwA1euXMHJyYmgoCBGjBhhclN95coVZsyYwdmzZ7G1taVhw4a8//77NG/enLZt2xrGz9y9e5f27dszePBgSpcuzZIlS7hx4wZBQUFMmDCB0NBQVq5cyalTp7h37x5arZbSpUvTtWtXOnbsaFKva9euMWPGDE6fPo2NjQ3169dn9OjRmR6HnTt3smrVKq5cuYJWq6VcuXL06dOH5s2bG+XT6XQsXryYDRs2EBERga+vLwMGDLD4eD8pJiaGn3/+mf379/Pw4UPs7e3x9vamRYsW9O3b1yjvnj17WLVqFZcvXyYtLQ1PT08CAgJ47733sLa25sSJEwwbNozx48eTlJTEmjVruH37Nv3792fo0KE5qifA0aNHWbJkCX///TepqamUKFGCrl270rVrV6N8+utk3LhxTJ8+ndOnT6NSqahbty4fffQRHh4ehrzBwcFMnDiRH3/80TD+Q5/2ww8/cPHixSx/IwBarZaFCxeyceNGIiMjKVGiBAMHDuTGjRuZXst5dQ4sPX7630nr1q2ZN28ely9fpnLlyrRo0YKvv/6a7777jsaNGxuto9PpaNu2LW5ubixfvhzIGLMTHh5u0r0pLCyMBQsWcPToUSIjI3Fzc6NKlSoMHjyYypUrG/KdP3+eBQsWcPr0aRITE/H29qZNmzb069cv1y0kUVFRTJ8+nUOHDpGSkkK1atUYNWoUlSpVMuR5/Fp8sqViwoQJbNmyxWjc1rVr15g/fz5//vkn0dHRuLi4UKpUKfr06UPDhg0z3ebjaYqisGzZMsLCwihcuDDdunWjX79+JuW39JhYUqaUlBQWLVrEb7/9xv3797G2tsbT05P69eszatQoi4+p/rcQHh5uNC5q8+bNfPDBB8TGxhIcHIxabfwEfffu3YwdO5YJEybQtm1bo+ORkJDA6tWruXfvHl5eXnTv3p0ePXqY7PvWrVv89NNPHDt2jJiYGIoUKULz5s0ZMmQI9vb2FtdBvMASU6DiO3D7kcWrKECYe+Fc7e5+smnaWzvh0F0tv7TK/GHX9BM6Rof82y2uSXEVu7up0agLUsBTkOryfEmw8xKYM2cOKSkpdO7cGRsbG9auXcuECRPw9fWlRo0aAKxevRpXV1c6deqEh4cHt2/fZsOGDbz11lssW7aMEiVKABAaGsrbb79N4cKF6dGjB4UKFSIyMpIzZ85w+fLlHAU7uXHx4kX27NlDx44dadOmDSdOnGDlypVcu3aNOXPmGP5BvnXrFoMGDUJRFHr06EGRIkU4dOgQ7777bqbb3rdvH6tWraJLly506dLF8CT8xIkTnDp1ioYNG1KsWDGSk5PZvXs3kyZNIioqyijguHPnDoMHDyY1NZXu3bvj6enJgQMHMt3v3LlzWbBgAfXr12fYsGGo1Wr27t3L2LFj+eijj+jevbsh7/Tp01mxYgW1atWiZ8+eREZGMmXKFHx8fHJ1LMeOHcupU6fo0qUL5cuXJyUlhRs3bnDy5EmjG+05c+awcOFCypQpQ8+ePQ3Xx++//86wYcOMWgBWrFhBTEwMHTt2pHDhwnh6eua4nuvXr2fy5MlUq1aNgQMHYm9vz9GjR/n666+5c+eOyY3cw4cPGTp0KE2aNGHkyJFcuXKF9evXk5CQwJw5cyw6Fpb8RgC++eYb1q1bh7+/P7179yY6OpopU6bkKMB5nKXnICfHDzJuqn///Xc6duxoCNiaNWvGtGnT2Lp1q0mwc+zYMR48eECvXr2yLO/58+cZPnw46enpdOjQgbJlyxIbG8upU6c4e/asIdg5ePAgH374IcWLF6d37964uLjw119/GYKvKVOm5Op4vfvuu7i4uDB48GAePXrE6tWrGTJkCAsWLKBcuXI53l50dDTDhw8HoEuXLnh5eREdHc2FCxc4d+6cIbDIyrp164iMjKR9+/Y4Ozuzfft2Zs+ejaenJ61atTLks/SYWFqmKVOmsHnzZtq0aUOvXr3QarWEhYVx/PjxHB2DL7/8kmnTpuHm5sbAgQMN6e7u7nTs2JFvv/2Wo0ePEhAQYLTepk2bcHJyMgm2V61axaNHj+jcuTMODg789ttvTJ06ldjYWIYMGWLId+HCBYYNG4azszOdO3emaNGiXL58mZUrV3L27Fnmz59fYLsN/qesOJCjQAdgaa1AbrsXydNiLPpbYX4LxWzwkpyuMOGw8fifkDCFHTcU2pSVAEEAinhhbd68WfHz81PefPNNJTU11ZB+//59pV69esonn3xiSEtMTDRZ//r160q9evWUyZMnG9JWrFih+Pn5KX/99ddTl+/HH39U/Pz8lDt37pgsa9u2rTJ48GCjND8/P8XPz0/Zu3evUfq3336r+Pn5KTt27DCkffzxx4qfn59y+vRpo7xjx45V/Pz8lPHjxxvS7ty5o/j5+Sl16tRRrl+/blIWc8dGq9UqgwcPVgIDA5W0tDRD+rhx4xQ/Pz/l+PHjhjSdTqd88MEHJvu9cOGC4ufnp3z//fcm2x89erQSGBioxMfHK4qiKDdu3FD8/f2VYcOGKenp6Ubb8Pf3z/Q4ZiYuLk7x8/MzOrfm/PXXX4qfn58ydOhQJTk52WiZTqdTdDqdoiiKcvz4ccXPz09p2rSp8ujRI6N8Oannw4cPlYCAAGXcuHEmeb/99luldu3aSlhYmCGtbdu2ip+fn7Jz506jvF9//bXi5+en3Lhxw5Cm/z08fm5y8hu5evWq4ufnp7zzzjuKVqs1pF+5ckWpXbv2MzsHOTl+ivLv7+TIkSMm+T/66CMlICBAiYmJMUr/7LPPlDp16hidu8GDBytt27Y1fNfpdEq3bt2UgIAA5fLlyybb1h+T5ORkpUWLFsqgQYOMfhuKoijLli0zOQeWGD9+vOLn56eMGTPGcM0piqKcP39e8ff3V9555x1Dmv5a3Lx5c6bb0QsJCTF7/TzJ3Db1aS1btlTi4uIM6UlJSUqzZs2U/v37G9JyckwsLVPTpk2Vd999N8s8ljL391ZRFCU2NlapX7++8vHHHxulh4eHK7Vr1za6dvXHo1GjRsq9e/cM6ampqUqfPn2UOnXqGKX36NFD6dy5s9G1qyiK8vvvv2d6/vLLo0ePjP7+xcXFKbGxsYbvKSkpSkREhNE6d+/ezfJ7eHi40bVcUPeRMnaxotDJ4k+sTQ9FPSVF4du0PP6kKompOrP1uBevM7vOrOMpz/VY5cU+ssLniRZ/hDEZGfYS6Natm9HT96JFi1KiRAnCwsIMafouA4qiEB8fT3R0NO7u7pQsWZJz584Z8jk5OQEZrSApKdnPlZ/XSpYsSZMmTYzS+vfvD0BISAiQ0dXo0KFDVK1a1eipPJDlk+uGDRtSunRpk/THu1OkpKQQHR1NbGws9erVIyEhgdDQUCCjK9CBAweoUqWKUXcQlUpl0iUJYPv27ahUKtq0aUN0dLTRJzAwkISEBP766y8g43grikKvXr2Mxp1UqlSJunXrZlqnzNja2mJjY8O5c+eynLJ6x44dALzzzjsmYxZUKhUqlfFTrzZt2lCoUKFc13P37t2kpqbSoUMHk7yNGjVCp9Nx7Ngxo+0XKVKEoKAgozT98X/8Gs+KJb+RAwcOANCjRw+jLj3lypWjXr16Fu3ncZaeg5wcP70KFSqYvS7atm1LamoqO3fuNKQlJiYSEhJC/fr1Tc7d4y5dusT169dp166dSddWwHBMjh49yqNHj2jXrp3hb4n+06BBA0Oe3Ojbt6/RNVe5cmXq1q3LsWPHSExMzPH29H/PDh8+THx8fK7K1K5dO8N2AOzs7KhWrRq3bt0ypOXkmFhaJicnJ65fv87Vq1dzVW5LODs7ExQUxL59+4iOjjakBwcHo9Pp6NChg8k6rVq1MrToQsbYr549e6LVag2/oatXr3LlyhVatWpFWlqa0fGoUaMG9vb2HDly5JnVK6cKFSpk9PfPyckJZ2dnw3cbGxsKFzbuduXt7Z3ldy8vL6NruaDuw6azcYtgdpxSU3BMNdMX7Sn5OKmwt/63nI/Xw9NRhf8Tw4Os1NCu/L//Jrws50M8G9LG/BIw183J1dWVe/fuGb5fvHiRH3/8kZMnT5KUlJTp+i1atGDbtm0sXLiQ5cuXU61aNerVq0fLli2fy4/OXDDi4eGBs7Mzd+7cATL69SclJVGyZEmTvKVKlcp02/quek9KTExk/vz57Nq1i/v375ssj42NBSAyMpLExESz+y1TpoxJ2o0bN1AUxWQcyuMePcpo/tfXzVz5S5cuneMbA2tra0aPHs13331H+/btKVOmDP7+/jRp0oQ6deoY8t26dQuVSmX25tYcc8cwJ/XUB44jRozING9kZKTR98yub8gYE2MJS34j+oDE3PktWbIkhw8ftmhfepaeg5wcP73MruWAgAAKFSrEtm3bDNv7/fffSUpKok2bNlmWVx/4VaxYMct8N27cADK6R1laXkuZ+/3rr//w8HDKli2bo+35+fnRpk0bgoOD2b59O1WqVKFu3boEBQWZ/c2ak9m18/i1l5NjYmmZRo8ezfjx4+nRowc+Pj74+/vTqFEjAgMDTcbXPI1OnTqxZcsWtm3bRs+ePVEUheDgYCpUqGA0RkvP3DnSl1v/d0x/PObNm8e8efPM7vfJ37l4SdUuD9MGwOiFFmVXAd+v+4l+PUeCKm+6kBW1h/09sv5NrGynYeAOLftvQwlnmNpETSnXAtaFrYBV53mSYOclkNk/fMo/08reu3ePIUOG4OjoyFtvvUWpUqWws7NDpVLx3XffGQU/NjY2zJ07l3PnznHkyBFOnTplmGhg0qRJNG3a1OJyPdkq8DitVmvxdvKKnZ2d2fRPP/2UgwcP0qlTJ2rVqoWrqytqtZpDhw6xfPlydLrcz/WvUqmYNWtWpucopzdvOdG1a1eaNGnCwYMHOXnyJHv27GH16tUEBQUxefJkozJmda4el9kxtLSe+mty4sSJRpMLPO7Jm8usbuwUC6dOzu438qzk5Bzk5DrJ7DxYWVnRsmVLVqxYQVhYGMWLF2fr1q24uLgQGBiYJ3XSH7NRo0ZRoUIFs3mKFMnb/viPy+nflYkTJ9KnTx8OHz7M6dOnWbZsGQsWLGD06NG88cYb2e7Pkhn+cnpMLClTkyZN2Lx5M4cOHeLUqVMcO3aMTZs2UbNmTebOnZtns+m9+uqrlC1blk2bNtGzZ0+OHTvG3bt3+eijj3K9Tf3x6N27t8lYID0XF5dcb1+8YN5vB++1hdgEcDPt5fCkvmcOMbJtX2Jc3bPN66SCt6pDr1egrJsKJxs1iqKQpgO1CqzUKmwsmFWtrJuKfT2sSE5XsNVk/XdE/PdIsFMA7N27l8TERKZNm2bylvKYmBhsbGxM1nnllVd45ZVXgIxgqVevXvzwww85Cnb0/5jFxsYaDfBOSUkxzDb2JP0TwcdFREQQFxdnuAl2d3fH3t6emzdvmuTVtxxYKi4ujoMHD9K6dWvGjRtntOzJ7lTu7u44ODiY3e/169dN0ooXL87hw4fx8vIy+zT0cfq6hYaGmhwXc8fEUh4eHnTs2JGOHTui1Wr54osv+O233+jduzdVq1Y1tFhcvnzZcL5zKif1LF68OABubm656p73LOmv0Zs3b5qcA3Pn3FLZnYOcHD9LtG3blhUrVrB161Y6duzIyZMn6dSpk9nf+eP0rUWXL1+2KJ+9vX2en8MbN26YTIJy48YNNBqNoWU5q1Y9fcvCk8qVK0e5cuXo27cvcXFx9OvXj++//57u3bvnyU1Pbo6JJWVydXWldevWtG7dGkVRmD17NkuWLGHfvn1mZznMTHZ17NSpE1OnTuXcuXNs2rQJW1tbXn/9dbN5zf090v/90/8d0x8PtVr9wv3OxTOiUoGrE/xfD/h0ZbbZ7dLTyK5dftSrMCPI3G2oitxOFG9nJUGOMCVjdgoA/dPiJ59ib9iwwaS7yeP9tvU8PT1xd3e3uMuQnr470JP997NqLbl586ZhbI7e4sWLAQwzTGk0GurXr8/ff//NmTNnjPL++uuvOSpjZscmIiKCjRs3GqVpNBoaNmzI+fPnjaa2VRSFJUuWmGy7devWQMZMYOaeOD9+7Bs3boxKpeLXX381ynvx4kWToMsSycnJJCcb94vWaDSG7mr6rnktW7YEMmYDS0tLM9mOJS0fOalnUFAQNjY2zJs3z6R8APHx8aSmpma7z2ehUaNGAKxcudLo+rx69WquxhdYeg5ycvwsUbFiRcqXL8/27dvZtm2bYdrp7FSoUIEyZcqwefNmrl27ZrJcfy3ou8otWrTI7N+E5ORkEhISclRmvSVLlhhdc/rrv3bt2oap54sVK4ZGozH5XZw9e9ZkbFNMTIzJ3xpnZ2d8fHxITk7Os3GJOTkmlpRJq9USFxdnlEelUhm6GOb0b7G9vb3hejOndevW2NrasnTpUkJCQnjttdeMxhY8bseOHUbdfdPS0li+fLnh7yNkXINly5Zl3bp13L5922Qb6enpOa6DeEm81z7bLApwv1D2U09PafrffG+aeP6kZacAaNCgAbNnz+aLL76ge/fuODs7c/bsWQ4fPoyvr6/RDdYvv/zCkSNHaNiwIT4+PiiKwoEDBwgNDTU7CD8rderUoWTJksybN4+YmBiKFStmuCFxc3Mzu065cuX4/PPP6dixIyVKlODEiRPs2bOHWrVq0aJFC0O+4cOHc+TIEUaOHEn37t0pWrQoBw8eNARrlj6tdXR0pF69emzfvh1bW1uqVq1KeHg469evx8fHx+Qf5BEjRnD48GHee+893njjDYoWLcqBAweIiooy2XbVqlUZMmQI8+fPp2fPnjRv3pwiRYoQERHBhQsXOHTokOEmulSpUnTr1o3Vq1czfPhwXnvtNSIjI1m9ejXly5fn0qVLFtVH7+bNmwwZMoSmTZtStmxZnJ2dCQ0NZe3atfj4+FCzZk0gowWvX79+LF68mF69etGiRQsKFy7M3bt32bNnD4sXL870pic39fT09GTs2LFMmjSJbt260bp1a7y9vYmKiuLq1auEhISwZs2aXE/1/DTKli1Lp06d2LBhAyNGjKBJkyZER0ezZs0aKlasyIULF3LUCmDpOcjJ8bNUmzZtmDFjBosXL6ZEiRIWTRmvUqkYP348I0aMoF+/foapp+Pi4jh16hQBAQH06NEDe3t7Jk6cyJgxY+jSpQvt27enePHixMXFERoayt69e/n2229NWpEtER4ezjvvvENgYCARERGsXr0aW1tbo+nIHRwcaNeuHRs3bmTcuHH4+fkRFhZGcHAw5cuXN2qZ2rp1K8uXL6dp06b4+vpiZWXFqVOn+OOPPwgKCsq0O2BO5eSYWFKmuLg4WrVqRWBgIBUrVsTd3Z27d++ydu3aXHVJrFatGps2beKHH36gdOnSqFQqAgMDDZOzuLi48Nprr7F9+3YAsxMT6JUoUYL+/fvTpUsXHBwc2LFjB+fPn2fQoEF4eXkBGdfSl19+yfDhw3nzzTcNY9aSk5MN09q/8847Ju9JEgWAg2W/qYnVkxn/V9YvQraVVhjxnEiwUwD4+voya9Ysw/tU1Go1r776KvPmzeObb74hPDzckLdx48ZERESwe/duIiMjsbW1pXjx4nz22WdZ/gNojkajYdq0aUydOpVVq1ZhbW1NvXr1mD9/Pm+99ZbZdSpVqsT777/P3LlzWb9+PY6OjnTv3p23337baDxDqVKlmD9/PjNnzmTFihWGl4p+/PHHdOjQIUdvQ//qq6+YPXs2Bw4cYOvWrRQvXpwRI0ZgZWXFxIkTTY7lzz//zPTp01m1apXhpaJffvmlUTCmN2TIEKpUqcLKlStZsWIFSUlJFCpUiLJlyzJmzBijvGPGjKFw4cJs2LCBmTNnUrx4cT7++GNu3bqV42DH09OT9u3bc/LkSUJCQkhLS6NIkSJ06tSJfv36Gd3kvfvuu5QvX57Vq1ezZMkSdDodnp6eNGjQwOKbwZzUs3379pQoUYJly5axfv164uLicHNzo2TJkgwfPtxkdprnaezYsRQpUoRNmzYxc+ZMSpYsydixY/n777+5cOFCjq6rnJyDnBw/S7z++uvMnj2bhISEHD2kqFq1KosXL+aXX35h9+7drFu3Djc3N5OZDwMCAli8eDGLFy9m+/btREVF4eLigq+vL7169bJ4wosnzZ49m2nTpjF//nySk5MNLxV9cnujR49GURRCQkLYt28flStXZtq0aWzYsMEo2PHz8+PSpUscOHCAiIgINBoNxYoV47333jN5d9HTsvSYWFImOzs73nzzTY4dO2aYic7Dw4PAwEAGDBiQ4zFRI0aMICYmhjVr1hAXF4eiKGzevNloJsrOnTuzfft2ihcvjp+fX6bbeuONN0hISGDVqlWGl4p+8MEHvPnmm0b5KlasyK+//srChQvZv38/69atw9HREW9vb9q1a0ft2rVzVAdRcKiAT0rFZBvsCPG8qJRnPYJXiH/o3ww/YcKEXG/jwoUL9OnTh3feeccwZbUQT+v999/n+PHj7Nu3z6IB60K8bM6dO0f//v15++23jV6krHfixAmGDRvG+PHjpUVGZK3rN7Au89ZoBUiPXITNLw6Z5qngBpcGyfP2nFBNSMo+0z+UCfbZZ/oPkTE74oX15HiIx8fOyKBYkRvmxhFduXKFw4cPU7t2bQl0RIG1evVqrKysJJART2/5+9nncbLnYhaNzqf65F1xhMiOhNXCSFpamkUDS93d3Z/5jWHPnj2pXbs25cqVIykpiQMHDnD69GmCgoLMvh+iIEhOTrbo5YiZTesssqZ/30iDBg1wd3cnNDSUDRs2YGVlxdChQwE5B5ZKTEzM9kWgGo0Gd/fsp58VpmJiYsxOKvI4Ozs7oxeiPikpKYn9+/dz/fp1tm/fTqdOnf7z163IAzaWTYtesagVjqp0Ep7oP+RfFBxt5fZTPD9ytQkjZ8+eZdiwYdnm27x58zMfZN64cWMOHDjAtm3b0Gq1FCtWjGHDhhXo7mu7du0yGUdkzuOzxQnLVapUiZCQEFatWkVMTAyOjo74+/szZMgQKlWqBMg5sNTSpUv56aefsszj7e1NcHDwcypRwfLhhx9y6tSpLPNk1y04KiqKTz/9FAcHB5o1a8bIkSPzuJRCZC3+AysW/5XO8N1gp4FDPaGyh9x6iudLxuwII7GxsVy4cCHbfDVq1MjRYG5hmYiICLPTAj9JuvE9O3IOLHP79u1M33ujZ2trazTxgbDchQsXspxOGjJeZFqmTJnnVCIhHqPunDE4x4xEwDp1VZ69GFdkUE007YadGWV83sxEWVBIsCOEEEIIISz3wQKYtsXsom0jahA04xMJdvKYBDu5JxMUCCGEEEIIy43tYjZZAe68UvT5lkWIbEiwI4QQQgghLFc485dRKxq5tRQvFrkihRBCCCGE5dRq8HI1SlKAvwJ986c8QmRBgh0hhBBCCJEz4QuhU21Qq8BKQ/qMARzp9Up+l0oIEzL/nxBCCCGEyLn1n/z7/2lpsHBh/pWloFPldwFeXtKyI4QQQgghhCiQJNgRQgghhBBCFEgS7AghhBBCCCEKJBmzI4QQQgghxAtNBu3klrTsCCGEEEKIPBWTrCMhVZffxRBCWnaEEEIIIUTe2BRVmS/GRlEiKppLRTyIdbTj72G2VCmqye+iif8oadkRQgghhBBPLUWnJuFPN+47O3G8VAliHezRpOuo+n1Sfhft5afKwUcYkWBHCCGEEEI8tcWX6rKvQjlQ/3N7qVKhtbICtZrENCV/Cyf+syTYEUIIIYQQuZeuJWj435x1Lg0qM00LKhVJaTJ+R+QPCXaEEEIIIUSuDeu5m30lKpFulflQcHtr6V8l8ocEO0IIIYQQInfS0llW1j/bbPZWEuyI/CHBjhBCCCGEyLUEO4ds86Sky5gdkT8k2BFCCCGEELmSojKeUtpKm079W5co++ieUXrkjbjnWSwhDOQ9O0IIIYQQIlcen4+g2r1bbP31G4rHRgKw5NWG9O84DEWtpu1XDzi11DWfSlkASC/AXJOWHSGEEEIIkSsaFaBkdFGbs3WhIdAB6Hv2IJ0vHAfgdJli+VE8ISTYEUIIIYQQuaMoiqF5p+6dqybL697+J00tt5wif8iVJ4QQQmQiODgYf39/Tpw4kd9FEeKFlK7827/qRLEyJstP+Pyb9sGO5OdSJiEeJ8GOEEII8QIKCQlh3rx5+V0MIbKkeWwsyTut+3PP6d9xOauq1mNtlboZXxSFaX/Ii0XF8ycTFAghhBAvoJCQELZs2cLQoUPzuyjiP+RqpJZCdlDIQZN9ZsBao0KTno7WyorTxUpT8v1ZNLh1mXtOrlwo6vtvRrUatVbLtWvxlC3r9IxKL4QpCXaEEEIIIfJYSrrCH3cVijmpqFDI8qm0ktIUjoQrlHBRUdZNxeE7Oo6EQ/cKCrfj1Virwc/LeHt/PtTxf3/oeJAA9tbgYQ9+nrDlGuy7DToFnG0gLR0SdPrWlSc69yhPvgcnI59ap8UuPQ2btDRKRj5k5tqVuCVouexWlPp3/8JdF81enzK81XEIVzy8SbWyZm+ZqqbbVqnQqdUE/JBAQFgoQWFXSLB15O/C3qToFBRvZ96sCFUq2lGmYRGsHS28RdXp4I9L4GgHNUpbto74T5FgRwghhMiGoigsXbqUtWvX8uDBA7y9vRk4cCBt27Y1yrdx40bWrFlDaGgoVlZWvPLKKwwePJgaNWoY5Tt48CBLlizh2rVrJCcn4+bmRpUqVXjnnXcoWbIkQ4YM4dSpUwD4+//7dvrx48fTrl07i8r88OFDli1bxvHjxwkPDyclJQUfHx/atGlDnz590GiMn9zfvXuX6dOnc+zYMQD8/Pz44IMPGDZsGN7e3syfP98o/9GjR1myZAl///03qamplChRgq5du9K1a1eLyleQnbin0Ha9lvuJGd/7VFGx6HU1alXWQc/B2wodN2l5lJTx3cMOIv4Z5vJBCIAWgPrFYFsXDQ5W0HSllkPhpttaesH4e3Sq/v8yGcGQSdl0GisSNVakaaz5Yu96GoefBaBSrD23qcojiqJJT6PU/QQ8I29ysEJJs9sunJiKd3wKVorCBW9vItxcCbz7kPrh17lRqARRj1LZcNya3w5GU+5/l3njy4oUb+yVyZH6R+gDaPklXL6b8b1Zddg0NiPwKWiyuXZE5iTYEUIIIbIxZ84cUlJS6Ny5MzY2Nqxdu5YJEybg6+trCGRmzZrFkiVLqFq1KiNGjCAxMZENGzYwdOhQvvvuOxo2bAjAyZMnGT16NGXLlmXAgAE4OTkRERHBsWPHCAsLo2TJkgwcOBBFUTh9+jRffvmloRzVq1e3uMxXrlxh7969NGnSBF9fX9LT0/njjz/4/vvvuXPnDp9++qkhb3R0NIMHD+bRo0d06dKF0qVLc/r0aYYNG0ZSUpLJttevX8/kyZOpVq0aAwcOxN7enqNHj/L1119z584dRo0alcsjXTCM2P1voAOw9LxCp/IKncpnfcM6dNe/gQ78G+g86fBd+O64jnLuKrOBzrMw6NgeOp87bvhuSxJFCCWcSmjj7Jm9eieL6lU3G+zYp2kpHvdvZRzTtETY2aNVqQktXBLvmHsoKi/uu1iRaGvLnUKF2PX5n/Tf64lak8Ux+2TZv4EOwJ4/Ye4O+LBjXlRZFBAS7AghhBDZSE1NZcmSJVhbWwPQrFkzOnTowOrVq6lRowahoaEsXbqUV199lR9//NGQr2PHjnTr1o0pU6YQEBCARqNh37596HQ65syZQ6FChQz7GDRokOH/69Wrx44dOzh9+jStW7fOVZlr1arFpk2bUD32RLhnz558/vnnbNq0iaFDh+Lh4QHA4sWLuX//Pl999RWvv/46AF27dmXmzJksXbrUaLsRERFMnTqVFi1a8H//93+G9G7dujF16lR+/fVXunTpgq+vLy+CyMhIHB0dsbW1BSA+Ph5FUXB2dgYyzm1cXByFCxc2rBMeHo63t3em3+/du4enp6fh2D65jxP3FJ58C+T+G4l0Ku+U6TavhYVz/lERi+t19E46t2MUntetXMDNyyZp9sQBUDQ+I0LbVcV0NjYA59R0kzSHdB1pajW2Oh06lRo1YK3VkmplRZpGQ3SiisT7STgVc8j8fBw3neqaE1fz5ZznxT7EsyGzsQkhhBDZ6NatmyGAAShatCglSpQgLCwMgH379qEoCn379jXKV6RIEdq1a0d4eDiXLl0CwMkp44b3999/Jz3d9CYwr9jZ2RluzNLS0oiJiSE6OpqAgAB0Oh3nz5835D1w4AAeHh60bNnSaBt9+vQx2e7u3btJTU2lQ4cOREdHG30aNWqETqczdIV7ERQqVMhwQwoZx19/QwpgY2NjdEMKmNyAPvndy8vLKIh8ch+1vUxbIxqXdshym2WLe1PVuBhZqudrRdNSNpav8JROFzMdD5OMo9F398SM1hsbbUZ3OxQF1+RUUjSmt5sKYPPP+KF0tRUKkP7Pu3hstOm4O4KDpz2QxfmoU960oLXL5cs5z4t9ZEmVg48wIi07QgghRDZ8fHxM0lxdXbl37x6QMd4FoGzZsib59Gl37tyhSpUqdO/enX379vH1118ze/ZsXn31VerXr0/Lli1xd3fPszKnp6ezaNEitm3bRlhYWMbLHx8TGxtr+P+7d+9StWpV1E+8+LFQoUJGN3AAoaGhAIwYMSLTfUdGRj5l6V9uc5traLtBy72EjO99q6hoXy77u9D5LTR02Kgl4p+ubEXs4aFpL0Ia+MBofzWO1vDDGfjjOXRl+zEgiC5/HaHBPy08adjykFKAlnQ0WAEDD51hX/mSpGnUdLh6m2KJyTilpvN3IRduODtjq8u4BhUUKkfGoAKckuN45FSIWDtbdCoVTsnJFIuMIujLall3YQOY3AtOXYdLdzK+N68OI15/VodAvKQk2BFCCCGy8WQQoPdkAGEJNzc3lixZwunTpzl69CinT59m2rRpzJs3j5kzZ+ZoXE5Wpk+fzqpVqwgKCmLgwIG4u7tjZWXFxYsXmT17dq7KDv/WeeLEiYZucE8yFxz+l/h5qbg5RMORu+DtBOXdLXvcXt9HRdhQDUfDobgzlHFTceSujqPh0K2CQli8Ghs11PT8d3uHe1lx8p6O707oSEwDWw04WENtLzh0J2NGNkUBGzXodOkkpOhI1ajJ6NyTzYxs/8yihqKQhIrOb77PnI0/UzvsFkqyK5DEfQ8dVx3L4hWbQvU793FKTiHKyYEdpbzxexBF4eQU7jjbc7GwI86pWuzStJSJiqFY7EPS0HDP3hmnxGQqq6IpW8eLcq+4UyawAtYOFtyiliwK52fC0SvgaAvVS1l0nMV/iwQ7QgghxFPS39xfu3bNZKzK9evXjfIAaDQa/P39DTOtXblyhd69e/PLL78wc+ZMAKMuM7mxbds2atWqxeTJk43S9V3vHuft7U1YWBg6nc4osIuMjCQuLs4ob/HixYGMoK1u3bpPVcaCzEajIrB4ztezs1LR+LH16hVTU69Yxv8Xcza/jp+XmuVtTQPyETWfTMn+ti81XUeSFlxtn9yeDeAAkz81Si2dmMz5wJ+56m5Hh+GDSbfK2EeKlYbDxYyD4QRrhZW9rXi9SknAzKxtuaFWQ0DFvNmWKJBkzI4QQgjxlAIDA1GpVCxdutRoHE5ERATBwcF4e3tTsWLGDVl0dLTJ+qVKlcLOzs6oa5m9fcZ4hZiYmFyVSa1Wm7TeJCUlsXz5crPlj4iI4LfffjNKf3JyAoCgoCBsbGyYN28eycmm04XFx8eTmppqki5eDjZWajOBTuaSUiHBxpbtlV8xBDqZKRIby+tV7J+2iELkiLTsCCGEEE+pVKlS9OnThyVLljB48GCCgoIMU08nJiby1VdfGd5rM2nSJB48eEDdunXx9vYmJSWFXbt2kZCQQJs2bQzbrFatGqtXr+brr7+mYcOGhvf2WNpFrFmzZqxfv55PPvmEOnXq8OjRI4KDg3F1dTXJ269fP3bs2MHEiRP5+++/KVWqFKdPn+bPP//Ezc3NqJXJ09OTsWPHMmnSJLp160br1q3x9vYmKiqKq1evEhISwpo1ayhWrNhTHlXxMnBws2Nm3VaEuWc9k5xKp2NuG9ss8wjxLEiwI4QQQuSBkSNHUrx4cdasWcP333+PtbU1VatWZdKkSdSs+W9/otatWxMcHMzWrVuJiorC0dGRMmXKMGXKFJo1a2bI17JlSy5dusTOnTvZs2cPOp2O8ePHWxzsjB49GkdHR3bt2sW+ffvw9PSkU6dOVKlSxWRyATc3N37++WdmzJjB5s2bUalU+Pn58eOPP9K3b1+jWacA2rdvT4kSJVi2bBnr168nLi4ONzc3SpYsyfDhw01moRIFV7pWl22gA4ACnZoXyj6fEHlMpeR2hKIQQgghCrTo6GiaN29O586dGTduXH4XR7ygVBOTMiYyyIqioIyXLmy5pZpseddQ5ZPnNyX5y0DG7AghhBDC7PibxYsXA8hEBCJTSWm67DMpiulMb0I8J9KNTQghhHhJJCcnEx8fn22+zKaEzsqoUaPw9vamUqVK6HQ6jh8/zoEDB6hevTpNmjTJRWnFf4HawlkDt7ypecYlEcI8CXaEEEKIl8SuXbuYOHFitvlOnDiR4203atSIrVu3snfvXlJSUvD09KR3794MHjzYMLmCEE+ytbIg2FGpaFZWrqGn83RT0f+XyZgdIYQQ4iURERHBtWvXss0n3c7E86SekIiSyYt3AVAUbr+nwcdVxpLklmpymsV5lU+sn2FJXj7SsiOEEEK8JDw8PHLVRU2IZ0qtzhiTk0WXNntradkR+UMmKBBCCCGEELkW/bENVipV5pMQqFRo5I5T5BO59IQQQgghRK652KpJ/ERDG7uTZperdVqs5I7z6ahy8BFG5NITQgghhBBPrb37edBqjRMVBZ1ag6ONdGMT+UOCHSGEEEIIkSfeK/SbcYJKxd/DZYi4yD9y9QkhhBBCiDxR2T6C1BEaknUaNCpwsJHn6iJ/SbAjhBBCCCHylLOtBDnixSBXohBCCCGEEKJAkpYdIYQQQgghXmQyy1quScuOEEIIIYQQokCSYEcIIYQQQghRIEmwI4QQQgghhCiQJNgRQgghhBBCFEgS7AghhBBCCCEKJAl2hBBCCCGEEAWSTD0thBBCCCHEi0ymns41adkRQgghhBBCFEgS7AghhBBCCCEKJAl2hBBCCCGEEAWSBDtCCCGEEEKIAkmCHSGEEEIIIUSBJMGOEEIIIYQQokCSqaeFEEIIIYR4kalk7unckpYdIYQQQggh/gMmTJiAk5NTfhfjuZJgRwghhBBCCFEgSTc2IYQQQgghXmTSiy3XpGVHCCGEEEIIwV9//UXLli1xdHTE1dWVrl27cuvWLcPyt956i0aNGhm+R0REoFarqV27tiEtPj4ea2tr1qxZ81zLnhkJdoQQQgghhPiPCwsLIzAwkEePHrFs2TJ+/PFHTp06RePGjYmLiwMgMDCQ48ePk5ycDMD+/fuxtbXl9OnThjyHDx8mPT2dwMDAfKvL46QbmxBCCCEKJEVRDDdg4tlKS0sjKSkJgNjYWKytrfO5RC8PZ2dnVC/AbGvTp08nLS2NnTt3UqhQIQBq1qxJlSpVWLRoEe+++y6BgYGkpKRw9OhRGjduzP79++nUqRM7d+7k0KFDtGrViv3791OhQgU8PT3zuUYZJNgRQgghRIEUFxeHq6trfhfjP+e9997L7yK8VGJiYnBxcckyjzLm2d+yHzhwgNdee80Q6ABUqlSJV199lYMHD/Luu+9SunRpfH192b9/vyHYGTZsGElJSezbt88Q7LworTogwY4QQgghCihnZ2diYmKe2/7i4+Np06YNW7du/c9N7wtS/9zW39nZ+RmWynJRUVHUqFHDJN3T05PIyEjDd32QExsby9mzZwkMDCQhIYG1a9eSkpLCsWPHGDx48HMsedYk2BFCCCFEgaRSqbJ9Yp6X1Go1Go0GFxeX/+TNvtT/5a5/oUKFePDggUn6/fv3qVChguF7YGAgo0ePJiQkBA8PDypVqkRCQgIff/wxe/fuJSUlxWgSg/wmExQIIYQQQgjxH9ewYUP27NlDVFSUIe3SpUv8+eefNGzY0JCmb8mZNm2aobtajRo1sLe35+uvv6Z48eKUKlXqeRc/U9KyI4QQQgghxH+EVqtl7dq1JumjRo1i4cKFtGjRgk8//ZTk5GQ+++wzSpQoQf/+/Q35KlWqRNGiRdm3bx+zZs0CQKPR0KBBA7Zv306vXr2eV1UsIsGOEEIIIUQesLGxYfDgwdjY2OR3UfKF1P/lqH9ycjLdunUzSV+6dCn79u1jzJgx9OrVC41GQ1BQENOmTTMZVxQYGMjatWuNJiJo3Lgx27dvf6EmJwBQKYqi5HchhBBCCCGEECKvyZgdIYQQQgghRIEkwY4QQgghhBCiQJJgRwghhBAil/bv38+bb75J/fr16dy5M5s3b852nbS0NGbOnMngwYNp2LAh/v7+REdHP/vCPoXQ0FBGjBhBw4YNadmyJTNnziQtLS3b9RRFYdGiRbRp04YGDRowYMAA/vrrr+dQ4ryV2/qvWbOG9957j+bNm+Pv78/u3bufQ2nF4yTYEUIIIYTIhTNnzvDhhx9SrVo1Zs2aRVBQEF999VW2N7TJycls3LgRGxsbatas+ZxKm3uxsbEMGzaM9PR0vv32W0aMGMGGDRuYNm1atusuXryYefPm0bNnT6ZPn46HhwfvvPMOt2/ffg4lzxtPU/+tW7cSHR1NgwYNnkNJhTkyG5sQQgghRC78/PPPVK1alXHjxgHg7+/P7du3mTdvHs2bN890PWdnZ37//XdUKhXBwcH88ccfz6vIubJu3ToSEhL49ttvcXV1BTKmL54yZQoDBw6kSJEiZtdLSUlh4cKF9O7d2zAdcc2aNencuTPLli1j7Nixz60OTyO39QdYsGABarWau3fvsnXr1udVZPEYadkRQgghhMih1NRUTpw4YRLUtGjRghs3bnD37t08sV6AAAAYaUlEQVQs11epVM+yeHnq8OHD1KlTx3CjDxAUFIROp+PIkSOZrvfnn3+SkJBgdIysra1p2rQphw4deqZlzku5rT+AWi232vlNzoAQQgghRA7dvn2b9PR0kzfFly5dGsgY41FQhIaGmtTT2dkZDw+PLOupX2buGN27d4/k5OS8Legzktv6ixeDBDtCCCGEEDkUGxsLYPKyRRcXF6PlBUFsbKxJPSGj7lnVMzY2FhsbG2xtbU3WUxSFuLi4PC/rs5Db+osXg4zZEUIIIYQA4uPjiYiIyDafj4/PcyiNECIvSLAjhBBCCAHs3r2bSZMmZZtv7dq1hhac+Ph4o2X6J/365QWBi4uLST0B4uLisqyni4sLqamppKSkGLXuxMXFoVKpzLaWvIhyW3/xYpBgRwghhBAC6NixIx07drQob2pqKlZWVoSGhhIQEGBIz2ycysusVKlSJmNT9K1gWdVTv+zmzZtUqFDBkB4aGoqXlxd2dnbPoLR5L7f1Fy8GGbMjhBBCCJFDNjY2+Pv7s2fPHqP0Xbt2Ubp0aYoVK5ZPJct79evX59ixY0ZjbHbv3o1araZevXqZrle9enUcHR2N3juUnp7O3r17X6r3zuS2/uLFIC07QgghhBC5MGjQIIYOHcrXX39N8+bNOXnyJDt27GDy5MlG+erWrUubNm344osvDGmHDh0iKSmJ8+fPA7B//34cHBwoU6YMZcqUea71yE6XLl1YtWoVH3zwAQMHDuTBgwfMnDmTzp07G71jZvjw4YSHh7Nx40YAbG1tGTBgAPPnz8fd3Z1y5cqxZs0aYmJi6N27dz7VJudyW3+A8+fPc/fuXaKjowE4d+4cAO7u7vj5+T3PavxnqRRFUfK7EEIIIYQQL6N9+/bxww8/cPPmTby8vOjfvz8dOnQwyuPv70/btm2ZMGGCIa1du3aEh4ebbG/w4MEMHTr0WRc7x27cuMG3337L2bNncXR0pE2bNowYMQJra2tDniFDhhAeHk5wcLAhTVEUFi1axNq1a4mKiqJChQqMHj2a6tWr50c1ci239Z8wYQJbtmwx2V6tWrWYP3/+cyn7f50EO0IIIYQQQogCScbsCCGEEEIIIQokCXaEEEIIIYQQBZIEO0IIIYQQQogCSYIdIYQQQgghRIEkwY4QQgghhBCiQJJgRwghhBBCCFEgSbAjhBBCCCGEKJAk2BFCCCGEEEIUSBLsCCGEEOKl1L9/f1QqVX4XA4Bz585hZWXFrl27DGkhISGoVCoWLVqUfwUTL4RFixahUqkICQnJ1fpyLZl35swZ1Go1+/btyzSPBDtCCCHEC+T69esMGTKESpUq4eDggLu7O5UrV6Zfv37s3bvXKG+pUqV45ZVXMt2WPhiIiIgwu/zChQuoVCpUKhUHDhzIdDv6PPqPnZ0d5cuXZ/To0URGRuauogXM6NGjadCgAUFBQfldlOciNDSUCRMmcObMmfwuinhOoqOjmTBhQq4DttzK6lqrUaMGHTt25IMPPkBRFLPrWz3j8gkhhBDCQidOnKBx48ZYW1vTt29fqlatSlJSEleuXGHnzp04OzvTtGnTPNvfL7/8grOzM/b29ixYsIBGjRplmrdGjRp88MEHAERGRrJt2zamT5/Orl27OHnyJDY2NnlWrpfNH3/8wa5du9i4caNRemBgIElJSVhbW+dPwZ6h0NBQJk6cSKlSpahRo0Z+F0c8B9HR0UycOBGAJk2aPLf9ZnetvffeezRu3Jht27bRpk0bk+US7AghhBAviIkTJ5KYmMiZM2d49dVXTZbfu3cvz/aVlpbG0qVL6datG66ursyfP59Zs2bh7OxsNr+Pjw+9e/c2fB85ciTt2rVjy5YtbNq0iW7duuVZ2V42c+fOxcPDg9atWxulq9Vq7Ozs8qlUQvw3NGrUiFKlSvHjjz+aDXakG5sQQgjxgrhy5QqFCxc2G+gAeHl55dm+goODefDgAf369aN///4kJCSwatWqHG2jZcuWAFy9ejXTPD/88AMqlYrNmzebLNPpdPj6+ho9rd25cydvvPEGZcqUwd7eHjc3N1q0aJFln/zHNWnShFKlSpmkh4aGolKpmDBhglG6oij88MMP+Pn54eDggJOTE02bNjXpMpiZ9PR0Nm7cSPPmzU1acMyNs3g8be7cuVSsWBE7OzuqVavGli1bAPjrr79o1aoVLi4uFC5cmJEjR5KWlma2ntevX6dDhw64urri4uJCp06duH79ulFenU7H//3f/xEYGIiXlxc2NjaUKFGC4cOH8+jRI7P1WrduHU2aNMHNzQ0HBwcqVqzIyJEjSU1NZdGiRYYWxgEDBhi6N1rytD80NJQ+ffrg6emJra0tZcuWZdy4cSQmJhrlmzBhAiqVikuXLjFu3Dh8fX2xtbXl1VdfZdu2bdnuB/4dJ7Nnzx6+/PJLSpYsib29PXXr1uXIkSMA7Nu3j4YNG+Lo6Ii3tzdfffWV2W1t3LiRBg0a4OjoiJOTEw0aNGDTpk1m8/70009UqlQJW1tbypUrx4wZMzLtYhUTE8PHH39MuXLlsLW1pUiRIrz55psm5zCnLD3OWY17U6lU9O/fH8i4bkuXLg1kPJTRn3P9b+3x39eKFSuoXr06dnZ2lChRggkTJpCenm60bUt/p5ZcayqVipYtW7Jjxw7i4+NNtiktO0IIIcQLomzZsly6dIn169fTuXNni9bRarWZjslJSUnJdL1ffvmF0qVL06hRI1QqFTVr1mTBggUMGjTI4vJeuXIFAA8Pj0zz9OjRg/fff58lS5bQvn17o2V79uzhzp07hu5xkHFzExkZSd++ffH19eXOnTv8/PPPNGvWjL1792bZ1S43+vTpw4oVK+jatSsDBgwgJSWFX3/9laCgINavX29S5iedPHmS+Ph46tSpk6P9zpkzh6ioKAYNGoSdnR2zZs2iU6dOrFmzhsGDB/Pmm2/SsWNHdu7cyezZsylatCifffaZ0TYSEhJo0qQJdevWZfLkyVy5coW5c+dy5MgRTp8+bQiOU1NT+fbbb+nSpQsdOnTA0dGR48eP88svv3Dw4EGTboiffvop//vf/6hSpQrvv/8+3t7eXLt2jXXr1vHll18SGBjIuHHj+N///seQIUMM58TT0zPLOt+8eZM6deoQExPDiBEjKF++PCEhIUyePJlDhw6xZ88erKyMb0379euHtbU1Y8aMITU1lRkzZtCxY0cuX75s9mbZnLFjx6LVahk1ahSpqal89913tGjRgiVLlvDWW28xZMgQevXqxerVq/niiy8oXbq0USvm3Llzefvtt6lUqRJffPEFkHGdduzYkXnz5jFkyBBD3hkzZvD+++/z6quv8r///Y/ExESmTp1K0aJFTcoVExND/fr1uXXrFgMHDqRq1aqEh4czd+5c6taty4kTJyhZsqRFdXza45ydypUrM336dN5//306depk+Pvk5ORklG/z5s1cv36dt99+Gy8vLzZv3szEiRO5efMmCxcuzHFdLL3WAgICmDdvHgcPHqRVq1bGG1GEEEII8UI4fPiwYm1trQBK+fLllQEDBihz585Vzp8/bzZ/yZIlFSDbz8OHD43Wu3PnjqLRaJTx48cb0mbMmKEAZvcFKC1atFAePnyoPHz4ULl8+bIybdo0xdraWnF1dVXu37+fZb26du2q2NraKpGRkUbpvXv3VqysrIzWj4+PN1n/3r17SuHChZXXX3/dKL1fv37Kk7cyjRs3VkqWLGmyjRs3biiAUZ3Xr1+vAMq8efOM8qalpSl+fn5KqVKlFJ1Ol2XdFixYoADKpk2bTJbt3btXAZSFCxeapBUrVkyJjo42pJ89e1YBFJVKpaxbt85oO7Vq1VK8vLxM6gkoo0aNMkrX12no0KGGNJ1OpyQmJpqU7+eff1YAZdWqVYa0o0ePKoDStGlTJSkpySi/TqczHA9zdctOz549FUDZunWrUfqYMWMUQPn5558NaePHj1cApU2bNkbn4NixYwqgjB07Ntv9LVy4UAGUmjVrKikpKYb0TZs2KYBiZWWlHD9+3JCekpKieHl5KfXq1TOkRUZGKo6OjkrZsmWVmJgYQ3pMTIxSpkwZxcnJSYmKilIURVGioqIUBwcHpXLlykpCQoIhb1hYmOLo6KgAyt69ew3pI0eOVOzs7JQzZ84YlTs0NFRxdnZW+vXrZ0jLyfHOyXE29xvSA4zKYO439OQytVqtnDx50pCu0+mUjh07KoDyxx9/GNJz8ju1pO4HDhxQAGXq1Kkmy6QbmxBCCPGCCAgI4OTJk/Tr14+YmBgWLlzIiBEjqFKlCoGBgWa7tpQqVYpdu3aZ/bRo0cLsfhYtWoROp6Nv376GtF69emFtbc2CBQvMrrNz506KFClCkSJFqFChAqNHj6ZKlSrs3LnT7FPrx/Xr14+UlBSjbnLx8fFs2LCBVq1aGa3v6OholOfRo0doNBrq1q3L0aNHs9xPTi1btgxnZ2c6duxIRESE4RMdHU27du0IDQ01tF5l5uHDhwAUKlQoR/vu378/rq6uhu/Vq1fHxcWFYsWKmbTqNWzYkHv37pntojN27Fij7506daJixYpGkyWoVCrs7e2BjJbA6OhoIiIieO211wCMjuuvv/4KwOTJk03GG+m7EOWGTqdj8+bN1KxZ02Rs0yeffIJarWbDhg0m640aNcpon7Vr18bJySnb8/K44cOHG7Vc6VsH6tati7+/vyHdxsaGOnXqGG17165dJCQkMHLkSFxcXAzpLi4ujBw5kvj4eHbv3g1k/EYSExN5++23cXBwMOT19fWlV69eRmVSFIVff/2VwMBAfHx8jK4/R0dH6tWrx86dOy2uo15uj3NeCQoKolatWobvKpWKjz76COCZ7rdw4cIAPHjwwGSZdGMTQgghXiDVqlUzjPG4efMm+/bt4+eff+bAgQN06NDBpMuRo6MjzZs3N7utZcuWmaQpisKCBQuoXr06Op3OaLxNgwYNWLp0KZMnTzbp5lK3bl0mTZoEgK2tLSVLlqREiRIW1Ukf0CxZsoRhw4YBGWNCEhISjAIugGvXrvHpp5/y22+/ER0dbbQsr9+pc+HCBeLi4rLsfnX//n0qVKiQ6XJ9mZRMxmRkpkyZMiZp7u7uFC9e3Gw6wKNHj4y6Dbm5uZkdx1W5cmU2btxIQkKCIXhcvXo13333HadPnzYZ/xMVFWX4/ytXrqBSqTIdN5ZbDx8+JD4+nqpVq5osK1SoEN7e3maDeXPHqXDhwpmONTLnyW3oj6d+DMqTyx7f9o0bNwDMllufpi+3/r+VKlUyyVulShWj7w8fPuTRo0eGhwjmqNU5b5PI7XHOK5UrVzZJ09f9We5X//sz9zdCgh0hhBDiBVWyZEn69u1Lnz59aNSoEYcOHeLYsWM0bNgw19vct28f165dA6B8+fJm82zZsoWOHTsapXl4eGQaVGXHysqKnj17MmPGDK5evUq5cuVYsmQJ7u7uRmNi4uPjCQwMJCEhgffee49q1arh7OyMWq1m8uTJ/P7779nuK7OA6MkB0pBxg1SkSBGWL1+e6fayeo8RYLhRzen7hjQaTY7SIecBld769et54403qFOnDjNnzqR48eLY2dmh1Wpp1aoVOp3OKP/TtODktcyOR06ORW6O9bOmL3/z5s35+OOP860cOfm9vMj71f/+zAWOEuwIIYQQLziVSkXdunU5dOgQd+7ceaptLViwAFtbW5YsWWL2yfHQoUP55ZdfTIKdp9WvXz9mzJjBkiVLGDx4MCEhIQwZMgRbW1tDnj179nD37l0WLFjAgAEDjNZ/cnB+ZgoVKsTJkydN0s09VS5fvjyXL1+mXr16JgOtLaUPhnLSrSqvREdHc+/ePZPWnQsXLlC0aFFDq87SpUuxs7Nj7969Rt2rLl68aLLNChUqsH37ds6ePZvlpAs5DYaKFCmCs7Mzf//9t8myqKgowsPDX8j39ehbhf7++2+aNWtmtOz8+fNGefT/vXjxYqZ59YoUKYKbmxuxsbG5fohgTk6Ps777ZWRkpFFXTHO/F0vO+YULF0zSnjxO+v1a+ju1ZL/6FmpzDydkzI4QQgjxgti1a5fZJ5tJSUmG/vtPdofJiZiYGNauXUuLFi3o3r07Xbt2Nfm0b9+e7du3Ex4enuv9mFOjRg2qV6/OsmXLWLp0KTqdjn79+hnl0T9pf/Kp/c6dOy0er1OhQgXi4uI4duyYIU2n0zF9+nSTvH379kWn0/HJJ5+Y3db9+/ez3V/NmjVxcXExTGX8vH399ddG3zds2MClS5eMglWNRoNKpTJqwVEUxdAt8XE9e/YEYNy4caSmppos158bfXBoaYuWWq2mXbt2nD59mh07dpjUQafT0alTJ4u29TwFBQXh6OjI7NmziYuLM6THxcUxe/ZsnJycCAoKMuS1t7dnzpw5RlM8375926T1UK1W06tXL44dO8batWvN7tvc+JPs5PQ467to6scd6X333Xcm27bknO/atYtTp04ZviuKwjfffANgdE3m5HdqyX6PHDmClZUVDRo0MFkmLTtCCCHEC+L999/n0aNHtG/fnmrVquHg4EBYWBjLly/n8uXL9O3bl2rVquV6+ytWrCApKYkuXbpkmqdLly4sWrSIxYsXmwx+f1r9+vXjgw8+YMqUKVSoUIF69eoZLW/YsCFeXl588MEHhIaG4uvry5kzZ1i6dCnVqlXjr7/+ynYfQ4YM4bvvvqNTp06MGjUKGxsb1q5dazaI1E83/f3333Pq1Cnatm2Lh4cHt2/f5o8//uDq1avZjjPQaDR07tyZjRs3kpKSYtRS9ax5eHiwfv167t69S5MmTQxTT3t6ehq9T6hr166sW7eO1157jb59+5KWlsbGjRtN3rkCUKdOHT7++GOmTJlCrVq1eOONN/Dy8uLGjRusXbuWY8eO4ebmRpUqVXB2dmbu3Lk4ODjg5uZG0aJFDZMemPO///2PXbt20bFjR0aMGEG5cuXYv38/q1atIjAw0CT4fRG4ubnxzTff8Pbbb1O3bl3De2cWLVrE1atXmTdvnmGiCXd3d7766ivGjBlD/fr16du3L4mJifz444+UL1+e06dPG237//7v/zh06BDdu3ene/fu1KtXDxsbG27evMm2bdvw8/MzekeTpXJynN98803GjRvHkCFDuHjxIoUKFWLHjh1mp7MvXLgw5cqVY+XKlZQtWxZPT08cHR1p166dIc+rr77Ka6+9xttvv423tzebNm1i9+7d9OnTh4CAAEO+nPxOs7vWFEVhx44dtGrVynwLbaZzuAkhhBDiufrtt9+UESNGKNWrV1cKFy6saDQapVChQkqTJk2UX375RdFqtUb5S5YsqVStWjXT7emnldVPPe3v769YWVmZTAH9uOTkZMXZ2VmpUKGCIY1/pgB+Wvfu3VOsrKwUQJk0aZLZPGfPnlVatmypuLm5KU5OTkrjxo2V/fv3m50iN7Npc7du3aq8+uqrio2NjeLt7a189NFHysWLFzOdNnfJkiVKw4YNFWdnZ8XW1lYpWbKk0qlTJ2XlypUW1Us/XfPatWuN0rOaetrcNLolS5ZUGjdubJKun4b5xo0bhjT91L3Xrl1T2rdvrzg7OytOTk5K+/btlStXrphsY/78+UrlypUVW1tbxcvLSxk8eLDy6NEjk+mF9ZYvX67Ur19fcXJyUhwcHJSKFSsqo0aNMprCeevWrUrNmjUVW1tbBTBb9iddv35d6d27t1KkSBHF2tpaKV26tPLJJ58YTdWcWZ2zO05P0k89/fh0z3qZ1Tuza2r9+vVKQECA4uDgoDg4OCgBAQHKhg0bzO73xx9/VCpUqKDY2NgoZcuWVaZPn26YovzJsiQkJChffvml8sorryh2dnaKk5OTUqlSJWXQoEHKkSNHDPlyOtW3pcdZURTlyJEjSv369RVbW1ulcOHCyuDBg5WoqCizx+jo0aNK/fr1FQcHBwUwTB/9+JTRy5cvV6pVq6bY2Ngovr6+yueff66kpqaa7Dcnv9OsrrWQkBAFULZs2WL2WKgUJZej3YQQQgghBJAx41xCQgIHDhx4Lvtr0qQJoaGhhIaGPpf9CZGV0NBQSpcuzfjx441aFZ+HTp06ERYWxvHjx82O75ExO0IIIYQQT+m7777jjz/+yNW7UYQQuXP69Gk2bdrEd999l+lEBjJmRwghhBDiKVWtWvWZT9crhDBWs2ZNk6nTnyQtO0IIIYQQQogCScbsCCGEEEIIIQokadkRQgghhBBCFEgS7AghhBBCCCEKJAl2hBBCCCGEEAWSBDtCCCGEEEKIAkmCHSGEEEIIIUSBJMGOEEIIIYQQokCSYEcIIYQQQghRIEmwI4QQQgghhCiQJNgRQgghhBBCFEj/D+m0vO89us0gAAAAAElFTkSuQmCC",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"## SHAP VALUES\n",
"\n",
"# SHAP requires that all features passed to Explainer be numeric (floats/ints)\n",
"X_test_shap = X_test_lasso.copy()\n",
"X_test_shap = X_test_shap.astype(float)\n",
"\n",
"# Function that returns the probability of the positive class\n",
"def model_predict(data):\n",
" return best_pipeline_lasso.predict_proba(data)[:, 1]\n",
"\n",
"# Ensure input to SHAP is numeric\n",
"X_test_shap = X_test_lasso.astype(float)\n",
"\n",
"# Create SHAP explainer\n",
"explainer = shap.Explainer(model_predict, X_test_shap)\n",
"\n",
"# Compute SHAP values\n",
"shap_values = explainer(X_test_shap)\n",
"\n",
"# Plot summary\n",
"shap.summary_plot(shap_values.values, X_test_shap)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Interpreting the SHAP Summary Plot\n",
"\n",
"Each point on a row represents a SHAP value for a single prediction (row = feature).\n",
"The x-axis shows how much the feature contributed to increasing or decreasing the prediction.\n",
"* Right (positive SHAP value): pushes prediction toward the positive class (i.e., higher chance of incident).\n",
"* Left (negative SHAP value): pushes prediction toward the negative class (i.e., lower chance of incident).\n",
"\n",
"Color shows the actual feature value for that point:\n",
"* Red = high value\n",
"* Blue = low value\n",
"\n",
"In other words:\n",
"* The position tells you impact.\n",
"* The color tells you feature value.\n",
"* The density (thickness) of dots shows how often a value occurs."
]
},
{
"cell_type": "code",
"execution_count": 112,
"id": "5e02ada3",
"metadata": {},
"outputs": [],
"source": [
"import re\n",
"\n",
"def clean_colname(col):\n",
" return re.sub(r'[^A-Za-z0-9_]+', '_', col)\n",
"\n",
"X_train_lasso.columns = [clean_colname(col) for col in X_train_lasso.columns]\n",
"X_test_lasso.columns = X_train_lasso.columns # Keep them aligned"
]
},
{
"cell_type": "code",
"execution_count": 113,
"id": "345467a8",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/joaquin/data-jupyter-notebooks/.venv/lib/python3.12/site-packages/xgboost/training.py:183: UserWarning: [15:47:04] WARNING: /workspace/src/learner.cc:738: \n",
"Parameters: { \"use_label_encoder\" } are not used.\n",
"\n",
" bst.update(dtrain, iteration=i, fobj=obj)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"[LightGBM] [Info] Number of positive: 16843, number of negative: 16843\n",
"[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 0.002913 seconds.\n",
"You can set `force_row_wise=true` to remove the overhead.\n",
"And if memory is not enough, you can set `force_col_wise=true`.\n",
"[LightGBM] [Info] Total Bins 3256\n",
"[LightGBM] [Info] Number of data points in the train set: 33686, number of used features: 78\n",
"[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.500000 -> initscore=0.000000\n",
"Random Forest: Average Precision = 0.2043\n",
"Extra Trees: Average Precision = 0.1996\n",
"XGBoost: Average Precision = 0.1267\n",
"LightGBM: Average Precision = 0.0924\n"
]
}
],
"source": [
"from xgboost import XGBClassifier\n",
"from lightgbm import LGBMClassifier\n",
"from sklearn.ensemble import ExtraTreesClassifier\n",
"\n",
"# Updated model list\n",
"models = {\n",
" \"Random Forest\": RandomForestClassifier(class_weight='balanced', random_state=123),\n",
" \"XGBoost\": XGBClassifier(scale_pos_weight=(y_train_lasso.value_counts()[0] / y_train_lasso.value_counts()[1]),\n",
" use_label_encoder=False, eval_metric='logloss', random_state=123),\n",
" \"LightGBM\": LGBMClassifier(class_weight='balanced', random_state=123),\n",
" \"Extra Trees\": ExtraTreesClassifier(class_weight='balanced', random_state=123)\n",
"}\n",
"\n",
"results = {}\n",
"\n",
"for name, model in models.items():\n",
" pipeline = Pipeline([\n",
" ('classifier', model)\n",
" ])\n",
"\n",
" pipeline.fit(X_train_lasso, y_train_lasso)\n",
" y_pred_proba = pipeline.predict_proba(X_test_lasso)[:, 1]\n",
"\n",
" avg_precision = average_precision_score(y_test_lasso, y_pred_proba)\n",
" results[name] = avg_precision\n",
"\n",
"# Sort and display\n",
"sorted_results = dict(sorted(results.items(), key=lambda x: x[1], reverse=True))\n",
"for model, score in sorted_results.items():\n",
" print(f\"{model}: Average Precision = {score:.4f}\")"
]
},
{
"cell_type": "markdown",
"id": "281689e7",
"metadata": {},
"source": [
"### Model 4 Extra Trees Classifier with Lasso features"
]
},
{
"cell_type": "code",
"execution_count": 114,
"id": "4ff9d4ca",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Fitting 5 folds for each of 72 candidates, totalling 360 fits\n",
"[CV] END model__max_depth=None, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=100; total time= 8.0s\n",
"[CV] END model__max_depth=None, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=100; total time= 8.6s\n",
"[CV] END model__max_depth=None, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=100; total time= 8.6s\n",
"[CV] END model__max_depth=None, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=100; total time= 8.7s\n",
"[CV] END model__max_depth=None, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=100; total time= 8.2s\n",
"[CV] END model__max_depth=None, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=100; total time= 10.4s\n",
"[CV] END model__max_depth=None, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=200; total time= 15.8s\n",
"[CV] END model__max_depth=None, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=100; total time= 8.2s\n",
"[CV] END model__max_depth=None, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=100; total time= 8.2s\n",
"[CV] END model__max_depth=None, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=100; total time= 8.4s\n",
"[CV] END model__max_depth=None, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=200; total time= 16.9s\n",
"[CV] END model__max_depth=None, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=100; total time= 8.7s\n",
"[CV] END model__max_depth=None, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=200; total time= 18.1s\n",
"[CV] END model__max_depth=None, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=200; total time= 20.8s\n",
"[CV] END model__max_depth=None, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=200; total time= 21.1s\n",
"[CV] END model__max_depth=None, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=200; total time= 14.7s\n",
"[CV] END model__max_depth=None, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=300; total time= 24.3s\n",
"[CV] END model__max_depth=None, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=200; total time= 15.4s\n",
"[CV] END model__max_depth=None, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=300; total time= 25.8s\n",
"[CV] END model__max_depth=None, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=300; total time= 26.4s\n",
"[CV] END model__max_depth=None, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=300; total time= 29.6s\n",
"[CV] END model__max_depth=None, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=100; total time= 9.2s\n",
"[CV] END model__max_depth=None, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=200; total time= 15.7s\n",
"[CV] END model__max_depth=None, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=300; total time= 30.7s\n",
"[CV] END model__max_depth=None, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=200; total time= 15.9s\n",
"[CV] END model__max_depth=None, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=100; total time= 7.7s\n",
"[CV] END model__max_depth=None, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=200; total time= 16.2s\n",
"[CV] END model__max_depth=None, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=100; total time= 8.1s\n",
"[CV] END model__max_depth=None, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=100; total time= 7.9s\n",
"[CV] END model__max_depth=None, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=100; total time= 8.1s\n",
"[CV] END model__max_depth=None, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=300; total time= 22.7s\n",
"[CV] END model__max_depth=None, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=300; total time= 24.0s\n",
"[CV] END model__max_depth=None, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=100; total time= 7.4s\n",
"[CV] END model__max_depth=None, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=300; total time= 25.9s\n",
"[CV] END model__max_depth=None, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=300; total time= 25.6s\n",
"[CV] END model__max_depth=None, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=200; total time= 15.9s\n",
"[CV] END model__max_depth=None, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=200; total time= 15.0s\n",
"[CV] END model__max_depth=None, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=200; total time= 15.0s\n",
"[CV] END model__max_depth=None, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=100; total time= 8.1s\n",
"[CV] END model__max_depth=None, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=100; total time= 8.6s\n",
"[CV] END model__max_depth=None, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=200; total time= 19.3s\n",
"[CV] END model__max_depth=None, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=200; total time= 19.5s\n",
"[CV] END model__max_depth=None, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=100; total time= 8.3s\n",
"[CV] END model__max_depth=None, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=100; total time= 9.1s\n",
"[CV] END model__max_depth=None, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=300; total time= 30.9s\n",
"[CV] END model__max_depth=None, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=300; total time= 23.3s\n",
"[CV] END model__max_depth=None, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=300; total time= 23.7s\n",
"[CV] END model__max_depth=None, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=300; total time= 24.9s\n",
"[CV] END model__max_depth=None, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=300; total time= 25.5s\n",
"[CV] END model__max_depth=None, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=300; total time= 25.3s\n",
"[CV] END model__max_depth=None, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=100; total time= 7.2s\n",
"[CV] END model__max_depth=None, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=200; total time= 18.7s\n",
"[CV] END model__max_depth=None, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=200; total time= 18.6s\n",
"[CV] END model__max_depth=None, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=200; total time= 17.9s\n",
"[CV] END model__max_depth=None, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=200; total time= 17.8s\n",
"[CV] END model__max_depth=None, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=200; total time= 18.2s\n",
"[CV] END model__max_depth=None, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=100; total time= 10.6s\n",
"[CV] END model__max_depth=None, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=100; total time= 10.5s\n",
"[CV] END model__max_depth=None, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=100; total time= 10.2s\n",
"[CV] END model__max_depth=None, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=100; total time= 11.0s\n",
"[CV] END model__max_depth=None, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=200; total time= 16.5s\n",
"[CV] END model__max_depth=None, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=100; total time= 7.5s\n",
"[CV] END model__max_depth=None, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=300; total time= 26.1s\n",
"[CV] END model__max_depth=None, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=300; total time= 26.6s\n",
"[CV] END model__max_depth=None, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=200; total time= 17.2s\n",
"[CV] END model__max_depth=None, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=300; total time= 27.7s\n",
"[CV] END model__max_depth=None, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=300; total time= 29.1s\n",
"[CV] END model__max_depth=None, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=200; total time= 17.5s\n",
"[CV] END model__max_depth=None, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=200; total time= 17.6s\n",
"[CV] END model__max_depth=None, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=200; total time= 16.3s\n",
"[CV] END model__max_depth=None, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=300; total time= 29.6s\n",
"[CV] END model__max_depth=None, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=100; total time= 7.3s\n",
"[CV] END model__max_depth=None, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=100; total time= 6.9s\n",
"[CV] END model__max_depth=None, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=100; total time= 8.2s\n",
"[CV] END model__max_depth=None, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=100; total time= 7.7s\n",
"[CV] END model__max_depth=None, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=300; total time= 22.7s\n",
"[CV] END model__max_depth=None, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=300; total time= 25.1s\n",
"[CV] END model__max_depth=None, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=300; total time= 23.6s\n",
"[CV] END model__max_depth=None, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=100; total time= 6.8s\n",
"[CV] END model__max_depth=None, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=200; total time= 14.4s\n",
"[CV] END model__max_depth=None, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=200; total time= 14.3s\n",
"[CV] END model__max_depth=None, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=300; total time= 26.3s\n",
"[CV] END model__max_depth=None, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=200; total time= 14.8s\n",
"[CV] END model__max_depth=None, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=200; total time= 14.9s\n",
"[CV] END model__max_depth=None, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=300; total time= 27.4s\n",
"[CV] END model__max_depth=None, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=100; total time= 6.9s\n",
"[CV] END model__max_depth=None, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=100; total time= 6.8s\n",
"[CV] END model__max_depth=None, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=100; total time= 6.6s\n",
"[CV] END model__max_depth=None, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=100; total time= 8.3s\n",
"[CV] END model__max_depth=None, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=200; total time= 18.7s\n",
"[CV] END model__max_depth=None, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=300; total time= 20.6s\n",
"[CV] END model__max_depth=None, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=300; total time= 22.1s\n",
"[CV] END model__max_depth=None, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=300; total time= 21.9s\n",
"[CV] END model__max_depth=None, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=200; total time= 13.0s\n",
"[CV] END model__max_depth=None, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=300; total time= 22.3s\n",
"[CV] END model__max_depth=None, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=100; total time= 6.4s\n",
"[CV] END model__max_depth=None, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=300; total time= 22.0s\n",
"[CV] END model__max_depth=None, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=200; total time= 13.1s\n",
"[CV] END model__max_depth=None, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=100; total time= 6.6s\n",
"[CV] END model__max_depth=None, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=200; total time= 14.0s\n",
"[CV] END model__max_depth=None, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=200; total time= 13.3s\n",
"[CV] END model__max_depth=None, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=200; total time= 14.0s\n",
"[CV] END model__max_depth=None, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=100; total time= 6.6s\n",
"[CV] END model__max_depth=None, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=100; total time= 7.2s\n",
"[CV] END model__max_depth=None, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=100; total time= 6.6s\n",
"[CV] END model__max_depth=None, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=300; total time= 19.0s\n",
"[CV] END model__max_depth=10, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=100; total time= 4.3s\n",
"[CV] END model__max_depth=None, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=300; total time= 20.7s\n",
"[CV] END model__max_depth=None, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=300; total time= 19.8s\n",
"[CV] END model__max_depth=None, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=200; total time= 12.5s\n",
"[CV] END model__max_depth=None, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=300; total time= 20.2s\n",
"[CV] END model__max_depth=None, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=200; total time= 13.2s\n",
"[CV] END model__max_depth=10, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=100; total time= 4.9s\n",
"[CV] END model__max_depth=None, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=200; total time= 13.5s\n",
"[CV] END model__max_depth=None, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=200; total time= 15.0s\n",
"[CV] END model__max_depth=None, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=300; total time= 22.1s\n",
"[CV] END model__max_depth=10, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=100; total time= 5.1s\n",
"[CV] END model__max_depth=None, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=200; total time= 13.4s\n",
"[CV] END model__max_depth=10, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=100; total time= 6.2s\n",
"[CV] END model__max_depth=10, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=100; total time= 5.1s\n",
"[CV] END model__max_depth=None, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=300; total time= 19.6s\n",
"[CV] END model__max_depth=None, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=300; total time= 19.9s\n",
"[CV] END model__max_depth=10, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=100; total time= 5.3s\n",
"[CV] END model__max_depth=None, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=300; total time= 19.5s\n",
"[CV] END model__max_depth=10, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=200; total time= 10.2s\n",
"[CV] END model__max_depth=10, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=200; total time= 8.9s\n",
"[CV] END model__max_depth=10, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=200; total time= 10.1s\n",
"[CV] END model__max_depth=10, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=200; total time= 11.1s\n",
"[CV] END model__max_depth=10, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=200; total time= 13.7s\n",
"[CV] END model__max_depth=10, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=100; total time= 5.3s\n",
"[CV] END model__max_depth=10, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=100; total time= 5.1s\n",
"[CV] END model__max_depth=None, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=300; total time= 23.0s\n",
"[CV] END model__max_depth=10, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=100; total time= 5.6s\n",
"[CV] END model__max_depth=10, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=100; total time= 6.3s\n",
"[CV] END model__max_depth=10, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=300; total time= 14.9s\n",
"[CV] END model__max_depth=10, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=300; total time= 16.1s\n",
"[CV] END model__max_depth=10, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=300; total time= 15.8s\n",
"[CV] END model__max_depth=10, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=300; total time= 17.3s\n",
"[CV] END model__max_depth=10, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=200; total time= 10.2s\n",
"[CV] END model__max_depth=None, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=300; total time= 29.3s\n",
"[CV] END model__max_depth=10, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=200; total time= 10.7s\n",
"[CV] END model__max_depth=10, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=100; total time= 5.0s\n",
"[CV] END model__max_depth=10, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=100; total time= 5.3s\n",
"[CV] END model__max_depth=10, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=200; total time= 11.4s\n",
"[CV] END model__max_depth=10, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=300; total time= 22.3s\n",
"[CV] END model__max_depth=10, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=100; total time= 4.9s\n",
"[CV] END model__max_depth=10, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=200; total time= 14.5s\n",
"[CV] END model__max_depth=10, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=100; total time= 4.9s\n",
"[CV] END model__max_depth=10, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=100; total time= 4.8s\n",
"[CV] END model__max_depth=10, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=200; total time= 14.1s\n",
"[CV] END model__max_depth=10, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=300; total time= 13.9s\n",
"[CV] END model__max_depth=10, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=300; total time= 14.2s\n",
"[CV] END model__max_depth=10, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=300; total time= 14.4s\n",
"[CV] END model__max_depth=10, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=300; total time= 14.9s\n",
"[CV] END model__max_depth=10, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=200; total time= 9.6s\n",
"[CV] END model__max_depth=10, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=300; total time= 16.5s\n",
"[CV] END model__max_depth=10, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=100; total time= 4.8s\n",
"[CV] END model__max_depth=10, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=200; total time= 11.9s\n",
"[CV] END model__max_depth=10, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=100; total time= 6.1s\n",
"[CV] END model__max_depth=10, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=200; total time= 11.0s\n",
"[CV] END model__max_depth=10, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=200; total time= 10.7s\n",
"[CV] END model__max_depth=10, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=200; total time= 11.1s\n",
"[CV] END model__max_depth=10, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=100; total time= 5.7s\n",
"[CV] END model__max_depth=10, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=100; total time= 5.4s\n",
"[CV] END model__max_depth=10, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=100; total time= 5.3s\n",
"[CV] END model__max_depth=10, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=300; total time= 14.8s\n",
"[CV] END model__max_depth=10, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=300; total time= 14.7s\n",
"[CV] END model__max_depth=10, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=100; total time= 4.0s\n",
"[CV] END model__max_depth=10, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=300; total time= 16.5s\n",
"[CV] END model__max_depth=10, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=300; total time= 15.6s\n",
"[CV] END model__max_depth=10, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=200; total time= 9.4s\n",
"[CV] END model__max_depth=10, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=300; total time= 17.0s\n",
"[CV] END model__max_depth=10, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=200; total time= 10.6s\n",
"[CV] END model__max_depth=10, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=100; total time= 3.9s\n",
"[CV] END model__max_depth=10, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=100; total time= 4.1s\n",
"[CV] END model__max_depth=10, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=200; total time= 10.1s\n",
"[CV] END model__max_depth=10, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=100; total time= 4.7s\n",
"[CV] END model__max_depth=10, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=200; total time= 11.8s\n",
"[CV] END model__max_depth=10, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=200; total time= 12.1s\n",
"[CV] END model__max_depth=10, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=100; total time= 5.8s\n",
"[CV] END model__max_depth=10, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=300; total time= 13.9s\n",
"[CV] END model__max_depth=10, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=300; total time= 14.7s\n",
"[CV] END model__max_depth=10, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=300; total time= 13.8s\n",
"[CV] END model__max_depth=10, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=300; total time= 14.3s\n",
"[CV] END model__max_depth=10, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=300; total time= 15.4s\n",
"[CV] END model__max_depth=10, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=200; total time= 8.1s\n",
"[CV] END model__max_depth=10, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=200; total time= 9.3s\n",
"[CV] END model__max_depth=10, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=100; total time= 4.6s\n",
"[CV] END model__max_depth=10, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=200; total time= 8.0s\n",
"[CV] END model__max_depth=10, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=200; total time= 9.6s\n",
"[CV] END model__max_depth=10, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=200; total time= 8.7s\n",
"[CV] END model__max_depth=10, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=100; total time= 3.9s\n",
"[CV] END model__max_depth=10, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=100; total time= 3.7s\n",
"[CV] END model__max_depth=10, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=100; total time= 4.3s\n",
"[CV] END model__max_depth=10, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=100; total time= 4.2s\n",
"[CV] END model__max_depth=10, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=300; total time= 11.4s\n",
"[CV] END model__max_depth=10, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=300; total time= 12.6s\n",
"[CV] END model__max_depth=10, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=200; total time= 7.2s\n",
"[CV] END model__max_depth=10, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=300; total time= 12.1s\n",
"[CV] END model__max_depth=10, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=200; total time= 7.8s\n",
"[CV] END model__max_depth=10, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=100; total time= 4.0s\n",
"[CV] END model__max_depth=10, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=200; total time= 8.0s\n",
"[CV] END model__max_depth=10, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=100; total time= 4.0s\n",
"[CV] END model__max_depth=10, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=200; total time= 7.9s\n",
"[CV] END model__max_depth=10, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=300; total time= 14.5s\n",
"[CV] END model__max_depth=10, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=300; total time= 14.4s\n",
"[CV] END model__max_depth=10, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=100; total time= 3.9s\n",
"[CV] END model__max_depth=10, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=100; total time= 3.9s\n",
"[CV] END model__max_depth=10, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=200; total time= 9.6s\n",
"[CV] END model__max_depth=10, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=100; total time= 4.3s\n",
"[CV] END model__max_depth=10, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=300; total time= 12.5s\n",
"[CV] END model__max_depth=10, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=300; total time= 11.7s\n",
"[CV] END model__max_depth=10, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=300; total time= 12.1s\n",
"[CV] END model__max_depth=10, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=200; total time= 7.6s\n",
"[CV] END model__max_depth=10, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=100; total time= 3.7s\n",
"[CV] END model__max_depth=10, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=300; total time= 13.5s\n",
"[CV] END model__max_depth=10, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=300; total time= 12.6s\n",
"[CV] END model__max_depth=10, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=200; total time= 8.7s\n",
"[CV] END model__max_depth=10, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=200; total time= 8.0s\n",
"[CV] END model__max_depth=10, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=200; total time= 7.8s\n",
"[CV] END model__max_depth=10, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=200; total time= 8.3s\n",
"[CV] END model__max_depth=10, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=100; total time= 4.2s\n",
"[CV] END model__max_depth=10, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=100; total time= 4.0s\n",
"[CV] END model__max_depth=10, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=100; total time= 4.8s\n",
"[CV] END model__max_depth=10, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=100; total time= 4.3s\n",
"[CV] END model__max_depth=10, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=300; total time= 11.5s\n",
"[CV] END model__max_depth=10, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=300; total time= 11.9s\n",
"[CV] END model__max_depth=10, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=300; total time= 13.3s\n",
"[CV] END model__max_depth=10, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=200; total time= 8.5s\n",
"[CV] END model__max_depth=10, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=300; total time= 13.5s[CV] END model__max_depth=10, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=200; total time= 7.9s\n",
"\n",
"[CV] END model__max_depth=10, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=200; total time= 8.7s\n",
"[CV] END model__max_depth=10, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=200; total time= 8.5s\n",
"[CV] END model__max_depth=10, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=200; total time= 8.2s\n",
"[CV] END model__max_depth=10, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=300; total time= 13.9s\n",
"[CV] END model__max_depth=20, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=100; total time= 7.6s\n",
"[CV] END model__max_depth=10, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=300; total time= 11.8s\n",
"[CV] END model__max_depth=10, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=300; total time= 11.9s\n",
"[CV] END model__max_depth=10, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=300; total time= 11.1s\n",
"[CV] END model__max_depth=20, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=100; total time= 7.8s\n",
"[CV] END model__max_depth=20, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=100; total time= 7.7s\n",
"[CV] END model__max_depth=10, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=300; total time= 11.7s\n",
"[CV] END model__max_depth=10, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=300; total time= 12.2s\n",
"[CV] END model__max_depth=20, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=100; total time= 9.0s\n",
"[CV] END model__max_depth=20, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=100; total time= 9.1s\n",
"[CV] END model__max_depth=20, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=100; total time= 7.1s\n",
"[CV] END model__max_depth=20, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=200; total time= 14.1s\n",
"[CV] END model__max_depth=20, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=100; total time= 7.6s\n",
"[CV] END model__max_depth=20, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=100; total time= 9.0s\n",
"[CV] END model__max_depth=20, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=100; total time= 8.0s\n",
"[CV] END model__max_depth=20, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=200; total time= 15.5s\n",
"[CV] END model__max_depth=20, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=100; total time= 7.6s\n",
"[CV] END model__max_depth=20, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=200; total time= 16.4s\n",
"[CV] END model__max_depth=20, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=200; total time= 15.9s\n",
"[CV] END model__max_depth=20, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=200; total time= 16.4s\n",
"[CV] END model__max_depth=20, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=100; total time= 7.9s\n",
"[CV] END model__max_depth=20, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=200; total time= 17.8s\n",
"[CV] END model__max_depth=20, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=300; total time= 25.9s\n",
"[CV] END model__max_depth=20, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=300; total time= 24.3s\n",
"[CV] END model__max_depth=20, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=200; total time= 15.2s\n",
"[CV] END model__max_depth=20, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=300; total time= 22.7s\n",
"[CV] END model__max_depth=20, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=200; total time= 15.2s\n",
"[CV] END model__max_depth=20, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=300; total time= 24.9s\n",
"[CV] END model__max_depth=20, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=200; total time= 18.8s\n",
"[CV] END model__max_depth=20, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=300; total time= 29.0s\n",
"[CV] END model__max_depth=20, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=200; total time= 18.8s\n",
"[CV] END model__max_depth=20, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=100; total time= 10.4s\n",
"[CV] END model__max_depth=20, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=100; total time= 10.9s\n",
"[CV] END model__max_depth=20, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=100; total time= 10.7s\n",
"[CV] END model__max_depth=20, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=100; total time= 11.1s\n",
"[CV] END model__max_depth=20, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=300; total time= 25.2s\n",
"[CV] END model__max_depth=20, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=300; total time= 26.1s\n",
"[CV] END model__max_depth=20, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=300; total time= 28.0s\n",
"[CV] END model__max_depth=20, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=300; total time= 27.1s\n",
"[CV] END model__max_depth=20, model__max_features=sqrt, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=300; total time= 27.6s\n",
"[CV] END model__max_depth=20, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=200; total time= 15.7s\n",
"[CV] END model__max_depth=20, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=200; total time= 16.3s\n",
"[CV] END model__max_depth=20, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=100; total time= 7.7s\n",
"[CV] END model__max_depth=20, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=200; total time= 18.9s\n",
"[CV] END model__max_depth=20, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=200; total time= 17.9s\n",
"[CV] END model__max_depth=20, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=100; total time= 7.2s\n",
"[CV] END model__max_depth=20, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=100; total time= 7.8s\n",
"[CV] END model__max_depth=20, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=200; total time= 17.2s\n",
"[CV] END model__max_depth=20, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=100; total time= 7.9s\n",
"[CV] END model__max_depth=20, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=100; total time= 8.1s\n",
"[CV] END model__max_depth=20, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=300; total time= 23.0s\n",
"[CV] END model__max_depth=20, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=100; total time= 6.3s\n",
"[CV] END model__max_depth=20, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=200; total time= 14.6s\n",
"[CV] END model__max_depth=20, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=200; total time= 15.4s\n",
"[CV] END model__max_depth=20, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=300; total time= 26.1s\n",
"[CV] END model__max_depth=20, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=300; total time= 24.5s\n",
"[CV] END model__max_depth=20, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=200; total time= 14.9s\n",
"[CV] END model__max_depth=20, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=200; total time= 15.6s\n",
"[CV] END model__max_depth=20, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=200; total time= 17.1s\n",
"[CV] END model__max_depth=20, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=100; total time= 8.5s\n",
"[CV] END model__max_depth=20, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=300; total time= 27.9s\n",
"[CV] END model__max_depth=20, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=100; total time= 7.4s\n",
"[CV] END model__max_depth=20, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=300; total time= 28.8s\n",
"[CV] END model__max_depth=20, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=100; total time= 8.5s\n",
"[CV] END model__max_depth=20, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=100; total time= 8.8s\n",
"[CV] END model__max_depth=20, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=300; total time= 22.8s\n",
"[CV] END model__max_depth=20, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=300; total time= 24.6s\n",
"[CV] END model__max_depth=20, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=200; total time= 13.1s\n",
"[CV] END model__max_depth=20, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=200; total time= 15.0s\n",
"[CV] END model__max_depth=20, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=100; total time= 6.7s\n",
"[CV] END model__max_depth=20, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=300; total time= 26.0s\n",
"[CV] END model__max_depth=20, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=300; total time= 26.6s\n",
"[CV] END model__max_depth=20, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=200; total time= 12.8s\n",
"[CV] END model__max_depth=20, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=200; total time= 17.6s\n",
"[CV] END model__max_depth=20, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=100; total time= 6.4s\n",
"[CV] END model__max_depth=20, model__max_features=sqrt, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=300; total time= 26.5s\n",
"[CV] END model__max_depth=20, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=200; total time= 16.5s\n",
"[CV] END model__max_depth=20, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=100; total time= 7.1s\n",
"[CV] END model__max_depth=20, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=100; total time= 6.7s\n",
"[CV] END model__max_depth=20, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=100; total time= 7.9s\n",
"[CV] END model__max_depth=20, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=300; total time= 20.5s\n",
"[CV] END model__max_depth=20, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=200; total time= 13.8s\n",
"[CV] END model__max_depth=20, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=300; total time= 23.1s\n",
"[CV] END model__max_depth=20, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=300; total time= 23.5s\n",
"[CV] END model__max_depth=20, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=100; total time= 7.4s\n",
"[CV] END model__max_depth=20, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=300; total time= 23.3s\n",
"[CV] END model__max_depth=20, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=200; total time= 15.3s\n",
"[CV] END model__max_depth=20, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=200; total time= 13.6s\n",
"[CV] END model__max_depth=20, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=200; total time= 13.6s\n",
"[CV] END model__max_depth=20, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=2, model__n_estimators=300; total time= 25.1s\n",
"[CV] END model__max_depth=20, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=100; total time= 6.1s\n",
"[CV] END model__max_depth=20, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=200; total time= 16.1s\n",
"[CV] END model__max_depth=20, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=100; total time= 6.0s\n",
"[CV] END model__max_depth=20, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=100; total time= 6.7s\n",
"[CV] END model__max_depth=20, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=100; total time= 7.0s\n",
"[CV] END model__max_depth=20, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=300; total time= 20.6s\n",
"[CV] END model__max_depth=20, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=300; total time= 19.5s\n",
"[CV] END model__max_depth=20, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=300; total time= 22.4s\n",
"[CV] END model__max_depth=20, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=300; total time= 21.0s\n",
"[CV] END model__max_depth=20, model__max_features=log2, model__min_samples_leaf=1, model__min_samples_split=5, model__n_estimators=300; total time= 23.7s\n",
"[CV] END model__max_depth=20, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=100; total time= 6.2s\n",
"[CV] END model__max_depth=20, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=200; total time= 11.9s\n",
"[CV] END model__max_depth=20, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=200; total time= 13.3s\n",
"[CV] END model__max_depth=20, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=200; total time= 13.6s\n",
"[CV] END model__max_depth=20, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=200; total time= 13.9s\n",
"[CV] END model__max_depth=20, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=200; total time= 14.6s\n",
"[CV] END model__max_depth=20, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=100; total time= 7.0s\n",
"[CV] END model__max_depth=20, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=100; total time= 6.1s\n",
"[CV] END model__max_depth=20, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=100; total time= 6.9s\n",
"[CV] END model__max_depth=20, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=100; total time= 7.3s\n",
"[CV] END model__max_depth=20, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=300; total time= 17.7s\n",
"[CV] END model__max_depth=20, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=300; total time= 20.1s\n",
"[CV] END model__max_depth=20, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=300; total time= 17.7s\n",
"[CV] END model__max_depth=20, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=300; total time= 19.8s\n",
"[CV] END model__max_depth=20, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=200; total time= 12.1s\n",
"[CV] END model__max_depth=20, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=200; total time= 11.1s\n",
"[CV] END model__max_depth=20, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=2, model__n_estimators=300; total time= 18.6s\n",
"[CV] END model__max_depth=20, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=200; total time= 11.6s\n",
"[CV] END model__max_depth=20, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=200; total time= 11.6s\n",
"[CV] END model__max_depth=20, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=200; total time= 10.9s\n",
"[CV] END model__max_depth=20, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=300; total time= 13.2s\n",
"[CV] END model__max_depth=20, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=300; total time= 13.2s\n",
"[CV] END model__max_depth=20, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=300; total time= 12.4s\n",
"[CV] END model__max_depth=20, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=300; total time= 12.6s\n",
"[CV] END model__max_depth=20, model__max_features=log2, model__min_samples_leaf=2, model__min_samples_split=5, model__n_estimators=300; total time= 11.4s\n",
"Best hyperparameters (Extra Trees): {'model__max_depth': None, 'model__max_features': 'log2', 'model__min_samples_leaf': 1, 'model__min_samples_split': 5, 'model__n_estimators': 200}\n"
]
}
],
"source": [
"# Define pipeline (scaling numeric features only)\n",
"et_pipeline = Pipeline([\n",
" ('scaler', StandardScaler()),\n",
" ('model', ExtraTreesClassifier(class_weight='balanced', random_state=123))\n",
"])\n",
"\n",
"# Define parameter grid for ExtraTrees\n",
"et_param_grid = {\n",
" 'model__n_estimators': [100, 200, 300],\n",
" 'model__max_depth': [None, 10, 20],\n",
" 'model__min_samples_split': [2, 5],\n",
" 'model__min_samples_leaf': [1, 2],\n",
" 'model__max_features': ['sqrt', 'log2']\n",
"}\n",
"\n",
"# GridSearchCV\n",
"et_grid_search = GridSearchCV(\n",
" estimator=et_pipeline,\n",
" param_grid=et_param_grid,\n",
" scoring='average_precision', # For imbalanced classification\n",
" cv=5,\n",
" n_jobs=-1,\n",
" verbose=2\n",
")\n",
"\n",
"# Fit the grid search on training data\n",
"et_grid_search.fit(X_train_lasso, y_train_lasso)\n",
"\n",
"# Best model\n",
"best_et_pipeline_lasso = et_grid_search.best_estimator_\n",
"print(\"Best hyperparameters (Extra Trees):\", et_grid_search.best_params_)\n",
"\n",
"# Predict on test set\n",
"y_pred_proba_et_lasso = best_et_pipeline_lasso.predict_proba(X_test_lasso)[:, 1]\n",
"y_pred_et_lasso = best_et_pipeline_lasso.predict(X_test_lasso)"
]
},
{
"cell_type": "code",
"execution_count": 127,
"id": "603b17b3",
"metadata": {},
"outputs": [],
"source": [
"# Actual and predicted\n",
"y_true_et_lasso = y_test_lasso\n",
"\n",
"# Compute confusion matrix: [ [TN, FP], [FN, TP] ]\n",
"tn, fp, fn, tp = confusion_matrix(y_true_et_lasso, y_pred_et_lasso).ravel()\n",
"\n",
"# Total predictions\n",
"total = tp + tn + fp + fn\n",
"\n",
"# Compute all requested metrics\n",
"recall_et_lasso = recall_score(y_true_et_lasso, y_pred_et_lasso)\n",
"precision_et_lasso = precision_score(y_true_et_lasso, y_pred_et_lasso)\n",
"f1_et_lasso = fbeta_score(y_true_et_lasso, y_pred_et_lasso, beta=1)\n",
"f2_et_lasso = fbeta_score(y_true_et_lasso, y_pred_et_lasso, beta=2)\n",
"fpr_et_lasso = fp / (fp + tn) if (fp + tn) != 0 else 0\n",
"\n",
"# Scores relative to total\n",
"tp_score_et_lasso = tp / total\n",
"tn_score_et_lasso = tn / total\n",
"fp_score_et_lasso = fp / total\n",
"fn_score_et_lasso = fn / total\n",
"\n",
"# Create DataFrame\n",
"summary_df_et_lasso = pd.DataFrame([{\n",
" \"title\": \"Lasso ET\",\n",
" \"flagging_analysis_type\": \"RISK_VS_CLAIM using Extra Trees with Lasso Features\",\n",
" \"count_total\": total,\n",
" \"count_true_positive\": tp,\n",
" \"count_true_negative\": tn,\n",
" \"count_false_positive\": fp,\n",
" \"count_false_negative\": fn,\n",
" \"true_positive_score\": tp_score_et_lasso,\n",
" \"true_negative_score\": tn_score_et_lasso,\n",
" \"false_positive_score\": fp_score_et_lasso,\n",
" \"false_negative_score\": fn_score_et_lasso,\n",
" \"recall_score\": recall_et_lasso,\n",
" \"precision_score\": precision_et_lasso,\n",
" \"false_positive_rate_score\": fpr_et_lasso,\n",
" \"f1_score\": f1_et_lasso,\n",
" \"f2_score\": f2_et_lasso\n",
"}])"
]
},
{
"cell_type": "code",
"execution_count": 128,
"id": "d10ae5b4",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA3cAAAMVCAYAAADUDw1HAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3XdcFMf/P/DXUQ6O3jtSLIiigmAFFRFEBRULdqUYe4y9NwwajdhrjL0XVESNDQtW7F1j1AiKih07Ut+/P/zdflm4g8MSPyHv5+PBQ3d2dmZ2d3b3Znd2VkJEBMYYY4wxxhhj/2pq37sAjDHGGGOMMca+HDfuGGOMMcYYY6wU4MYdY4wxxhhjjJUC3LhjjDHGGGOMsVKAG3eMMcYYY4wxVgpw444xxhhjjDHGSgFu3DHGGGOMMcZYKcCNO8YYY4wxxhgrBbhxxxhjjDHGGGOlADfuGPsPSUlJgUQiEf4SExO/d5FKtfDwcGFb+/r6iubl3w8rV678LuUrbaKiooRt6ujo+L2L892tXLlSVM9Ku6KOt5LgesQY+zfjxh1jKkpMTBT9UJL/qaurw8jICNWrV8eIESPw+PHj713UUsvR0VHhPpBKpbCxsUGLFi2wY8eO713Mf1Rp/QGf/4d6UX98g6J0yd+wKniMW1hYoEGDBpgzZw4+fvz4vYtaqhw7dgyRkZFwcXGBvr4+tLS0YGNjg2bNmmHx4sVffXt/rYY4Y6wwje9dAMb+7fLy8vD69WtcvHgRFy9exOrVq3HmzBnY29t/76L9Z2RnZyMtLQ07d+7Ezp070aNHD/z+++/fu1hFiomJEf5fo0aN71gSxv73ZWdn49mzZ3j27BmOHj2Kbdu24dChQ1BXVxfidOjQAW5ubgDA518VvXv3Dt27d8fmzZsLzUtLS0NaWhr27NmDqVOnYsuWLfD09PwOpWSMlQQ37hj7TO3bt4eXlxfevHmD7du34+rVqwCAx48fY9asWZg5c+Z3LmHp5uzsjD59+gAA7t+/j1WrVuHNmzcAgCVLliAoKAgtW7YsNp33799DJpNBTe2f7cgwdOjQfzS/r+2f3m75G8P5lS1b9h/Jn30fo0ePhpGRER4/foy1a9fi6dOnAICjR4/ijz/+QIsWLYS4TZo0QZMmTb5XUf918vLy0L59e+zevVsIK1++PFq1agV9fX0kJSUJ81JSUhAQEIDTp0+jfPny36vIjDFVEGNMJYcPHyYAwt+KFSuEea9evSKpVCrMCwwMFC374sULGjZsGPn5+ZGDgwPp6emRpqYmWVhYkL+/P61evZry8vKKzO/vv/+mBQsWUJUqVUhLS4vMzc2pe/fu9PLly0Jlff/+PY0YMYLs7OxIS0uLKlWqRPPnz6e7d++K0jx8+HChZbds2ULNmjUjS0tL0tTUJCMjI6pTpw5Nnz6d3r9/Xyh+wW2yevVqqlatGmlra1PZsmVp5syZRESUnZ1N0dHR5OjoSFKplCpWrEi///57ifaBg4ODkFeDBg1E8xISEkRl6dq1q8LlJkyYQMeOHaNGjRqRgYEBAaD09HQh7qVLlygiIoKcnZ1JW1ubdHV1yd3dnSZPnkzv3r1TWK4jR45QgwYNSEdHh4yNjalt27Z0584dCgsLU1peZXVJ7syZMxQeHk5ly5YlmUxGurq6VL58eQoPD6c7d+5QcnKyKA1FfxMmTBCleeDAAWrTpg3Z2tqSVColfX198vDwoPHjx9OLFy+K3N7FbbevLf+2U/VSNWHCBCG+g4ODaN62bduoS5cuVKVKFbKwsCBNTU3S1dUlV1dX6tevHyUnJytM88qVKxQcHEz6+vqkr69PTZo0oYsXLxaZFxHR0aNHRXUiNDSU7t69W2SdICJ6/PgxjRo1iqpVq0Z6enqkpaVFZcuWpb59+9K9e/cUljElJYU6dOhAxsbGpKOjQ/Xq1aOEhARasWJFibchEdGyZcsoNDSUKlasSKampqShoUH6+vpUrVo1Gj58OD179kxhGXr27EnlypUjbW1t0tLSIhsbG6pbty4NGjSIbty4oVLe+bcrANF+2bNnj2jelClTRMsWtW2vXLlCnTt3JgcHB5JKpaStrU329vbUsGFDGjlyJD148EBhGfLv2+zsbGrTpo0wT1tbm/bs2aN0XV6/fk06OjpFHuft2rUT5vv7+wvhR48epZCQELKxsRHqqoODAzVp0oQmTJhAr169Uml7FmXdunWi7dm0aVPKzMwUxVm5cqUoTpMmTUTzizqPKdofBeukor/816W8vDyKjY2l5s2bk42NDUmlUjI2NiZ3d3caNGhQofI+ePCAhg4dSm5ubqSrq0taWlrk4OBAnTt3ptOnTxfaBgX39aNHj6hbt25kampK+vr6FBwcTH/99RcREZ0/f54CAwNJT0+PjIyMqG3btnT//n2F2/ZzriOMfS3cuGNMRUU17oiITExMhHmdO3cWzbt69WqxF7SIiIgi8/Px8VG4XP369UXLZWVlUb169RTGDQoKUnoRzcnJEf3QUPTn6upKjx49EuWXf76np6fC5caNG0ctW7ZUOG/ZsmUq74OiGnfv3r0TpRsQEKBwuTp16pC6uroorryRsnDhQtLQ0FC6/pUqVaK0tDRRvjt37lS4jImJCdWpU0dpeYuqSxMnTiSJRKK0HHFxcSVu3A0ePLjIuLa2tnTt2jWl27uo7fYtfO3GXf4f5Yr+DAwM6MqVK6Jlzp49S3p6eoXiamtrU0BAgNK8lNUJU1NTqlu3rtI6cfLkSTIzM1NaRkNDQzp69KhomeTkZLKysioUVyKRULNmzUq8DYlI6XGcv648fPhQiP/kyRMyNzcvcplFixaplHdRjbsrV66I5i1ZskS0rLLG3fXr10WNLEV/+RtpiupRTk4OdejQQQjX1dWlgwcPFrs+Xbt2FZZp3LixaN7bt29JJpMJ89evX09En27CFDzWCv79+eefKm3PojRo0EBIT01NTWjEFJT/PAaAUlJShHlFnce+tHGXkZFR6JpV8C//OejIkSNkbGysNK6amhrNmDFDVMb8+9rExIQcHR0LLWdubk5xcXGkpaVVaF758uUpIyNDlObnXEcY+5q4WyZjX+jNmzdYuXIlXr58KYS1a9dOFEdNTQ2urq6oWbMmrKysYGRkhI8fP+LixYvYuXMniAgrVqxA7969UbNmTYX5HD9+HI0aNULdunVF3UCPHj2KU6dOoXbt2gCAOXPm4NixY8JyHh4eCA4OxrVr1xAXF6d0PX755RfRexe1a9dG48aN8eeffyI2NhYA8Oeff6Jz5844dOiQwjTOnz+POnXqICAgAJs2bcJff/0FAIiOjgYANGjQAPXr18eSJUuEgWemTZuGyMhIpeVSVVJSkmjayspKaTwdHR106dIFtra2uHjxItTV1XHy5En8+OOPyMvLE9a/SZMmePv2LVatWoXnz5/jxo0b6NatG/bv3w8A+PDhA7p3746cnBwAgKamJiIjI2FsbIy1a9cWKpMqYmNjMWHCBGFaR0cHHTp0gIODA5KTk7Fz504AgImJCWJiYnDu3Dls2rRJiJ+/+2LdunUBAGvWrBF1E65cuTJatWqFR48eYdWqVcjNzcXDhw/RunVrXL9+HRoahS8NyrbbP2X69OmFwgwNDdGjRw+VljcyMkLjxo3h6uoKY2NjSKVSPHnyBHFxcbh//z7evHmDESNGCN3QiAiRkZF49+6dkEbHjh3h7OyMzZs3IyEhQWE+BeuEhoYGIiIiYGJigtWrV+PkyZMKl3vz5g1CQkLw/PlzAICDgwPat28PmUyGLVu24Pr163j9+jXatGmD27dvw9DQEADw448/igZxat68OTw8PLBnzx5Rd7uSsLCwQPPmzVG2bFmYmJhAXV0dDx8+xKZNm/DixQs8fPgQkyZNwsKFCwEAW7duxbNnzwAAxsbGiIiIgKmpKR49eoSbN2+Kzkefg4jw+PFjUd2WyWQIDg5WaflVq1bhw4cPAAA7Ozt06dIFurq6ePDgAa5du4ZTp04VuXxeXh4iIyOxceNGAICBgQF2794Nb2/vYvOOiIjAmjVrAAAHDx7E06dPYWFhAQDYvn07MjIyAHyqn61atQIA/P7778jNzQUAVKxYEaGhodDQ0MD9+/dx6dIlXLhwQaX1Lkpubq7o/FStWjVUqFBBYdz27duL4h47dgwODg6flW+NGjUQExODTZs24dy5cwDEXeyB/+tqPWTIEPzxxx9CuL29PVq1agVDQ0Ncv34du3btEua9evUKrVu3Rnp6OoBP9SMiIgIGBgbYsGED7t27h7y8PAwdOhSenp5o0KBBobK9fPkSGRkZGDBgAN6/f4+lS5cCAJ49e4ZWrVpBT08PP/74I+7du4ctW7YAAG7fvo3t27ejQ4cOAPBZ1xHGvrrv3Lhk7F+j4JM0RX86OjoUExOjNI179+7Rli1baP78+TR9+nSKiYkhW1tbYfmff/5ZaX6tWrUSum6+ePFCdGd37ty5wnIuLi5CeLly5ejjx4/CvB49eii8Q5qbmyt68linTh3KyckRlhs+fLhouYsXLwrzUOCOZFZWFhER7du3TzSvWrVqQpq//fabaN6bN29U2gf5nyQ5OztTTEwMxcTE0E8//SR0FZT/xcXFKVxOXV2dzp8/XyjtVq1aCXF8fX0pNzdXmHfmzBlR2pcvXyYiog0bNojCly5dKiyTnJxMmpqaCp8kFNxu+e94V69eXfR0oODd9Hfv3tGTJ0+EaVW63lWrVk2Y7+joSB8+fBDmLVy48Iu227dS8Mmdor+CT8yK6yqZlZVFR48epWXLltGsWbMoJiaGIiIihGW0tLSE+puUlCTKa8SIEUI6L1++FD0hyJ9XwTqR/4nV7du3RXf089eJOXPmCOHGxsaibrLv3r0TPRmbM2cOERE9evRI9IS3S5cuonWtXLlysXVDmffv39OBAwfo999/p5kzZ1JMTIzo6buzs7MQd+bMmUJ4r169CqX17t07evz4sUr5Fnxyp+jPxsaGEhISCi2r7MndTz/9JIQX7MpJ9Gl/5u/enr8MZcqUEZ03jY2NFXbvUyYvL4+cnJyE5efNmyfMy/9ktU+fPkJ4ixYthPANGzYUSjMtLU1hF/mSePLkiWibhoSEKI0bFxcnijtt2jRhnrLzGFHR3WSL65788uVL0bHi4eFBb9++FcW5f/++cLzOmjVLVJbdu3eL1jX/E/iWLVsK8wrWt7Vr1wrzCj6xjI2NJaJP+9TGxkYIHzx4sLDM51xHGPva+MkdY19Rq1at0Lt370LhL168QFhYmOgupCIPHjxQOq9Pnz7CUPcmJiYwMzPDkydPAEC4W/nu3TvhaRkAtGnTBlpaWsJ0ly5dsGTJkkJp//XXX6Inj126dBE9lQkLC8O0adOE6aSkJLi7uxdKp127dtDU1ASAQt+Hat26tZBmwUEw0tPToa+vr3TdFbl79y6GDRumcF5kZCRCQkIUzmvatCmqV69eKPzEiRPC/xMTE4t8KnXy5ElUrVpVuPMs16lTJ+H/jo6O8PHxweHDh4taDZEPHz7g4sWLwnS3bt0K3U3X1dWFrq5uidK8cuWKMB0aGgqZTCbKo2/fvsJ0UlKSwm2nbLsp8+bNG4UjlpbkadvXtG7dOgwcOFB4MqZIZmYmnj9/Dmtr60L7tlu3bsL/jY2N0bJlS4XfJyy4XNeuXYX/lytXDj4+Pgo/35C//qWnp8PU1FRpOU+ePImffvoJ58+fBxEJ4Z07dxb+r6mpiXbt2omeAqtq5syZmDBhguipZUH5z1Xe3t6QSCQgIixevBhnz55FpUqV4OLiAi8vLzRs2BCWlpYlLociGhoaGDhwIBo1aqTyMvXq1cPcuXMBAGPHjsWOHTtQsWJFuLi4oFatWqhXr57S4/3+/fvCOdPMzAz79++Hh4eHynlLJBKEh4cL+2HDhg348ccf8eLFC9HT34iICFF55Z90CQ8Px+LFi1GhQgW4uLjA29sbNWvWLFWfPVHk1KlTwtNvABg5ciT09PREcfKPiJr/yaK5uTmaNm0qTFtYWKBp06ZCDxRlPSo0NDTQvn17YdrR0VGIq6mpKTxZlUgkcHJywqNHjwD83/UX+LzrCGNfGzfuGPtM7du3R7Vq1XDy5Emhe8i6deuQlpaGAwcOiC6+3bt3L7ZhB3z6calMwcZS/kabvAvIq1evRHHk3X/klP3Ayt+wUxSv4HT+i1l+NjY2wv+lUqnSeQW7/cnL/7k0NDRgZmYGLy8vREZGChdhRSpWrKgwvOA2KIq8C1r+7a2vry9qNAHKt7cy6enpoh/rTk5OJVpelTQLlklXVxd6enrCD3ll+1bZdlPm5cuXChvfDg4On9W4y78OJXXhwgV069ZNpXomPwYLHksFu/kq6/ZbsE4UbIgrW+5L6x+g+vFelO3bt2PIkCHFxsvKyhL+X7NmTcycORPjxo3Du3fvcOHCBVHXQTMzM8TGxn7W98xGjx4NLS0tbNu2DZcvX0ZOTg6GDx+ODx8+qNxwbdu2LYYOHYp58+YhMzMTSUlJoh/4Dg4O+OOPP1C5cuUi09HX1/+sbRoeHo6JEyciLy8PSUlJSElJwd69e5GdnQ0AcHNzE30OZeDAgbhy5QrWr1+PzMxMJCYmim4IuLm5Yf/+/bC2ti5xWeRMTU0hlUqF/Xjv3j2lcQvOU5ZvwWO0qOtZcQoeD8WdC/PHV7SP8ocpO8dZWFiIrk35r2EWFhaihlr+ePnPK59zHDP2tXHjjrHP1KRJE4SHhwMAevfujcWLFwMADh06hLVr1wp37N+/fy96N6BRo0b4/fff4eDgAHV1ddSsWRNnz54tNj/5EzE5RXdu5e/hyMmHDZeTP+kryMTEpMh4BaeNjY1VKmN+it7j+hINGjT4rA9YK3vqZWJiImwvHx+fIj+jIH+XzcjISAh7+/YtMjIyRA08ZdtbGWNjY+EJCAAkJyeXaHlV0ixYpvfv34ue0CjbtyV5Wvi/JjY2VvgBJpFIsH79ejRv3hy6urrYvXs3goKCCi2Tf98Cn46l/MdJ/vfclC2nqE4oWy5/2tbW1hg8eLDS9ZE/sVBUxvxKWv8AiN7f1NPTw7Zt21CvXj1oa2tj4cKF6Nevn8LlBg4ciJ49e+LUqVO4fv06bt++jb179+L27dt4/vw5wsLCimxAKNOjRw84Ojpi2LBhqFu3Li5dugTg0zvCXbp0UflTGDExMRg7dixOnjyJmzdv4tatW9ixYwcePXqEe/fuoW/fvjhy5Eih5YyMjKClpYUnT54gOTkZ/v7+OHr0KMzMzFRehzJlysDPzw8HDhwAEWHjxo3Ys2ePMD//Uzvg07ly9erVmDFjBk6ePIm//voLf/31F+Li4pCeno5r165h5MiRWLVqlcplKEhdXR116tQR1vnKlSu4c+cOypUrVyhuwW/g1atXT/h//nOL/P1Budu3b392+Qpek5KTk4v8Hmj++Irqff6wb3n9+pzrCGNf3ffqD8rYv01Ro2Wmp6eToaGhMK9cuXLC+2UPHz4ULSf/NAAR0c2bN0UjcIWFhSnNr+BQ7QWHqZf7J965u3TpkjBP2TYpOJpj/nnFrZsyRY2WqepyBT8PIBcSEiLabq9fvy4U58OHD7Rq1Sph+lu/c6enp0e3b98uVIb879ytXbtWlJaid3Hc3d2F+cW9c7d9+/YSbbdv5WuOlpm/3hsZGYnegymYj7wuFnznbvz48cIyJXnnbvny5cK8ot65mz17thCuoaGh8H2cvLw8SkhIoLt37xLRp3PL137nLv8ooFWrVhXCc3NzqWHDhgrTe/jwocJ36i5cuCCK//z582LzL2q0zILnjfDwcNGyyt7junv3rsKRXbdt2yY61hSVwcHBgS5cuCB6p7d69eol/hTB+vXrRWnK95umpiY9ffpUFPfmzZsKj+P87za6ubkp3S6qnk8LfgohODhYeIdNbvXq1aI4BT+FkP84yP/5mb1794qWK3j+++GHH4R5NWrUKFS2gu/cVa9evdA2efjwoVDe/McPUPQ7d/nfLyzqPd389angvPwjjea/bn/OdYSxr42f3DH2FRgZGaFfv3745ZdfAAB37tzBpk2b0KlTJ1hYWMDIyEjoQjVp0iQ8ffoUOTk5WL58+Rd1XVGke/fuGD58uFCOOnXqoHnz5rh27Rq2bdumcBk1NTUMGjQI48aNA/DpnQQfHx80btwYN2/eFN25bdiwIapVq/ZVy/y/YMiQIYiPjwcR4c6dO3Bzc0Pr1q1haWmJ169f4+rVqzhy5Ajev38vvH/VokULmJubC91r+vTpg7NnzwqjZcq7XZXEyJEjhdFW3717B3d3d2G0zNTUVOzatQsLFy4U3ouztbUVLd+pUyfUrVsXampq6Nq1KywtLTFkyBDhSXJKSgpq1KghGi1TrkKFCgqfYv3bubi4CP9/9eoVgoKCULduXRw/flzpiHW1a9dGlSpVhFFpo6OjkZycjDJlymDz5s1Ku3a1bNkSFhYWwt373r1748yZMzA0NMTq1atF7xHlFx4ejkmTJuH58+fIycmBt7c3QkNDUa5cOWRmZuKvv/5CYmIinjx5gsOHD8PJyQk2NjZo2rSpMCrm2rVr8ebNG7i7u2PPnj24fv36Z20r+btgV65cQceOHeHq6oo9e/YoHVXy6NGj6Ny5M3x8fODq6gobGxvk5uaKzjdSqRQ6OjolLk9+vr6+qFu3rjDi6Nq1axEVFVXsyI2bNm3ChAkT4Ovri/Lly8Pa2hrv37/Hhg0bhDgFn4Lm5+Hhgbi4ODRt2hRZWVm4cOECgoKCsH//fpXXqVWrVsJ1IP8TzKCgIJibm4vizpo1C2vWrEGjRo3g5OQES0tLvHz5EqtXr1apvKrq0KED1q5dKzxF3LVrF9zc3ISRIU+fPi3qdWJsbIw5c+aI0qhRo4ZwDK1ZswYPHz6ETCYrdiTI/Oet8+fPY8CAAbC3t4dUKsVPP/0EY2Nj9OzZUxiR9cKFC6hUqRJCQkJgZGSEW7duIS4uDmlpaTAyMkJYWBiio6Px4sULAJ/eN4+MjISBgQHWr18v9E6QSCQYOHDgl224InzOdYSxr+57ty4Z+7co7jt3T58+FX1LqXLlysLollOnThUtK/9zc3MTfVPqazy5y8rKEn1LK/+fr6+vaLrgd+5CQ0MVLif/c3V1FX3fiqj0PLkjIlqwYEGR3yeS/+UXHx+v8JtU+vr6oqdwJfnOXVRUVLHfuZP7+PEjWVtbK4x39uxZIV5x37mzsbEp8jt3/+Yndy9evBCNbpf/T9mTOyLl37nT0tIiPz8/YdrJyUlUDmXfuTM2NqbatWsL0w0bNhQtd+LEiSK/c6fouL179y5ZWFgojJf/6YKq2/D27dukr69fKC0NDQ3q3LmzwvQKPq1U9Jd/REFV96Gic8OuXbtE8/OPMqnsyd2UKVOKLV/+EYeV1aNNmzaRmpqaMK9x48aFPqJdlD59+hTKd8eOHYXi9erVq8iyqqmpic4Bn3s+Jfr0rb3izvvApyf+586dK7R8QkKCwnOVqakp1axZU+n57+LFi6JtKf/T1dUV4mRkZBT6VmPBv4LfuTMyMipyu02fPl1Ujq/95I7o864jjH1NamCMfRXm5ub44YcfhOnr168L35UbMWIEFixYgAoVKkBTUxNWVlbo0aMHjhw5UmgEsC+lqamJ/fv3Y9iwYbC1tYVUKoWLiwtmzJghfLdHEXV1dWzevBmxsbFo1qyZ8HK5oaEhatWqhZiYGJw9e1Y0MEpp07dvX1y8eBE9e/ZEhQoVoKOjAw0NDVhaWqJBgwYYN24cLl++LFqmRYsWOHDgAOrXrw+ZTAYjIyO0bNkSp0+fRpUqVT6rHBMmTMCpU6cQFhYGZ2dnaGtrQ0dHB87OzujatSvc3NyEuFpaWti9ezcaN24MAwMDpWnOmDEDCQkJaNOmDWxsbKCpqQk9PT24u7tj3LhxuHLlSrEDSvxbmZiY4Pjx42jdujUMDAwgk8lQo0YNbNu2TXhvVhEvLy+cPHkSQUFB0NPTg56eHho1aoSjR4+ifPnyQryCT1GCg4Nx8OBBNGjQQFQnTp06JXovtuBydevWxfXr1zFu3Dh4enrCwMAA6urqMDIygqenJ3788UckJCSgfv36wjJOTk44deoU2rVrByMjI8hkMtSpUwc7d+4sct2UKVeuHI4ePYrGjRtDR0cHenp6aNCgAQ4ePAh/f3+Fy/j4+GDy5MkICgpC2bJloa+vDw0NDZibm6NRo0ZYuXIlZsyYUeKyKBIUFCTqObB8+XKkpaUVuUxISAjGjx8Pf39/ODo6Cse1tbU1goKCsGPHDvTv37/YvNu1ayd6crV//3506NBB+CZdcQq+W2dpaSka1VGue/fuGDFiBOrXrw97e3toa2tDKpXC3t4eoaGhOHLkiNLRgEtKT08PmzdvRmJiIsLDw1G+fHno6uoK16kmTZpg0aJFuHHjBjw9PQst7+/vj7i4OFSvXh1SqRSmpqbo3Lkzzp8/D1dXV6X5uru7Y8OGDahevTq0tbUVxtHW1sauXbuwefNmBAcHw8rKCpqamjAwMECVKlUwYMAA0ZPT+vXr49q1axgyZAgqV64MHR0dSKVSlClTBp07d8bJkydVGizoS33OdYSxr0lC9AVDkDHGGGOlVFZWFjQ0NKCmJr4P+u7dO7i5uQnd63r06CH67MPHjx8V/mB9+PAhKlWqhDdv3gAAJk+ejNGjR3/DNWCMMfZfw407xhhjTIFLly6hRYsW6Ny5MypVqgRjY2OkpKTgt99+E95nU1NTw4ULF0RPk7Zv346RI0eiY8eOqFChAnR1dXHr1i3MmzcP9+/fB/Dpicnt27eVfhqBMcYY+xw8oApjjDGmRGpqKqZOnapwnlQqxaJFixQOMPTXX38hKipK4XL6+vrYtGkTN+wYY4x9dfzkjjHGGFPgxYsXmDx5MhITE3H//n28fv0a2tracHJygq+vL/r27avw4+7JycmIiYnB0aNH8ejRI7x58wa6urooX748AgIC0K9fP9jZ2X2HNWKMMVbaceOOMcYYY4wxxkoBHi2TMcYYY4wxxkoBbtwxxhhjjDHGWCnAjTvGGGOMMcYYKwW4cccYY4wxxhhjpQA37hhjjDHGGGOsFODGHWOMMcYYY4yVAty4Y4wxxhhjjLFSgBt3jDHGGGOMMVYKcOOOMcYYY4wxxkoBbtwxxhhjjDHGWCnAjTvGGGOMMcYYKwW4cccYY4wxxhhjpQA37hhjjDHGGGOsFODGHWOMMcYYY4yVAty4Y4wxxhhjjLFSgBt3jDHGGGOMMVYKcOOOMcYYY4wxxkoBbtwxxhhjjDHGWCnAjTvGGGOMMcYYKwW4cccYY4wxxhhjpQA37hhjjDHGGGOsFODGHWOMMcYYY4yVAty4Y4wxxhhjjLFSgBt3jDHGGGOMMVYKcOOOMcYYY4wxxkoBbtwxxhhjjDHGWCnAjTvGGGOMMcYYKwW4cccYY4wxxhhjpQA37hhjjDHGGGOsFODGHWOMMcYYY4yVAty4Y4wxxhhjjLFSgBt3jDHGGGOMMVYKcOOOMcYYY4wxxkoBbtwxxhhjjDHGWCnAjTvGGGOMMcYYKwW4cccYY4wxxhhjpQA37hhjjDHGGGOsFODGHWOMMcYYY4yVAty4Y4wxxhhjjLFSgBt3jDHGGGOMMVYKcOOOMcYYY4wxxkoBbtwxxhhjjDHGWCnAjTvGGGOMMcYYKwW4cccYY4wxxhhjpQA37hhjjDHGGGOsFODGHWOMMcYYY4yVAty4Y4wxxhhjjLFSgBt3jDHGGGOMMVYKcOOOMcYYY4wxxkoBbtwxxhhjjDHGWCnwn2/chYeHQyKRFPqbPn06AGDlypWQSCTIycn5LuXz9fVFly5dvkve30Jqair8/f2hp6cHiUSCV69efe8i/edFRUXBzs7uq6YpkUiwdOnSr5omY4wxxhgrmsb3LsD/gqpVq2Lx4sWiMAcHh+9UGrGFCxdCS0vrexfjq4mOjkZycjLi4uKgr68PfX39710k9g0kJSWhbNmy37sYjDHGGGP/Kdy4A6Cvr4/atWt/72IoVKlSpe9dhK8iIyMDMpkMt27dgre3NwICAr5Keux/0//q8cQYY4wxVpr957tlltTbt2/Rp08flC1bFjKZDBUrVsSMGTNARKJ4f/zxB1xcXCCTyeDv749Dhw5BIpEgMTFRiHPr1i3Ur18f2tracHNzw6FDh2BnZ4eoqCghTsFumeHh4fDx8UF8fDxcXFygr6+PZs2aIS0trcT5FyTvgnru3DnUrFkT2tra8PT0xPnz50Xxnj9/ju7du8Pc3BwymQx+fn64fv26MD8lJQUSiQSbNm1Cu3btoK+vjz59+kAikeDIkSNYs2YNJBIJfH19AQDv3r1D7969hfQaNGhQKE+JRIJ58+ahV69eMDExQbNmzYR8tmzZgvbt20NPTw/ly5fHwYMHkZWVhb59+8LIyAhOTk7YuHGjKL3ly5ejdu3aMDQ0hJWVFdq3b48nT56I4jg6OmLs2LGYNGkSLC0tYW5ujv79+yM7O1sULyEhAXXr1oWOjg7MzMzQvHlzUVqJiYnw9vaGTCaDhYUFBg4ciMzMTKX74WuW7/r162jbti1sbGygp6eHGjVqYN++fUrzvXnzJiQSCU6cOCEKv3Pnjqj+HD16FHXr1oW+vj6MjIxQo0YNHDhwQIhfsFtmXFwcPDw8oKOjA1NTU9SrVw+XLl0qchswxhhjjLGS4cbd/5eTkyP85ebmKo33/v17aGpqYsaMGdi7dy/69euH6OhozJo1S4hz9+5dtG7dGq6urti2bRsCAgIQGRkpSicvLw/NmzfH8+fPsX79eowcORK9e/fGmzdvii3rnTt3EB0djSlTpmDp0qU4f/48fvzxxxLlX5ROnTohIiICsbGx0NLSQtOmTfHu3TsAQGZmJho1aoQTJ05gzpw52Lp1K9TV1eHv74/379+L0hk4cCDKlCmD7du3o2fPnkhKSkLVqlXRrFkzJCUlYeHChQA+NVg3bdqEyZMnY/PmzZBIJPDz88PTp09F6U2ePBlZWVnYuHEjxo0bJ4QPGTIElStXxrZt2+Ds7IzQ0FD06dMHWlpaiI2NhY+PD8LCwvD48WNhmdTUVPTq1Qvx8fFYtGgRHjx4gMaNGxdqpK9atQqXL1/GqlWrMGLECCxatAi//fabMD8hIQFNmzaFhYUFNm7ciOXLl8PBwQHp6ekAgGPHjiEgIADlypVDXFwcpkyZgnXr1mHo0KFF7oOvVb6HDx/Cw8MDS5cuRXx8PBo2bIigoCCcPXtWYb4VK1ZE7dq1sXr1alH46tWr4eDggAYNGuDNmzdo3rw5KlSogLi4OGzcuBGtW7fGy5cvFaZ5584dtG/fHv7+/vjjjz+watUq+Pr6it639PX1FRr7jDHGGGPsM9F/XFhYGAEQ/amrqwvzV6xYQQAoOzu70LJ5eXmUnZ1N0dHRVLlyZSF84MCBZGdnJ1pm6NChBIAOHz5MRETbt28nAHTjxg0hzq5duwgATZgwQQhr0KABde7cWVReTU1Nun//vhA2ffp00tDQoNzcXJXzV0S+rnPnzhXCXrx4QTKZjGbPnk1EREuWLCGZTCbK//3792RhYUGzZs0iIqLk5GQCICq3nLe3N4WFhQnTV69eJQAUGxsrhL17945MTU1p+PDhQhgA8vb2FqUlz6dv375C2I0bNwgABQcHC2Fv3rwhDQ0NWrZsmcL1zsnJoXv37hEAOnv2rBDu4OBAlSpVErYrEVFwcDD5+fkJ0zVq1KB69eopTFe+vkFBQaKw2NhYkkql9PjxY6XLfa3y5Zebm0vZ2dnk7+9P/fr1E8InTJhAtra2wvTixYvJyMiIPn78SESf6rmTkxONGzeOiIjOnj1LAOjNmzdKywyAlixZIqyviYlJkevo5+entNyMMcYYY0w1/OQOQLVq1XD27Fnh7/Tp00XGX7x4MSpXrgyZTAZNTU2MGzcOd+7cEeafP38ejRs3hobG/73SGBwcLErj/PnzcHZ2hqurqxDWpEkTqKurF1veChUqwN7eXph2dXVFTk6O8KRLlfyL0qJFC+H/JiYmqFu3rvCk5+DBg6hduzasra2FJ51SqRS1a9cu1JWyadOmxeZ1/vx5qKurIyQkRAjT1dVFs2bNCj1dUpaen5+f8H/5IB75nwLp6+vD3Nwcjx49EsIuX76MJk2awNTUFBoaGsIAOvn3IwA0bNgQamr/d5i4urri4cOHAD49xT137hy6du2qsFwfPnxAUlIS2rZtK3oy7Ovri6ysLFy7dk3ZZvkq5ZOXcejQoXBwcICmpiY0NTVx4MCBQunk1759e2RmZmLHjh0APj19TE5ORrdu3QB82sZ6enro3Lkzdu3ahbdv3ypNCwCqVKmC169fIzw8HAcOHMDHjx8LxTl48CAOHjxYZDqMMcYYY6xo3LgDoKenBy8vL+HP09NTadzNmzejd+/eCAoKwo4dO3DmzBmMHDlS9A7V06dPYWpqKlrOzMxMNK0ojrq6OoyNjYstr5GRkWhaKpUCgPCjWZX8i2Jubl5oWt6l8fnz5zh8+LDQUJD/7dixA6mpqaLlLCwsis0rLS0NxsbGooYoAFhaWhZ6j1BZeoaGhsL/5dsif5g8XL59Xr9+jSZNmuD9+/dYvHgxTp48KbxjVrDhoWhby+Okp6eDiGBtba2wXOnp6cjLy0NERIRoW8m3b8HtJfe1ygcAw4YNw7JlyzB06FAcOHAAZ8+eRUBAgMIGlpyhoSFat24tdM1cvXo16tati3LlygEAjI2NsW/fPmRkZKB169YwMzNDaGioqNtrfi4uLti+fTtu376NwMBAmJmZoUePHsU2ChljjDHGWMnwaJklFBcXh4YNG2LatGlC2M6dO0VxLCws8Pz5c1FYwWlFcXJzc4V3tb6EKvkX5dmzZ6JPQTx79gxWVlYAPj3J8/b2xuzZswstV/CzBhKJpNi8rK2tkZ6ejpycHFED78mTJ4UaTaqkp4pTp07h8ePHOH36NMqUKQPg03uKJWVsbAyJRFKoESpnZGQEiUSCKVOmoFGjRoXmOzo6ftPyAZ/q66BBg9C/f38h7OPHj6KnfYpERESgSZMmuH//PrZs2SKq7wBQt25dJCQk4P3799izZw8GDBiAfv36YevWrQrTCw4ORnBwMNLT07F9+3YMGDAABgYGmDFjxmetF2OMMcYYK4yf3JVQRkaG8HQI+DQwypYtW0RxPD09sX//ftGHz3ft2lUoTnJyMv78808hbO/evUUO5qIqVfIvirw7HgC8fPkSJ0+eRI0aNQB86gJ569YtlCtXTvS008vLCy4uLiUuq5eXF3JzcxEfHy+EffjwAbt370bNmjVLnJ4qMjIyAEC0Hzdv3lzidHR1dVGzZk2sXbtW6fxatWrhzp07hbaVl5eX0qepX6t88rTyp5OamopTp04Vu5yfnx9sbW3RuXNnZGZmol27dgrj6erqom3btujQoYOoLitjbGyMiIgIBAQEqBSfMcYYY4ypjp/clZCfnx8GDRqE2bNno2LFili8eDE+fPggitO/f38sXLgQbdu2Re/evXH58mXExsYCgPDERD7aYJs2bTBp0iRkZGRg4sSJ0NfXL/apSnFUyb8o8+bNg4aGBuzt7TFlyhTo6uoKo22GhYVh0aJF8PX1xeDBg+Hg4ICnT5/i2LFjqFmzpuizDaqoXLky2rRpg549eyI9PR1WVlaYMWMGsrOzMXjw4JKvvApq164NHR0d9OrVC/3798eFCxewYsWKz0pr8uTJCAwMROvWrREREQE1NTXs378fffv2hYuLC3799VcEBASAiBASEgKZTIa7d+8iPj4e69evh4GBwTctn5+fH+bOnQtnZ2eoq6tjwoQJsLGxKXY5iUSCsLAw/Pzzz2jXrp2o++cff/yBFStWICQkBPb29khJScHatWsRGhqqMK3Fixfj9OnTCAwMhJWVFa5fv469e/di4sSJQhz5k01+744xxhhj7PPxk7sS6tOnD/r06YPo6Gh06dIFjo6OGDFihCiOs7Mztm7dihs3biAkJAS7d+/G9OnTAUD4Ma+mpoadO3fCzMwMnTp1QnR0NObNmweJRKLwB39JqJJ/UdauXYtly5ahbdu2yMjIwO7du4Uul9ra2jh8+DC8vb0xatQoNG7cGEOGDMHz589RrVq1zyrvihUr0LZtW4wcORKhoaHIzc3FwYMHVXpn73NYWVlh/fr1+PPPP9G8eXP88ccfSrsTFqdRo0bYvXs3Hj58iNDQUISFhSElJUV4d7J+/fo4dOgQUlJS0LFjR4SEhGDevHmoVq2a0o+wf83yzZ8/H+7u7oiMjMTQoUMxcOBA+Pj4qLRs8+bNAXxq0OdXrlw5EBFGjhyJxo0bY/z48ejatStiYmIUplO1alU8fvwYAwYMQGBgIGbOnInRo0eLGu+5ublf5ak1Y4wxxth/mYSowIez2Dcxa9YsjBo1Ci9fvoSOjo7COBcvXkT16tVx4MABhe9ofev8V65ciYiICGRnZxca4IT990ydOhVz5szBgwcPVBrFlTHGGGOMfV/8C/4bGTZsGGrVqgUTExOcPXsW0dHRCAsLEzWsFixYAJlMBmdnZ6SkpODnn39GpUqVvsrHnFXJnzFFUlJS8Oeff2LmzJno3bs3N+wYY4wxxv4luHH3jbx79w4//fQTnj17BjMzM/zwww/49ddfRXE0NDQwdepU3L9/H1paWmjUqBFmz579VX5Mq5I/Y4pERUVhw4YN8Pf3x/Dhw793cRhjjDHGmIq4WyZjjDHGGGOMlQI8oApjjDHGGGOMlQLcuGOMMcYYY4yxUoAbd4wxxhhjjDFWCnDjjjHGGGOMMcZKAW7cMcYYY4wxxlgpwI07xhhjjDHGGCsFuHHHGGOMMcYYY6UAN+4YY4wxxhhjrBTgxh1jjDHGGGOMlQLcuGOMMcYYY4yxUoAbd4wxxhhjjDFWCnDjjjHGGGOMMcZKAW7cMcYYY4wxxlgpwI07xhhjjDHGGCsFuHHHGGOMMcYYY6UAN+4YY4wxxhhjrBTgxh1jjDHGGGOMlQLcuGOMMcYYY4yxUoAbd4wxxhhjjDFWCnDjjjHGGGOMMcZKAW7cMcYYY4wxxlgpwI07xhhjjDHGGCsFuHHHGGOMMcYYY6UAN+4YY4wxxhhjrBTgxh1jjDHGGGOMlQLcuGOMMcYYY4yxUoAbdyWQl5eH3377DR4eHtDR0YGJiQlatGiB8+fPF4qbmpoKf39/6OnpQSKR4NWrV5+VZ2JiIiQSCe7cuQMASElJgUQiwYEDB5Quc+nSJURFRSEvL08UHh4eDh8fn88qR3G+Zdqfk5dEIsHSpUv/kfL8r0hMTESVKlUglUrh7u6uUl35X7R06VJIJJLvXQyFUlJSEBUVhZcvXxYb19HRERKJBBKJBFpaWqhYsSJ++eUXZGdni+L5+vqiS5cuKpfB0dERY8eOLXHZ83vz5g3GjRsHT09P6Ovro0yZMujZsydevHhRKO6lS5dQr149yGQyODk5Yf78+SrlQURYuHAhKlWqBC0tLdja2uKnn34Sxbly5Qr8/Pwgk8lgZWWF4cOHIysrSxRn1KhRMDU1haurK06cOCGal56eDktLS9y8ebOEW+DzbN++HcuXL/9m6UdFRcHOzk6YXrlyJSQSCXJycr443QsXLnxp8f4xY8eOhaOjY5FxSnrcACU7fv/XvXr1ClFRUbh79+73Lgpj7H8MN+5KIDIyEgMGDEBgYCB27dqF5cuX4+PHj/D29sa+fftEcaOjo5GcnIy4uDgkJSVBX1//HyvnpUuXMHHixEKNu/+SpKQktGzZ8nsX4x/Vs2dPODg44NChQ1izZs33Lk6plJKSgokTJ6r84zA8PBxJSUnYt28fWrRogTFjxmDKlCmiOAsXLsTEiRO/RXGVun//PlauXImQkBDEx8dj6tSpOHjwIJo3b47c3Fwh3rNnzxAQEAADAwPs2rULffv2xcCBA1WqX6NGjcKYMWPQs2dP7N+/HzExMdDV1RXmv3r1Co0aNYJEIsGWLVswfvx4LFq0CIMHDxbi7N69G4sXL8bvv/+OoKAgdOzYUdQ4jo6ORtu2bVGxYsWvtGWK9q0bd9/KxIkT/1WNO1V8znFT0uP3f9mrV68wceJEbtwxxgrR+N4F+LeIjY3FqlWrsGbNGtHdwhYtWqBJkyYICwvD33//Lfx4uXXrFry9vREQEPC9ivyfVrt27e9dhH9UXl4e/v77b4wcOVJ4qpmSkvJ9C8Vga2sr1EVfX19cu3YNa9aswfjx44U4lSpV+sfL5eTkhFu3bkEmkwlhZcuWRe3atXH69GnUrVsXAPDbb79BIpEgNjYWOjo6aNSoEZKTkxEdHY2uXbsqTf/q1auIiYlBQkIC/Pz8FMZZuHAhcnNzER8fDz09PQCfnvYNGDAAo0ePho2NDQ4dOoSOHTuiTZs2CAkJwe+//45bt26hcuXK+Pvvv7FmzRrcuHHjK24ZVpyMjAxRvflevsdxwxhj/wb85E5F8+fPR8WKFdG5c2dRuJqaGiZOnIgnT54gNjYWwKcugUeOHMGaNWsgkUjg6+urMM23b9+iT58+KFu2LGQyGSpWrIgZM2aAiD67nCtXrkRERAQAQFNTExKJBOHh4aI48fHxcHFxgb6+Ppo1a4a0tDTR/OTkZLRt2xZGRkbQ09NDSEgIHjx4oFL+GzZsgLOzM2QyGUJCQvDs2TPR/L1798LT0xPa2tqwtbXFmDFjRE8KAGDNmjVwdXWFlpYWnJ2dMXv27CLzfPv2LXx8fFCzZk2h+2vBbpnyrmyTJk2CpaUlzM3N0b9//0Jd5KZMmQJLS0sYGBigV69emD9/vqiLYFZWFgYNGgQ7OztoaWnB3t4e3bp1U1q20aNHo2bNmsL0jRs3IJFIEBkZKYRt3rwZurq6Qter3NxcREdHw8nJCVpaWqhcuTK2b9+uNI/ExESoq6sjLy8P3bt3h0QiQVRUlMK4v/76K9zd3aGnpwd7e3v06tULb9++FcW5desW6tevD21tbbi5ueHQoUOws7MTpfnu3TuEhYVBT08PNjY2mDt3Lrp06VKoricmJsLb2xsymQwWFhYYOHAgMjMzRXGmT58OKysrGBgYoEePHvj48aPSdZU7fvw4mjVrBgsLCxgaGqJ+/fo4d+6cKM7Vq1fRuHFjGBkZQV9fH1WrVsX69euVplnc8ZiYmIiGDRsCAMqXL1/ksa1MlSpVCh1LBbuXlbTcf/75J6ytrdGrVy+Vzx26urqFfqBXrVoVwKfjX27fvn1o1qwZdHR0hLDQ0FDcvn27yCcGq1evRvny5ZU27ADg8uXLqF27ttCwAwB/f3/k5uZi//79AD4db/K81dXVIZVKhfozcuRIDB06FObm5iqtsyp1Bvh0DnN3d4e2tjasrKzQsWNHZGZmIjw8HKtWrcKJEyeE7rYrV64EoLgbeMHj4fr162jbti1sbGygp6eHGjVqFOrxUZRXr15BJpNh3bp1ovC3b99CV1dXKEtB8vNXjx49hHIDirt85uTkiNYL+HTuHD16NEaPHg0rKyuhUSWRSLBo0SIMGDAAxsbGsLW1xc8//1yoDm7ZsgUeHh7Q1taGnZ0doqOjRXHy8vIwfPhwGBsbw9TUFKNGjVKp10nB40beXV/Z9a2447ek1x1AtfOpIsVdBxW9enDgwAFIJBKkpKQgJSUFTk5OAICAgABIJBJRN9Zz586hcePG0NfXh5GRERo1aiTqulxc/vLuwYmJiahatSp0dHQQFBSEV69e4dq1a/D29oaenh58fX0Lnc++5PcDY+zr4MadCrKzs3Hq1CkEBQUpfBeoTp06MDU1xbFjxwB86hJYtWpVNGvWDElJSVi4cKHCdN+/fw9NTU3MmDEDe/fuRb9+/RAdHY1Zs2Z9dlmDgoKE93GOHz+OpKQkjBs3Tph/584dREdHY8qUKVi6dCnOnz+PH3/8UZj//Plz1KtXDw8ePMDy5cuxbt063L9/H0FBQcVecG/fvo3o6GjExMRgyZIlOH36tKjhc+nSJQQHB8PZ2RlxcXEYNGgQpk+fjjFjxghxdu3ahW7dusHX1xc7duxAx44dMXjwYPz2228K83zz5g0CAwORnZ2NhIQEGBkZKS3fqlWrcPnyZaxatQojRozAokWLROmuXbsWo0ePRkREBGJjY5GdnY2pU6eK0pgyZQo2btyIyZMnY//+/Zg2bRo0NTWV5unt7Y2LFy/iw4cPAIATJ05AW1sbx48fF+KcOHECtWrVgobGpwfpffv2xfTp0zFgwADs2rULjRo1Qps2bXDmzBmFeVSvXl1Ib+zYsUhKSsIPP/ygMO7jx48xbNgw/PHHH5g2bRqOHz8uumGRl5eH5s2b4/nz51i/fj1GjhyJ3r17482bN6J0Bg4ciLi4OEyfPh2LFy/Gpk2bkJiYKIpz7NgxBAQEoFy5coiLi8OUKVOwbt06DB06VIizefNmDBs2DF27dhW2+S+//KJ0e8rdv38f/v7+WLt2LWJjY1G2bFk0aNAAqampQpwWLVpAKpViw4YNiIuLQ/fu3Yt897W447F69epYsGABgE9P8os6tpVJTU0t9l2ikpT7+vXr8PX1RUhIiPCU7XMlJSUBAMqVKyeE3bp1q1CXR/n0X3/9pTStM2fOoHLlyhg/fjxMTEygra2N4OBg3L9/X4iTkZEBqVQqWk5LSwsAhB+i1atXR1xcHFJTU7F+/XpkZWWhQoUKOHnyJM6dO4cBAwaovH6q1Jnly5ejU6dO8PT0RFxcHBYuXAhNTU1kZWVh3LhxaNasGapWrYqkpCQkJSUhKChI5fwfPnwIDw8PLF26FPHx8WjYsCGCgoJw9uxZlZY3MjJCSEgIVq9eLQqPjY2FRCJB27ZtFS4n36+jRo0Syl1Sy5cvx9WrV7F8+XLhGACAX375BVlZWdi0aRO6deuGCRMmYNeuXcL8DRs2oH379sL5fOjQoZg6dSpmzpwpxJk+fTpmzZqF4cOHY+3atbh69arShmpxirq+FXX8lvS6I1fc+VQRVa6DxbG2tsa2bdsAAHPnzkVSUhLi4uIAANeuXUP9+vWRkZGB5cuXY8OGDahZsyYeP35covzfvHmDQYMGYezYsVi+fDlOnTqF3r17o1u3bujRowfWr1+Pe/fuoW/fvsIyX/L7gTH2FRErVlpaGgGgOXPmKI3j7u5OTZo0Eaa9vb0pLCxM5Tzy8vIoOzuboqOjqXLlykL44cOHCQDdvn2biIiSk5MJACUkJChNa8WKFQSAsrOzReFhYWGkqalJ9+/fF8KmT59OGhoalJubS0REY8aMIWtra3rz5o0Q58GDBySVSikuLk5pnmFhYQSArly5IoTt3r2bANClS5eIiKht27bk5uZGeXl5QpypU6eSTCajFy9eEBGRl5cXBQUFidLu3bs3WVtbC2UMCwsjb29vevXqFdWqVYtq1apFr169Ei0DgJYsWSJMOzg4UKVKlYQ0iIiCg4PJz89PmHZ3d6f27duL0vHy8qL8h0lQUBANHjxY6XYo6OXLlySRSOjgwYNC2Xv16kVqamr05MkTIiLy9PSkcePGERHRrVu3SCKRUGxsrCidoKAgatmypdJ8srOzCQCtWLFCCCuuruTk5NDRo0dJIpHQ06dPiYho+/btBIBu3LghxNu1axcBoAkTJhAR0dOnT0kqldKiRYuEOM+ePSNtbW1q0KCBEObt7V1oX8bGxpJUKqXHjx8TEVH16tWpdevWojjVq1enkpyacnNzKTs7m8qVK0cxMTFCeQrWx5JQ9XgsioODA40ePZqys7Pp7du3tHnzZpJKpbRmzRpRvAYNGlDnzp1VLreDgwONGTOGrly5Qubm5tS3b1/RMfU5srOzqUaNGlSzZk1RuIaGhmg/ExFlZGQQAFq3bp3S9CpUqEB6enpUqVIl2r59O23bto3KlStHHh4eQlkHDRpEZcqUoZycHGG5zZs3EwDq0aMHERFlZmZSo0aNCACpq6vT0qVLiYiodu3atH79+s9eX0V1Jjc3l6ysrKhLly5Kl5OfewoqeL4hIurcubPoeFCUv7+/P/Xr108InzBhAtna2grTBc/l+/btI3V1dXr06JEQp0GDBtS1a9ci11dR+RRdJxSdRxwcHMjBwaHQ9QQABQYGisLc3NwoMjKSiD4dQ/b29qL1IyKKiYkhMzMzysrKouzsbLKwsBCdUzMzM8nKyoocHByKXKf8xw2Ratc3ZcevKted4ig6nyqiynVQUT1LSEggAJScnExEys/voaGh5OzsTFlZWZ+d/4QJEwgAnTlzRogzfPhwAkBbtmwRwhYuXEhqampC3fjc3w+Msa/rP/3kjoiQk5Mj/H2PO0uLFy9G5cqVIZPJoKmpiXHjxgkjY34LFSpUgL29vTDt6uqKnJwcPH36FABw8OBBBAYGQiaTCdvF0tISFStWVDgqaH6Ojo6oUqWKMB0YGAipVCrcmT537hxat24teroQGhqKjIwMXLt2Dbm5ubh06RLatGkjSjc0NBRpaWmirh1v3rxBQEAA1NTUsH//fhgaGha77g0bNoSa2v9VeVdXVzx8+BDAp+5IV65cKXQnPjg4WDTt7u6OlStXYvr06bh+/XqxeRobG6NSpUrCU93jx4+jefPmcHV1xbFjx/Du3TtcvnwZ3t7eAIBDhw5BKpUiKChIVDf9/PyK3f6qOHLkCOrVqwdDQ0NoaGigfv36ICL8/fffAIDz58/D2dkZrq6uwjJNmjSBurq6MH316lVkZWWJtpWZmZnoPccPHz4gKSkJbdu2Fa2Hr68vsrKycO3aNeTk5ODy5cto0aKFqIzNmzcvdj2ePXuGH374Aba2ttDQ0ICmpibu3LkjHDsmJiawt7dHnz59EBsbq3AUSEW+9vH4yy+/QFNTE/r6+mjXrh0iIyOLHOFP1XJfvXoVfn5+aNeuHRYsWPDFo4sOGzYMN27cwLJly74oHbm8vDy8f/8eW7ZsQcuWLdGqVSts2LABFy9exMGDBwEAP/zwAx4+fIghQ4bg6dOnOHfuHEaNGgV1dXXhOJVKpThw4AD+/vtvPH/+HN27d8emTZuQl5eHDh064PDhw6hUqRIsLS0xatSoIstUXJ3566+/8Pjx4yK7WX+J9+/fY+jQoXBwcICmpiY0NTVx4MCBEtUvf39/WFtbY+3atQCAe/fu4ejRo9+szHIBAQFCz4KC5ckv/zn11q1bSE1NLXQOaNiwIZ4/f4779+8jNTUVT58+FZ0DpFIpAgMDP6ucxV3fFCnJdaeg4s6nihR3HfxSR44cQYcOHZT2KFE1f3nXYbmyZcsCgKgra9myZZGXlyc8FfyS3w+Msa/nP924O3LkiHCR1dTUFL0HlZ+pqSmkUqmoS1FBqampsLGxKVH+mzdvRu/evREUFIQdO3bgzJkzGDlyZKF3kr6mgt0W5d2i5O85PX/+HCtXrhRtF01NTVy5ckXUfUmRgu++qKmpwcTERDjxp6WlwcLCQhTH0tJSmPfs2TPk5OQUGUfu/v37OH/+PNq3bw8DAwNVVl3huudf77y8PJiamorimJmZiabHjh2LPn36YM6cOXBzc4OTk1OhblIF+fj44Pjx43jy5AmSk5Ph7e0Nb29vHD9+HKdPn0ZeXh7q1KkjlCMzMxM6Ojqi7T9kyBA8evToi25AJCcno1mzZjAxMcGaNWtw6tQp4T1R+XZ4+vRpoW2grq4OY2NjYVr+Q6mobZWeno68vDxERESI1kNeR1JTU/H8+XPk5uYWqjeqvEMVFhaGhIQETJw4EYmJiTh79izc3NyE9VBTU8O+fftgbm6OsLAwWFpaonHjxrh165bSNL/F8RgZGYmzZ8/i0KFDaNOmDX777TfEx8crja9quY8dO4ZXr14J79d+iUWLFmHu3LlYv3493NzcRPOMjY3x+vVrUZi8i2j+OlGQsbExLC0tRTcJvLy8oKenJwyAUqlSJSxYsABLly6FpaUl6tSpg27dusHExARWVlai9JydnWFkZITMzEyMGjUKM2bMQGZmJjp27IjJkyfj8uXL2Lx5M3bs2KG0TMXVGXlD2traupgt9nmGDRuGZcuWYejQoThw4ADOnj2LgIAAld4xlVNTU0NYWJgwWumaNWtga2tb5LuNX0PBc7JccedU4NNNtfznAC8vLwCfzgFPnjwBUPiYV/U9SlXKA6DIbVyS605+qpxPFSnuOvilXrx4UWQdVjX/gjdM5dsyf/jX/P3AGPt6/tOjZXp6eoredyj4Q15OU1MTtWvXxp49exATE1PoLvnp06fx4sUL1KtXr0T5x8XFoWHDhpg2bZoQtnPnzhKl8bWZmJggNDQUw4cPLzSv4I/5ggoOnpKXl4eXL18KP9Ssra0L3UGVX9ytra1hbm4ODQ2NIuPIubm5oXPnzujfvz/s7OwK3XUtKTMzM6ipqQk/SOQKTmtra2PSpEmYNGkS/vzzT8ycORPh4eGoVq0aqlWrpjBtb29vrFu3DkeOHEHlypVhZGQEHx8fzJkzB8bGxqhSpYrQQDUxMYFMJsPRo0cVppX/yWNJ7d+/H7m5uYiNjRUuyu/fvxfFsbCwKLTOubm5SE9PF8UBPm2bMmXKCOH5lzMyMoJEIsGUKVPQqFGjQmVxdHSEkZER1NXVC9WbgtMFZWRkYN++fVixYoXoiUXBRoirqyvi4uKQmZmJw4cPY8iQIejYsaPSO8jf4ni0trYWfszWr18f1atXx6hRo9CiRQulT9tUKXfv3r2RnJyMpk2b4sSJEyhfvvxnlW/37t3o378/YmJiCj1BBT49CSn4DTn5tIuLi9J0XV1dFd4MIyJRHe7Vqxe6du2Kv//+W7g5NmHCBNEgRPnNnTsX1atXh4+PDy5fvozc3Fy0atUKANCqVSskJiYqXA9V6oz8/JaWllaokVscqVRa6Pt8+Y8ZAML7Tf379xfCPn78WOJjOjw8HJMnT8bFixexZs0adO3a9bPOC/L3G7OysoSncgXLLPc5T4ZNTEwAfHrXWdHIli4uLsI5o6TngK+pJNed/FQ5nypS3HUQ+LRviqtPypiamhbZSFQl/8/1Jb8fGGNfz3/6yZ2+vj68vLyEv6IGOvjxxx9x48YNbNiwQRSel5eHCRMmwNLSEqGhoSXKv+CAAnl5ediyZUuJ0lBEnubnPHHw8/PD9evXUa1aNdG28fLyEkbnUiYlJQVXr14Vpvft24esrCzhx22NGjWwfft20UhpW7ZsgUwmg5ubG9TV1eHh4SG8KJ4/jrW1tejjvgDQp08fREVFoXPnzjh06FCJ1zU/DQ0NVK1aFbt37xaF5x8coCBXV1fMnDkTRFTk4BI+Pj549+4d5s+fL4yA5uPjg0uXLmHv3r2iUdEaNmyIjIwMZGZmFtr+8u34uTIyMqChoSHqYrl582ZRHE9PTyQnJ+PPP/8Uwvbu3SsaSU3+ofT82+rFixc4deqUMK2rq4tatWrhzp07CtfDzMwMGhoaqFatWqGnLcU1qDIzM5GXlyc6dk6dOqX0zrCWlhaaNGmC3r17i9arIFWOxy85ttTV1fHzzz/jzz//LLJeqVJuNTU1rF69Gp6enggICBC6wpXExYsX0b59e/Ts2VP0bbn8AgMDsXv3bmRkZAhhW7ZsQfny5eHs7Kw07WbNmuHJkyeizxScOXMG79+/F0bllNPR0UGVKlVgamqKRYsWwc7OTuEnZF68eIHp06fj119/FcLkdQGAMGiRIqrUGRcXF1GXR0Xyj9aZn52dnegc8O7dO5w+fVoUp2D9Sk1NFR0zqipXrhzq1auHn376Cbdu3UJYWFixy2hqahYqt/x8mr/cBw4cKHF5lHFxcYGNjQ1SU1MVngP09fVhb28PCwsL0TkgKyurRKOIloSi47ek1x05Vc6nihR3HQQ+7Zu7d++KRjItuG+UnYsaNmyITZs2FRoJuiT5f64v+f3AGPt6/tNP7koiNDQUYWFhiIiIwLVr1xAQEIA3b95g4cKFOHLkCOLj40Uf6FWFn58fBg0ahNmzZ6NixYpYvHhxkT9QVCW/oz5//nz4+fnB3Ny82BH65AYPHow1a9bA398fffv2hZWVFR49eoQDBw6gU6dOCp/CyFlYWKB9+/aIjo7Gx48fMXToUAQGBsLd3R0AMGbMGHh6eqJ9+/aIjIzE9evXMX78eAwcOFC4yzt+/Hg0b94c/fr1Q8uWLXHs2DH89ttvWLhwocK702PHjsWLFy8QEhKCw4cPw9PTs2QbK58hQ4aga9eucHJyQsOGDbFx40Y8evRIdNe6VatW8PLygoeHB6RSKVatWgUdHR3UqlVLabpOTk6wsbHBsWPH0Lt3byHM0tISSUlJojv5FStWRM+ePdG6dWuMGDEC7u7uwnt57969E/2wLSlfX198+PABvXv3Rvv27XHw4EFhyHm55s2bo0KFCmjTpg0mTZqEjIwMTJw4Efr6+sL2Nzc3R9euXTF8+HBIJBLY2tpiypQpMDExEe2jX3/9FQEBASAihISEQCaT4e7du4iPj8f69ethYGCAYcOGoWPHjhg2bBj8/f2xYcOGYrsmGRkZwcPDAxMnToSuri5ev36N8ePHi+46X7lyBcOGDUP79u3h7OyMp0+fYt68eUV2X1PleCxfvjzU1NSwdOlSdOzYEYaGhkU+wSqoRYsWqFSpEmbOnKnw3cKSlFtTUxNbt25FQEAAAgMDcezYMaGrpKOjI3x9fZWOOvjkyRMEBwfD1tYWnTt3FjUy7OzshB+0vXv3xty5c9GuXTsMHDgQFy9exOLFiwt9yFtDQwPjx48Xvt/Xpk0bVK1aVahHeXl5GDlyJOrXr4/69esD+PQkIiYmRri5If9g+fbt2xW+LzRx4kR07txZePfHxcUFMplM+NzIhg0blK6vKnVGTU0Nv/zyCyIiIiCVStG6dWtkZmYiPj4ec+fOhb6+PlxcXLB27VrEx8fD1tYWTk5OMDU1Fb7BV7VqVVhZWWHGjBmFPjXh5+eHuXPnwtnZGerq6pgwYUKJu/LLRUREIDIyEjVr1lSp/rm4uGDr1q1wd3eHlpYWvLy8UKtWLVhbW+PHH3/EuHHjkJqaKhoJ80upqakhJiYGERERSE9Ph7+/P9TU1HDr1i0kJCQgPj4eGhoaGDRoEMaNGwczMzO4u7t/lXdIlVF2/Jb0ugOodj5VRJXrYMuWLTF+/Hj06dMH7du3x5EjRwo1eK2srGBoaIi1a9fC1NQUurq6qFKlCsaPH48aNWrA398fP/30E/T09HDs2DH4+/vD19dXpfw/l6q/HwqeLxhjX9l3G8rlXyg3N5cWLVpE7u7upK2tTUZGRhQcHEznzp0rFFeV0TKzsrKoX79+ZGJiQqampjRw4EBauHChaKTAzxktk4ho5MiRZGVlRRKJRCiHKiNwERHdv3+funTpQmZmZqSlpUXOzs70ww8/0L1795TmJ0977dq15ODgQNra2tS8eXNhREi53bt3k4eHB0mlUrK2thZGE8xv1apVVLFiRdLU1CRHR0eaOXOmwrzk8vLyqFu3bmRubk43b94kIsWjZY4ZM0aUzpgxYwqNyDZ58mQyNzcnPT09CgsLo0mTJpGhoaEwf9q0aVS9enXS19cnAwMDqlevHiUmJirdLnKhoaEEQLQN5WH5R3cj+lTPYmJiyMXFhaRSKVlYWFBAQADFx8crTV/V0TIXL15M9vb2pKOjQ82bN6ejR48SADp8+LAQ56+//qJ69eqRlpYWubi40N69e8nAwIBmzZolxHn79i117dqVdHR0yNLSkqZNm0bNmzcvNKLn8ePHqVGjRqSnp0d6enpUpUoVGj16tGgkt19//ZUsLCxIT0+PIiIiaO7cucWOlnnjxg3y9vYmmUxGrq6uFB8fLzrmHj9+TJ06dSJHR0fS0tIia2tr6t69Oz1//lxpmqocj0REc+bMIXt7e1JTU1M6GiKR4jpHRLR69WoCQOfPnyci8ah/qpS7YLrp6elUpUoVqlOnDr1//56IiMzNzWnYsGFKyyY/ryj6k4+KKnfx4kXy9vYmLS0tKlOmDM2dO7dQeoqWe/ToEbVp04b09PTIwMCAOnbsKBpF8M2bN+Tv709GRkYkk8mobt26dODAAYXlvXXrFllaWtLLly9F4QkJCVSuXDkyNjamoUOHKl1fouLrjNy6devIzc2NpFIpWVpaUqdOnejjx49E9Glbt27dmgwNDUXH2+vXr6lTp05kZGREdnZ29NtvvxUaLfPhw4fUtGlT0tXVJUdHR1qyZEmhOMWNliknH1V1wYIFRa6z3KFDh4R1yl+fT548Se7u7sL2v3LlisLRMhXV44LnWCLFI4Tu3LmT6tSpQzKZjAwNDcnLy4umTZsmzM/JyaEhQ4aQoaEhGRsb07Bhw2jUqFGfNVqmKtc3ZcdvcdcdRVQ5nyqiynXw999/J0dHR9LV1aWOHTvS1q1bC63Lpk2bqFy5cqShoSHaXmfPniU/Pz+SyWRkZGREjRo1Eq6NquRfsB4SKa6LikYfVeX3g6LzBWPs65EQfcEXsxkr5Vq2bImXL18Ko13+F128eBHVq1fHgQMHlD65zcjIgLOzM3744QdER0f/wyVk+d27dw/Ozs64fft2kV0n2b/Xxo0bERYWhrS0tC9+2sIYY6x04W6ZjP1/Dx8+xNy5c1G/fn2oq6tjx44d2LFjB9avX/+9i/aPWrBgAWQyGZydnZGSkoKff/4ZlSpVEg2BvX//fly9ehXu7u548+YN5s2b99VGb2RfJikpCSEhIdywK4UePXqEv/76CxMmTED79u25YccYY6wQbtwx9v9pa2vj4sWLWLp0Kd6+fQsnJycsWrQIHTt2/N5F+0dpaGhg6tSpuH//PrS0tNCoUSPMnj1bNHCArq4uNmzYgKioKOTk5MDd3R179+7lBsX/gA4dOqBDhw7fuxjsG/j9998xadIk1KpV64vev2WMMVZ6cbdMxhhjjDHGGCsF/tOfQmCMMcYYY4yx0oIbd4wxxhhjjDFWCnDjjjHGGGOMMcZKAW7cMcYYY4wxxlgpwI07xhhjjDHGGCsFuHFXAnl5efjtt9/g4eEBHR0dmJiYoEWLFjh//nyhuKmpqfD394eenh4kEglevXr1WXkmJiZCIpHgzp07AICUlBRIJBIcOHBA6TKXLl1CVFQU8vLyROHh4eHw8fH5rHIU51um/Tl5SSQSLF269B8pT3Fmz56NQ4cOicJU2Y+qWrlyJbZt2/bF6XxrUVFRsLOzE6aV1dPPNXbsWDg6OhYZx9fXF126dPkq+X1P/5Z9zr6uxMREzJw5s1D416rXsbGxKFeuHDQ0NBASElLo+vNvocq5ICEhAe3bt4e9vb3S60VCQgJCQ0Nhb28PPT091KhRA/Hx8SqV4cWLF+jUqRMMDAxgamqKH3/8ERkZGYXizZ07F46OjpDJZKhXrx6uXLkimn/06FFUrFgRZmZmGDt2bKHlIyIiFIZ/roJ1QJHt27dj+fLlhcIdHR2/alkYY5+HG3clEBkZiQEDBiAwMBC7du3C8uXL8fHjR3h7e2Pfvn2iuNHR0UhOTkZcXBySkpKgr6//j5Xz0qVLmDhx4lf70fxvlJSUhJYtW37vYgBQ3Lj7mv6tP/S/Rz1duHAhJk6c+I/l9638W/c5+zLKGndfQ3Z2NiIiIuDr64sjR45g2rRp3ySf/xV79+7FjRs30KxZM6VxlixZgtzcXMTExCA+Ph516tRBSEgIdu/eXWz6bdq0wfnz57FmzRosWLAAW7ZswY8//iiKs2LFCgwePBh9+/bFrl27YGhoiICAALx48QIAkJWVhU6dOqFFixZYvHgx5s+fj7179wrLX7p0Cfv27cOIESM+cyuIqVoHlDXuGGP/G/gj5iqKjY3FqlWrsGbNGtEd0hYtWqBJkyYICwvD33//DV1dXQDArVu34O3tjYCAgO9V5P+02rVrf+8i/M8jImRmZkJbW/t7F+UfU6lSpe9dBFaKZWRkQCaTqRz+v+Thw4d4//49OnXqBG9vbwDAo0ePvnOpvp2YmBjMmDEDwKePwyuyaNEimJqaCtONGjXC7du3MXv27CIbhceOHcORI0dw5swZ1KhRAwCgpqaGjh07IioqCvb29gCASZMmoVevXhg+fDiAT9ctR0dHLF68GKNHj8atW7fw5s0bTJkyBerq6jh48CAOHjyIJk2aAACGDh2KqKior3bzWFEdYIz9+/CTOxXNnz8fFStWROfOnUXhampqmDhxIp48eYLY2FgAn7oEHjlyBGvWrIFEIoGvr6/CNN++fYs+ffqgbNmykMlkqFixImbMmIEv+a78ypUrERERAQDQ1NSERCJBeHi4KE58fDxcXFygr6+PZs2aIS0tTTQ/OTkZbdu2hZGREfT09BASEoIHDx6olP+GDRvg7OwMmUyGkJAQPHv2TDR/79698PT0hLa2NmxtbTFmzBjk5uaK4qxZswaurq7Q0tKCs7MzZs+eXWSeb9++hY+PD2rWrCl0fy3YzUbeXWTSpEmwtLSEubk5+vfvj+zsbFFaU6ZMgaWlJQwMDNCrVy/Mnz8fEolEmJ+VlYVBgwbBzs4OWlpasLe3R7du3ZSWzdHREffu3cPkyZMhkUggkUiQkpIizH/z5g26dOkCPT09ODk5FfqRsWPHDvj6+sLExASmpqZo1qyZqIuU/A7runXrhPQTExMVlmXlypWQSCQ4e/Ys6tSpA5lMho0bNwIAtmzZAg8PD2hra8POzg7R0dGienj16lU0btwYRkZG0NfXR9WqVbF+/XphvqJuTV26dFFa94urp8WVJy8vD8OHD4exsTFMTU0xatQolZ4AFuy+Ju/iW9wxUdDx48fRrFkzWFhYwNDQEPXr18e5c+eKzf/x48fo2LGjcGwFBwfj77//FuYr6wZnZ2eHqKgoYR2U7fN3795hwIABsLW1hba2NlxdXbFkyRKV85d3F96yZQvat28PPT09lC9fHgcPHkRWVhb69u0LIyMjODk5CXVHLjc3F9HR0XBycoKWlhYqV66M7du3F7tN8tu/fz80NDTw9u1bIczS0hLOzs7C9NOnTyGRSHDy5EkhrLj6osjX2labNm1Cu3btoK+vjz59+gj78MCBA2jcuDF0dHTw66+/Avi0f729vSGTyWBhYYGBAwciMzNTVK6EhATUrVsXOjo6MDMzQ/PmzfHkyRNERUVh4sSJePjwobDf5XUiv99++w2GhoaFugAuW7YMenp6ePfuXaFlVq5cCScnJwCfGjASiQQrV65UuN2GDBkCV1dX6OjooGzZshg1ahSysrJEcU6fPo3q1atDW1sbtWrVwvnz5wul+eTJE7Ro0QIymQxly5bFpk2b4OPjU+h69a3OBWpqxf/8yd+wk6tatSqSk5OLXG7fvn1wcHAQGnYA0LJlS2hoaCAhIQEAcOfOHdy9exehoaFCHF1dXTRr1kx4OpeVlQUtLS2oq6sDAHR0dIT68scff+Dx48fo3r17seshd+bMGdSvXx8ymQzm5ubo27cv3r9/D0D1OhAeHo5Vq1bhxIkTQj0sGK+462xxx4G8C39iYiKqVq0KHR0dBAUF4dWrV7h27Rq8vb2hp6cHX19flX+bMPafQqxYWVlZJJVKaciQIUrjmJqaUmRkJBERJSUlUdWqValZs2aUlJRE169fV7hMWloa9e/fn+Li4igxMZHmzp1LhoaGNGPGDCHO4cOHCQDdvn2biIiSk5MJACUkJChM8+nTpzR27FgCQMePH6ekpCS6c+cOERGFhYWRpaUleXp60tatW2njxo1kYWFBrVu3FpZ/9uwZ2draUq1atWjr1q20fft28vDwoKpVq1Jubq7S9Q8LCyMLCwtydXWlLVu20Jo1a8jKyoqaNGkixLl48SKpq6tT27Ztaffu3RQTE0NSqZRGjBghxNm5cycBoN69e9PevXtp9OjRJJFIaNGiRaK8vL29iYjo9evXVKdOHapZsya9evVKiAOAlixZIkw7ODiQnZ0dtW3blvbs2UMxMTGkrq5Oc+fOFeKsWbOGANCIESNo7969FBERQba2tpT/MImKiiIrKytauXIlJSYm0vr164X9rsiFCxfIysqKwsPDKSkpiZKSkujjx4/CfnRwcKAxY8bQ/v37KTIykgDQlStXhOXnzp1LCxcupAMHDtCuXbsoODiYrKys6N27d0REdP36dfLw8KDAwEAh/devXyssy4oVKwgAlS9fnubNm0eHDh2imzdv0vr160lNTY0GDhxI+/bto1mzZpGOjg5Nnz5dWNbR0ZGCgoJo9+7dlJCQQLNnz6YFCxYo3d5ERJ07d6YGDRoI0xMmTCBbW1siKrqeqlKeX3/9lTQ0NOiXX36h3bt3U1BQEFlbW5ODg4PSfUFE1KBBA+rcubMwrcoxoci6detoxowZtG/fPtq3bx+Fh4eTjo4O3b9/X+kyeXl55OXlRfb29rRu3TraunUrubm5kYODA338+JGICh/vcra2tjRhwgQiUr7Pc3NzqUGDBmRkZERz5syhAwcO0KJFi4TlVMlfXi/LlClDEydOpH379lHjxo3J2NiYIiMjaeDAgbR//37q0qULSaVSSktLE8rYs2dPMjAwoFmzZtH+/fupf//+pKamRqdPny5yW+b3+vVrUldXp3379hER0a1bt0hTU5PU1NTo4cOHRES0bds20tbWpszMTCJSrb4U9DW3lZWVFQ0ZMoQOHDhAJ06cEPahvb09TZo0iQ4dOkQXLlygo0ePkoaGBnXr1o327NlDS5cuJTMzM/rxxx+Fcu3fv5/U1dWpZcuWFB8fT/Hx8dSvXz/6888/KTU1lbp3707m5ubCfk9NTSUicb1OT08nbW1tWr9+vWid69WrR926dVO4PZ4+fUqxsbEEgBYsWEBJSUn09OlThfUxMjKSNm/eTImJibRs2TKytbWl/v37i/ahiYkJeXt7044dO2jRokXk4uJCAGjFihVCvEaNGpG1tTWtXbuWtm7dSpUrVyZLS0sKCwsT4nzLc0F+is5fytSrV090XVMkNDSUAgMDC4VXqFCBhg8fTkREf/zxBwEQHUNERL/88gtZWFgQEdHbt29JT0+PNm3aRPfu3SMnJydauXIl5eTkkKurK+3Zs0elMhN9+r2hp6dHvr6+tGPHDlq8eDEZGhpS+/btiUh5HSjozp071KxZM6patapQD+XxVLnOqnIcTJgwgfT19cnd3Z02bdpEGzZsIBMTE2rfvj15eHjQihUrKD4+nhwdHal58+YqbwPG/iu4caeCtLQ0AkBz5sxRGsfd3V10wvf29hZdpIqTl5dH2dnZFB0dTZUrVxbCS9q4I/q/H/HZ2dmi8LCwMNLU1BT9AJ0+fTppaGgIDbcxY8aQtbU1vXnzRojz4MEDkkqlFBcXpzTPsLCwQg2T3bt3EwC6dOkSERG1bduW3NzcKC8vT4gzdepUkslk9OLFCyIi8vLyoqCgIFHavXv3Jmtra6GM8sbdq1evqFatWlSrVi1Rw45IceOuUqVKogZqcHAw+fn5CdPu7u7ChU7Oy8tL1LgLCgqiwYMHK90OisgbcPnJ92OvXr2EsKysLDIxMaGff/5ZYTo5OTn04cMH0tHRodjYWCG8YINFGXm9yL9d8vLyyN7envr16yeKGxMTQ2ZmZpSVlUXPnj0rtG8LKmnjLn958tdTVcqTnZ1NFhYWov2QmZlJVlZWn9W4K+6YKE5ubi5lZ2dTuXLlKCYmRmm8Xbt2EQA6e/asEHb//n3S1NSkhQsXEpFqjTtF60H0fz8WDxw48Nn5y+tl3759hTg3btwgABQcHCyEvXnzhjQ0NGjZsmVE9KkRJpFIRPWS6NPx0rJlS6XbRBF3d3caN24cEX2qI7Vr16Zq1arRpk2biIhoyJAhVK9ePSJSrb4o8jW3VcH9IN+HBY95b2/vQue22NhYkkql9PjxYyIiqlGjhrBuihQ8huQK1oeOHTuKrkd3794liURCBw8eVJr27du3CQAdPny40LoUrI9y2dnZtHr1atLX1xeOl9mzZ5NMJqOXL18K8ebPny9q3F26dIkAiBonV69eJQDCdfNbnwvyU7Vxt337dgJAu3fvLjKev79/oWsJEVGtWrWoR48eRES0du1aAkAZGRmiOIsWLSJNTU1hevHixaSurk4AKCAggLKysmjhwoXUuHFjVVZNMHToUDIzM6MPHz4IYRs3biSJRCLcgFZUBxTJf4M1P1Wus6ocBxMmTCAAdObMGSHO8OHDCQBt2bJFCFu4cCGpqakV+q3D2H/df7pbJhEhJydH+PseA5AsXrwYlStXhkwmg6amJsaNG/dNRyarUKGC0N8fAFxdXZGTk4OnT58CAA4ePIjAwEDIZDJhu1haWqJixYoKRwXNz9HREVWqVBGmAwMDIZVKcfbsWQDAuXPn0Lp1a1E3x9DQUGRkZODatWvIzc3FpUuX0KZNG1G6oaGhSEtLE3W/ePPmDQICAqCmpob9+/fD0NCw2HVv2LChqCuOq6srHj58CADIycnBlStXEBQUJFomODhYNO3u7o6VK1di+vTpuH79erF5Fsff31/4v6amJsqWLSuUCfjURTY0NBSWlpbQ0NCAjo4OPnz48EV1pGnTpsL/b926hdTUVLRt21Z0LDRs2BDPnz/H/fv3YWJiAnt7e/Tp0wexsbHCy/7fgirlSU1NxdOnT9GiRQthOalUisDAwM/Ks7hjQpFnz57hhx9+gK2tLTQ0NKCpqYk7d+4UuV/OnTuHMmXKwMvLSwizt7dH7dq1hWPkSxw5cgQ2NjZo1KjRF+fv5+cn/L9s2bIAIOpiq6+vD3Nzc+GdrEOHDkEqlSIoKEi03/z8/Io9bxTk7e2NY8eOAfjU/dXHxwc+Pj6iMPn7QKrUF0W+5rbKfzwpC//w4QOSkpIKldPX1xdZWVm4du0a3r9/j3PnzqFr164qbinlIiIikJCQgMePHwP41NXdzs4ODRs2/OK0t23bBk9PT+jq6kJTUxPdunXD27dvhePl/PnzqFOnDoyNjYVlCp5Hz58/Dw0NDTRu3FgIc3NzE41w+T3OBUW5e/cuunfvjrCwMKX7/Fvo2bMnnj17hrt372L//v34+PEjoqOjMX36dKSnp6N169YwMTFBo0aNiuyieO7cOTRr1kz07qf8eqxKl3JVFXWdVeU4kJOPTiqn6DxUtmxZ5OXlCfWcMfbJf7pxd+TIEWhqagp/kZGRCuOZmppCKpUq/aEAfPr0gY2NTYny37x5M3r37o2goCDs2LEDZ86cwciRIwu9g/E1GRkZiaalUikA4OPHjwCA58+fY+XKlaLtoqmpiStXriA1NbXItM3NzUXTampqMDExEU68aWlpsLCwEMWxtLQU5j179gw5OTlFxpG7f/8+zp8/j/bt28PAwECVVVe47vnXOy8vr9A7FmZmZqLpsWPHok+fPpgzZw7c3Nzg5OSE1atXq5R/ScuUm5uLFi1a4ObNm5g5cyaOHz+Os2fPwsTERIjzOfJv3+fPnwP4dEHOv7/lP2pTU1OhpqaGffv2wdzcHGFhYbC0tETjxo1x69atzy6DMqqU58mTJwAK17eC06oq7phQJCwsDAkJCZg4cSISExNx9uxZuLm5FbmMovoPfKrfxb3jp4oXL17A2tr6q+Sf/2aJfHsUvIFS8PjJzMyEjo6OaL8NGTIEjx49KtGNMx8fH5w5cwbZ2dk4ceIE6tWrB29vbxw/fhwZGRm4cOGC8CkUVeqLIl9zWymKVzA8PT0deXl5iIiIEJVTXmdTU1ORnp4OIiqyXKpq1KgRbGxssG7dOgCfGnddu3YV3Vj7HElJSQgNDUW1atWwZcsWnD59GnPnzgXwf8fL06dPiz2PPn36FMbGxoXee8sf73ucC5RJT09HUFAQKlasiMWLFxcb39jYGK9fvy4U/urVK6HRK/+3YLz8cfKnJ38fbsqUKQgKCkKVKlUwceJEaGhoIDU1FVWqVMFPP/2ktEyK6rSmpiZMTEy+yvlHrqhrmirHgZyi803BcFXO1Yz9F/2nR8v09PQU3YUteAGS09TURO3atbFnzx7ExMQUukCePn0aL168QL169UqUf1xcHBo2bCgabnjnzp0lSuNrMzExQWhoqDB6V36KXi7Pr+DgKXl5eXj58iWsrKwAANbW1oWehsgvztbW1jA3N4eGhkaRceTc3NzQuXNn9O/fH3Z2doWe9pWUmZkZ1NTUhB8UcgWntbW1MWnSJEyaNAl//vknZs6cifDwcFSrVg3VqlX7ojIUdOfOHVy7dg1HjhxB/fr1AXwaqvpzv5kol7/+mpiYAABWrVqlcCRJFxcXAJ/uvsbFxSEzMxOHDx/GkCFD0LFjR+GpjFQqLTSoQnp6eonLpkp55PukYH0rOP2tZGRkYN++fVixYoVoMB1FP+byU1T/gU/1u1y5cgAALS0tACi0LVXZ56ampkX+SFMl/89lYmICmUyGo0ePKpyvyuAVct7e3vjw4QP2798vjDr84cMHdOnSBQcOHEBOTg7q1q0r5AsUX38L+prbSlmDKX+4kZERJBIJpkyZovBpofw7ZxKJ5Kv80FZTU0NYWBhWr16NOnXq4M6dOwgLC/vidHfs2AFHR0fRMPj5n7YAnxq1BZ8gFTyPWlhYCD/089eN/PH+V84FWVlZaN26NbKysrB9+3bhGC1KhQoVhIa1XGZmJpKTk4U6WaFCBQDAzZs3hRuY8mll9TY1NRVLlizB1atXAXy6QT1p0iTo6urihx9+EK4Tiiiq09nZ2Xj58uVXuaGgClWOA8bYl/tPP7nT19eHl5eX8FfUieXHH3/EjRs3sGHDBlF4Xl4eJkyYAEtLS9GoV6rIyMgQ7jzJ09qyZUuJ0lBEnubnPAH08/PD9evXUa1aNdG28fLyEu4cKpOSkiJcdIBPI4ZlZWUJd1pr1KiB7du3i0Y627JlC2QyGdzc3KCurg4PD49C3+/asmULrK2tRR/ABoA+ffogKioKnTt3/uLvyGloaKBq1aqFvl+0a9cupcu4urpi5syZICL89ddfSuNJpdLP2hfy0e7y15GtW7cWegryuekDn34g2djYIDU1tdD+9vLyKjTEtpaWFpo0aYLevXvjzz//FMLt7OxE2+Ddu3c4ffp0kXkrqqeqlMfe3h4WFhbYsWOHsFxWVlahb01+K5mZmcjLyxPtl1OnThX7ZLtGjRrCE2e5hw8f4tSpU6hZsyYACHU8/7ZMSkoSRrSTU7TPGzZsiEePHuHw4cOfnf/natiwITIyMpCZmalwv5WEvb09ypQpg19//RUuLi4wNTWFvb097OzsEBMTg0qVKglPNkpaf/OX95/cVrq6uqhVqxbu3LmjsJxmZmbQ1dVFzZo1sXbtWqXplORYDw8Px5UrVzBixAjUrl1baEx8iYyMDGhqaorCNm/eLJr29PTEqVOnRDd3Cp5HPT09kZOTg/379wth165dE40k/L9yLoiMjMTly5fxxx9/KL0BXFBgYCBSUlJE9Wfnzp3IyckRPo9Urlw5ODs7i675Hz58wO7du4VPHRQ0evRo/PTTT8INU/ky+f9VpkaNGtizZ4/oKVdcXByIqMTH6Odec1Q5DhhjX+4//eSuJEJDQxEWFoaIiAhcu3YNAQEBePPmDRYuXIgjR44gPj5e+Madqvz8/DBo0CDMnj1b6O5R3AlaFfK7fvPnz4efnx/Mzc1VviM2ePBgrFmzBv7+/ujbty+srKzw6NEjHDhwAJ06dVL6jgrw6W5s+/btER0djY8fP2Lo0KEIDAyEu7s7AGDMmDHw9PRE+/btERkZievXr2P8+PEYOHCgcJd2/PjxaN68Ofr164eWLVvi2LFj+O2337Bw4UKFd//Hjh2LFy9eICQkBIcPH4anp2fJNlY+Q4YMQdeuXeHk5ISGDRti48aNePTokegOfKtWreDl5QUPDw9IpVKsWrUKOjo6qFWrltJ0XVxcsHfvXgQHB0NXVxdVq1ZVqTwVK1aEtbU1hgwZgvHjxyMlJQVTp04t1A3VxcUFW7duxf79+2FiYiIM6a8KNTU1xMTEICIiAunp6fD394eamhpu3bqFhIQExMfH48qVKxg2bBjat28PZ2dnPH36FPPmzRO9lxUSEoLff/8dVatWhZWVFWbMmFHsd72U1dPiyqOhoYFBgwZh3LhxMDMzg7u7OxYsWPDFXc5UZWRkBA8PD0ycOBG6urp4/fo1xo8fX+zd76ZNm8LLywtt2rTBlClToK2tjaioKNjY2AifhbC3t0f16tUxatQo4ZMAv/76a6H9qWifBwYGomHDhmjbti2ioqLg5uaGv//+G48ePcL48eNVyv9zVaxYET179kTr1q0xYsQIuLu74927d7h8+TLevXsnfApAPpx//hs8inh7e2PDhg3o0aNHobCePXsKYarUX0W+x7b69ddfERAQACJCSEgIZDIZ7t69i/j4eKxfvx4GBgaYPHkyAgMD0bp1a0RERAjvFPft2xcuLi7C06pVq1ahcuXKsLGxUfo6QNmyZVG/fn0cPXoUCxcu/KwyF+Tn54c5c+Zg7NixaNCgATZv3oybN2+K4kRERODnn39G8+bNMXLkSDx48ADz5s0D8H9PcKtVq4ZGjRohMjISMTExkMlkGD9+PCwsLIQ4quzbLzkX3Lt3T9Rz5/z58zAyMoK5uTkaNGgA4NOQ/uvWrcOUKVPw6tUrnDp1Soif/1uq5cqVQ4MGDbBs2TIAQL169VC/fn107twZ06ZNQ0ZGBgYOHIjw8HDR+71jx45Fz5494eDggOrVq2PWrFmQSCTo1atXofKeP38eR44cEXULrVevHqZNmwZDQ0PMnDlTKLcigwcPxqJFixAUFIRBgwYhLS0Nw4cPR7t27Ur8/U8XFxesXbsW8fHxsLW1hZOTU7E9e+RUOQ6+hIaGBsaPH4/x48d/UTqM/at9v7Fc/n1yc3Np0aJF5O7uTtra2mRkZETBwcF07ty5QnFVGS0zKyuL+vXrRyYmJmRqakoDBw6khQsXikZn/JzRMomIRo4cSVZWViSRSIRyKBrhKiEhgQBQcnKyEHb//n3q0qULmZmZkZaWFjk7O9MPP/xA9+7dU5qfPO21a9eSg4MDaWtrU/PmzenJkyeieLt37yYPDw+SSqVkbW1No0ePLjTS1apVq6hixYqkqalJjo6ONHPmTIV5yeXl5VG3bt3I3Nycbt68SUSKR8ssOHrdmDFjCo2oNnnyZDI3Nyc9PT0KCwujSZMmkaGhoTB/2rRpVL16ddLX1ycDAwOqV68eJSYmKt0uRJ9GhqtVqxbJZDJhWyvbjwXrzYkTJ6hatWqkra1Nnp6edPLkyUIjJ967d48aNWpEenp6RY50pmwUVaJPn6CoU6cOyWQyMjQ0JC8vL5o2bRoRET1+/Jg6depEjo6OpKWlRdbW1tS9e3d6/vy5sPzr16+pU6dOZGRkRHZ2dvTbb78VO1omkeJ6Wlx5iD6NHDpkyBAyNDQkY2NjGjZsGI0aNeqzRstU5Zgo6MaNG+Tt7U0ymYxcXV0pPj5epWM+LS2N2rdvTwYGBqSjo0PNmjUrNBLhzZs3ycfHh3R0dKhq1ap07Ngxlff527dvqV+/fmRhYUFaWlrk6upKS5cuVTl/ZfWy4PFEVPiYys3NpZiYGHJxcSGpVEoWFhYUEBBA8fHxQpxhw4aRubl5kduIiGjBggUEgFatWlUobPXq1YXiF1dfFPlW26qoESaPHz8u7Dc9PT2qUqUKjR49WjSq5759+6hmzZqkpaVFpqam1KJFC+E8mpWVRZGRkWRqakoAhDqhbMTcmJgY0tLSEo1cqYyqo2VGRUWRhYUFGRgYULdu3Wjr1q2FjpdTp06Ru7s7SaVS8vDwoP379xMA0YjLaWlpFBwcTNra2uTg4ECrV6+mKlWq0IABA0Tl+lbnAvn5sOBf/nNWgwYNFMYp+NPJwcGh0LH/7Nkz6tChA+np6ZGxsTH17dtXNFKl3Jw5c6hMmTKkpaVF3t7ewujSBTVo0IBWrlwpCnvx4gUFBweTnp4e1a9fv8hrNBHR6dOnycfHR6hbvXv3Fj6rQ6T6aJnp6enUunVrMjQ0FI2Cqup1trjjQNG1QtH1S1H9zH9cMPZfJSH6gi9mM1bKtWzZEi9fvhRG6mOMfb6GDRvC19cXEyZM+N5F+U9o0qQJ9PX1ERsb+13LERcXh9atW+POnTvCqIcFpaWlwdnZGfPnzy/Rh7kZY4yJcbdMxv6/hw8fYu7cuahfvz7U1dWxY8cO7NixA+vXr//eRWPsXy83NxfXrl0r9I4W+/quXr2KEydOYP/+/Thw4MA/nv+kSZPg7OwMGxsbXL9+HRMnTkTjxo1FDbsNGzYgPT0drq6uePr0qdDlvG3btv94eRljrDThxh1j/5+2tjYuXryIpUuX4u3bt3BycsKiRYvQsWPH7100xv711NXV/7ERTf/rmjdvjhcvXmD48OGid2P/Kbm5uRg1ahQeP34MfX19BAcHY9asWaI4MpkMv/zyC/7++29IJBLUrVsXq1evVumbpYwxxpTjbpmMMcYYY4wxVgr8pz+FwBhjjDHGGGOlBTfuGGOMMcYYY6wU4MYdY4wxxhhjjJUC3LhjjDHGGGOMsVKAG3eMMcYYY4wxVgpw404FEomk2D8ACA8Ph4+Pz3cu7T/ra63zypUrIZFIkJOT8xVK9e0lJiZCIpHgzp07X5xWVFQULly48BVK9f2kpKQgKioKL1++FIVHRUXBzs7uO5WqeCtXrsS2bdu+S97/69vmf9HXPO6KsnTpUuG8rsx/8Xz/PYwePRpWVlaQSCSYPXu2wjibNm1CSEgILCwsIJFIFH7bT36NKfiXmJhYZP7nzp1Dt27dUK5cOUgkEowdO1ZhvMTERNSsWRPa2tpwcHDAr7/+ivyDkWdlZeGHH36AkZERvLy88Oeff4qWv337NiwsLPD8+fOiNwhjjBWDv3OngqSkJOH/Dx48QGhoKBYsWIDq1at/x1Kx0mLixImws7P7V9enlJQUTJw4EV26dIGJicn3Lo7KVq5cCTs7O7Ru3fofz/uHH35Ay5Yt//F8/82qV6+OpKQk2Nvbf++isH/AyZMnMWXKFMydOxc1atSAo6OjwnhbtmzBgwcP0KRJE6xZs6bINI8fPw51dXVhulKlSkXGP3HiBE6dOgUfHx+lDa+///4bTZo0QcuWLREdHY0LFy5g3LhxUFdXx9ChQwF8umFw8OBBrF+/Hhs2bEBERAROnTolpDFixAgMGzYMZmZmRZaHMcaKw407FdSuXVv4v/yOcaVKlUTh/2YZGRmQyWTfuxiM/afY2dnxkzsVEREyMzNhYGBQas67pcG3vnbcunULANCvXz+oqSnvaLRp0yaoqakhJSWl2MZdrVq1oKGh+k+f/v37Y8CAAQCgtHH566+/wtHRERs2bICamhoCAwPx8uVLTJ48Gf3794eWlhYOHTqEvn37olmzZvDy8oKlpSXev38PXV1dHDt2DJcuXcKGDRtULhdjjCnD3TK/gfj4eLi4uEBfXx/NmjVDWlqaaH5ycjLatm0LIyMj6OnpISQkBA8ePCgyTXkXoA0bNsDZ2RkymQwhISF49uyZEEdRN687d+4U6noikUgwb9489OrVCyYmJmjWrNlnl0uuqHI9fPgQ3bp1Q5kyZaCjo4OqVati7dq1Rab39u1b9OnTB2XLloVMJkPFihUxY8YMUTcXeRetY8eOISgoCLq6uqhYsSJ27NghSis7OxsTJkyAk5MTtLS04OzsjEmTJgnzc3NzER0dLcyvXLkytm/frtJ6p6SkoFGjRkIZ9+3bJ5r/4cMHDB48GLa2ttDS0kLNmjVx7NgxYb6861ePHj1EXXxtbGywcOFCId7w4cMhkUhw9OhRIaxZs2bo2bOnMK3K/isujqrbNL/ExEQ0bNgQAFC+fHlIJBL4+vqK4pw4cQIeHh7Q1dWFj48P/vrrL9H858+fo3v37jA3N4dMJoOfnx+uX78uijNp0iQ4OztDS0sL1tbWaNmyJT58+CDMv3z5MgIDA6GnpwcjIyOEhYXh1atXSsvt6+uLI0eOYN26daIuWp06dUK7du2EeLt374ZEIsHPP/8shE2bNg0VKlQQph8/foyOHTsK2zU4OBh///230ryBwsdreno6IiIiYGVlBW1tbTg7O2PEiBFFpvH777+jYsWKkMlksLCwQOPGjZGamgpAcVfnnJwcSCQSrFy5UghzdHTEmDFjMH78eJibm8PU1BSzZs0CACxcuBD29vYwMzPDyJEjRcef/Jy0ZcsWlCtXDnp6eujWrRuysrJw5MgRuLu7Q19fHyEhIaL9oMr5QF72s2fPok6dOpDJZNi4cWOhbpm+vr4Ku9pFRUUJaSUmJsLb21vYRgMHDkRmZqYov+nTp8PKygoGBgbo0aMHPn78WOR2z0/Zue/mzZuQSCQ4ceKEKL6ic3JBQ4YMgaurK3R0dFC2bFmMGjUKWVlZRZbj/v37aN26NczMzKCjo4OKFSsK+1Fu7ty5qFixIrS0tGBnZ4d+/foJ83JycjBq1CjY2tpCW1sbnp6eSEhIEC3v6OiI0aNHC10l5U+9VDl+FVmzZg1cXV2F83L+bpfh4eGIiIgAAKirq0MikSAlJUVhOkU1/L6UKmlfvnwZfn5+orj+/v549eqV0PMnKysLOjo6ACD8m5mZCSLCkCFDMGXKFGhpaX2DNWCM/ecQK5Hbt28TADp8+HCheWFhYWRpaUmenp60detW2rhxI1lYWFDr1q2FOM+ePSNbW1uqVasWbd26lbZv304eHh5UtWpVys3NVZpvWFgYWVhYkKurK23ZsoXWrFlDVlZW1KRJEyHOhAkTyNbWttjyAiBLS0sKDw+nffv20cGDB79puS5evEijRo2iHTt20KFDh+iXX34hTU1N2rp1qxBnxYoVBICys7OJiCgtLY369+9PcXFxlJiYSHPnziVDQ0OaMWOGsMzhw4cJAJUvX55iYmJo37591Lx5c9LW1qanT58K8bp27UpaWlo0adIkOnDgAK1YsYJ++uknYX7Pnj3JwMCAZs2aRfv376f+/fuTmpoanT59Wul6y/O2t7enX375hXbv3i3knZKSQkREeXl51KRJE7K2tqYlS5bQ3r17qUOHDiSTyej+/ftERJSUlEQAaNSoUZSUlERJSUlERNS2bVvq2LGjkF/dunVJW1ubJk+eLKRtZGREq1atIiLV6pUqcVTdpvm9fv2aFixYQAAoNjaWkpKS6Pr160T0qU7q6+tT1apVae3atbRjxw4qX748eXp6Cst//PiRqlatSi4uLrRu3Tr6448/yN/fn6ysrOjdu3dERLRy5UrS09OjhQsX0pEjRyg2Npa6d+9O6enpRET0119/kb6+PjVr1ox27NhBGzZsICcnJwoODla6D69fv04eHh4UGBgobPvXr1/T/PnzycbGRog3evRo0tbWpoCAACGsRYsWFBERIewLLy8vsre3p3Xr1tHWrVvJzc2NHBwc6OPHj0rzL3i8hoeHk4uLC23atIkSExNpxYoVNGjQIKXLJyYmkoaGBk2ZMoUSExMpLi6OBg4cSDdu3CCiwscUEVF2djYBoBUrVghhDg4OZGtrS506daK9e/fSoEGDCAANGTKEmjRpQrt376apU6cSANExKz/2a9WqRfHx8bR48WLS0tKiXr16kbu7O23atIk2bNhAJiYm1L9/f2G5kpwPypcvT/PmzaNDhw7RzZs3hfp5+/ZtYR/K911SUhLNmjWLANDatWuJiOjo0aOkoaFB3bp1oz179tDSpUvJzMyMfvzxRyGvTZs2EQAaOnQo7d27l8LCwsja2pqKuzyqcu6rXbs29ezZU7TcuHHjyMHBgfLy8pSmHRkZSZs3b6bExERatmwZ2drairahIr6+vlS7dm3avn07HTp0iH777Tf6+eefRfmqqanR0KFDad++fbRhwwbq1q2bMH/IkCGkpaVF06dPp927d1Pr1q1JQ0ODrly5IsRxcHAgS0tLCg4Opj/++IP++OMPlY5fRXbu3EkAqHfv3rR3714aPXo0SSQSWrRoERER3blzh0aNGkUAhP1b1PFERJScnEwAKCEhodA8eZ2ysLAgdXV1qlKlCsXGxhaZXkEODg40ZsyYQuFVqlShAQMGiMLkdVW+PhMmTKA6derQ06dPaerUqeTo6EhEROvWraPatWuXqByMMVYUbtyVUHGNO01NTeGHOxHR9OnTSUNDQ/jxPGbMGLK2tqY3b94IcR48eEBSqZTi4uKU5hsWFkYARBfa3bt3EwC6dOkSEZWsceft7S2K9y3LlV9eXh5lZ2dT9+7dKSgoSAhX9EO04DLR0dFUuXJlIVx+8ZwyZYoQ9uzZM5JIJLR69Woi+vTjDwAtXbpUYflv3bpFEomk0EU+KCiIWrZsqXS95XkPHjxYCMvKyiJbW1saOHAgERElJCQQADp79qxoXQr+EABAS5YsEaU/e/Zssre3J6JPjR8tLS3q3bs3NW3alIiIrl69SgDo77//JiLV9p8qcVTZpkVtD/mPbrkJEyYIP87ktmzZQgCE42TJkiWiBi8R0fv378nCwoJmzZpFRET9+vUT3SQpqHPnzlStWjXKyckRws6ePUsA6MKFC0qXa9CgAXXu3FkUdunSJdG2bdCgAfXu3Zv09fWF9M3MzGjZsmVERLRr165C+/n+/fukqalJCxcuVJp3weO1cuXKNHfuXKXxC4qJiaHq1asrnV+Sxl3lypWFxkZubi5ZWVmRubk5ffjwQYhXs2ZN6tq1qzAtP989ePBACGvXrh0BoHPnzglhw4cPF+pyQcWdDwoeF8rqGdGnempnZ0ddunQRwry9vUXpEhHFxsaSVCqlx48fExFR9erVC9Wt6tWrq9S4K+7ct3jxYjIyMhIaJXl5eeTk5ETjxo0rMu38srOzafXq1aSvr1/kjTZdXV3asWOHwnkvXrwgLS0tGjt2rML5z58/J21tbYqJiRHCcnNzqVKlStSuXTshzMHBgRwcHER1SpXjVxEvL69C+6Z3795kbW0trOeSJUuK3Q/5FdW427t3L02ePJkOHDhAO3fupJCQEAJA27dvVzl9ZY27Vq1aUd26dUVh06ZNIwDCDbkXL15QtWrVCADp6OjQ7t27KSMjgxwcHOjEiRMql4Exxorzn+6WSUTIyckR/vLy8r44zQoVKohe9nd1dUVOTg6ePn0KADh48CACAwMhk8mEfC0tLVGxYkWcP3++yLQdHR1RpUoVYTowMBBSqRRnz54tcTmbNm0qmv6W5crNzcUvv/yCcuXKQUtLC5qamli2bFmxI94tXrwYlStXhkwmg6amJsaNG6dwGX9/f+H/ZmZmMDMzw8OHDwEAR44cgZqaGrp06aIwj0OHDkEqlSIoKEhUF/z8/IpdbwBo0aKF8H9NTU00adJEWO+DBw/CyckJ7u7uQrq5ubnw9fUtNm1vb2+kpqbi3r17OHv2LAwMDBAZGYmTJ08iLy8Px48fh7W1NZydnYW8itt/JdnHRW3TktLV1RW9J+Xq6goAQnoHDx5E7dq1YW1tLZRLKpWidu3aQrnc3d2xe/duREVF4fz586LugfI0WrVqJTqm3d3dYWhoWOKRSKtUqQIDAwMcO3YM2dnZOHPmDPr27QuJRIJLly7h5s2beP78Oby9vQF8Gk2vTJky8PLyEtKwt7dH7dq1S3Rsuru7Y/r06Vi0aBHu3r2rUvyLFy9i8ODBOH78+BeNNNuwYUOhS7CamhqcnJxQq1Yt0ftUZcuWxaNHj0TLubi4wNbWVhRHT08Pnp6eorC0tDRhn5XkfFDwPKVMXl4eunTpAmNjYyxevBjApy7RSUlJaNu2rejY9vX1RVZWFq5du4acnBxcvnxZdBwDQPPmzVXKt7hzX/v27ZGZmSl0az527BiSk5PRrVu3ItPdtm0bPD09oaurC01NTXTr1g1v374VriOKuLu7Y9SoUVi9enWh/XT69GlkZmYqzffatWv4+PEj2rRpI4SpqamhTZs2hepwQECA6J01VY7fgnJzc3Hp0iVRfgAQGhqKtLQ0lV8HKInAwECMHj0ajRo1QnBwMOLi4uDj44Nffvnli9Pu1asXTp48iZiYGLx48QIHDx7EjBkzAPxft04TExNcuHABt27dwtOnT9G0aVPMmTMHNWvWRN26dbFp0yY4OzvDzs4Oc+fO/eIyMcb+u/7TjbsjR45AU1NT+IuMjPziNI2MjETTUqkUAIR3OJ4/f46VK1eK8tXU1MSVK1eEd2WUMTc3F02rqanBxMQEjx8/LnE5LSwsRNPfslwzZszAxIkT0b17d+zZswdnz55FWFhYke+1bN68Gb1790ZQUBB27NiBM2fOYOTIkYXelQEUb3N52i9evICxsbHSdxmeP3+OzMxM6OjoiNZ7yJAhePToUbEN/oLrbm5uLqz38+fPkZycXGibzps3r9ht6u7uDl1dXRw/fhwnTpyAj48PPDw8kJOTg6tXr+LEiRNC40KeV3H7ryT7uKhtWlKqHBOHDx8uVK4dO3YI5YqMjMSkSZOwYcMGeHl5wcbGBtOmTROtf1RUVKE0Xr9+Xey2LkhNTQ116tTB8ePHceHCBchkMri5uaF27drC/jA3N4eLiwsAIC0trdDxBACWlpaF3rctyvz589G8eXOMHz8eZcuWhZubG/bs2aM0vr+/P5YvX47Dhw+jXr16MDc3x/Dhw5GdnV2i9QUAQ0ND0bRUKlUYVrAOqLqc/MYGULLzgaLtqkh0dDSSkpKwdetW4X2m9PR05OXlISIiQlQn5Mdsamoqnj9/jtzcXIXHsSqKO/cZGhqidevWWL16NQBg9erVqFu3LsqVK6c0zaSkJISGhqJatWrYsmULTp8+LfzYL+oY3LRpEzw8PNC/f3/Y2tqidu3aOHPmDIBP50EAsLa2VrisvJ4W3N6K6rCia0dxx29Bz549Q05OjsL88pfnW2vZsiUuXbr0xekEBgZi/PjxGDNmDMzMzNC8eXOMHj0aAGBlZSXEU1NTQ/ny5aGrq4tnz55hxowZmDp1Kh4/fowffvgBGzduxOHDhxEVFYXLly9/cbkYY/9N/+nRMj09PUV3Jf+JIYhNTEwQGhqK4cOHF5pnampa5LL5BykBPt2tfvnypXDx0NLSKvTSfXp6usK0Cn7D6VuWKy4uDp07d8aoUaNEcYoSFxeHhg0bin7A79y5s8hlFDE1NUV6ejoyMzMVNvBMTEwgk8lEA5XkV9zL9AXX/dmzZ8J6m5iYwNnZGZs2bSq0nLyBo4yGhgZq1aqFY8eO4dGjR/D19RWFnThxAj/99JNoPYrbf1+yj78lExMTeHt7K/yGlb6+PoBP+2HIkCEYMmQIUlJSsGTJEowYMQKurq5o3rw5TExM0KFDB3Tt2rVQGjY2NiUuk7e3N9atWwdXV1d4e3tDIpHAx8cHx44dg4GBAerWrSvEtf5/7N13WBRX2wbwe5feO1JEEAuKvSHEgiAqdsUWS1RijcZEsXdsscVurLEbe0VF7DVi7zE27AVUVLAAUs73Bx/zsrCUxVVkc/+ui0t35szMs9N2nz1nzrG3V1qjEhUVle2X+IzMzc0xf/58zJs3D5cuXcK4ceMQEBCAhw8fZpnkdO3aFV27dkVkZCTWr1+PIUOGwMnJSeqhD0jtyCGtpiWr+8HXpMr9IKex5gDgwIEDmDBhAjZv3owSJUpI083NzSGTyTB58mTUrVs303IuLi4wNzeHlpaW0us4N3K69wFAYGAg/P398ejRI2zZskXhnqZMSEgIXFxcsHz5cmna9evXc4zF0dERa9asQXJyMk6dOoXhw4ejadOmePbsmXR9P3/+XGEfpUlL+l68eIGiRYtK06OiojIlhMo+O3K6fjOysbGBtrZ2pusmKipKIZ6CZNy4cQgKCsKjR4/g4uIi9fTp4eGhtHxwcDA6d+4MV1dX7Ny5E6VKlZLK+vr64tixY6hQocJXi5+INMd/OrkzMTFRaEr1Nfj6+iIkJAQVKlSAjo6OSss+ePAA165dk5oB7du3D58+fZLeQ+HChREdHY3o6Gjpw1zZYK5fO664uDiFZObDhw8IDQ2FsbFxluvMuExKSgq2bNmiUlxAam96KSkpWLdundTzWno+Pj6Ii4tDQkKCQk1YboWEhMDb2xtAam9zYWFhaNOmDYDUfTp79mxYWVkpfGHKSEdHR2mNZFpPhFFRUdLAuTVr1sSmTZtw//59hQGUc3P8PucY5yTtWCl7Hznx9fXF6NGjUbx48Uy1fMq4uLhg0qRJWLRoEf799180bdoUvr6+uHHjhsrXs66ubpb7fsyYMdi+fbvURK9mzZr4448/YGpqqtBLabVq1aTmomnNEZ8+fYrTp0+jQ4cOKsUDpH55rly5MiZOnIiQkBA8ePAgxxosOzs7DBgwAGvXrpUGR07rifPWrVuoVKkSgNzfD76kvNwPsvLkyRN07NgRQUFBaNmypcI8IyMjVK9eHXfv3s2219EKFSogJCQEXbp0kabl9oeknO59QOr57ejoiI4dOyIhIUGhJ1Zl4uLiMl2fmzZtylU8QGrPkrVq1cLQoUPRrFkzREdHw9PTE/r6+li7di3GjRuXaZmyZctCX18f27Ztw8CBAwGkPrawbdu2LJOT9O9Ples3LcZKlSph27ZtCvflLVu2wN7e/qsMESKEwPbt26VrQx3MzMykc2HRokXw8PBQOo7erVu3sHXrVty8eVOalr7n3/T/JyJS1X86ucsPQUFBWLNmDfz8/NCnTx/Y2dnh2bNnOHjwIDp06KD0F+Y0tra2aNeuHSZMmID4+HgMGjQIDRo0QMWKFQH873mPbt26oW/fvrh69apCl+f5FZevry+WLl0KDw8P2NjYYPr06Tl+kfP19cWAAQMwe/ZslCpVCosXL87TB17p0qXRtWtX9O3bF5GRkahevTqePXuG8+fPS+vu2bMnAgICMHToUFSsWBHv37/HlStX8P79e0ydOjXb9W/evBnW1taoWLEiFi5ciFevXkljItWvXx8+Pj6oW7cuhg4dCjc3N7x58wZnz56FtbW19CXKzc0NW7duRcWKFaGnpyd9MaxRowbGjx8PQ0NDaYDztGlGRkbS/gVyd/w+5xjnpESJEpDL5fjzzz/Rvn17mJmZSc0Wc9KlSxcsXLgQderUQVBQEJydnfHixQucOHECHh4e6NSpE3r16gUrKyt4enrCxMQEu3fvxtu3b6XEOjg4GNWqVUPLli3RuXNnmJub49GjR9JzemnP+WWUtu/3798PS0tLaQiTtLGwTp48KZ0D1atXR3R0NKKiohR+CGjYsCGqVq2KVq1aYfLkydDX10dwcDAcHByU/qCQlZo1ayIgIABly5ZFSkoK5syZA1tbW5QpU0Zp+eDgYLx+/Rre3t6wtrbG33//jStXrkg1YtWrV4e9vT1+/vlnjB49Go8fP8Yff/yR63i+lLzcD7ISGBgIY2NjNG/eXGFA6LQxBKdOnYp69epBCIEWLVrAwMAA9+7dw86dO7Fu3TqYmppi8ODBaN++PQYPHgw/Pz+sX78+180Cc7r3AanJepcuXTB+/Hi0bds2xwTI19cXc+bMwahRo+Dt7Y1NmzYpJAHKxMTEwN/fH507d0bJkiXx/v17/PbbbyhTpoz0w8CwYcOkONO66Q8NDcWKFStgZWWFvn37YtSoUZDJZHB3d8eyZctw69atHMdey831q8yYMWPQtGlT9O3bF82bN8eJEyewaNEiLFiwQOWhDW7cuIEbN25INaknTpzA27dv4eLiIt1PW7duDQ8PD5QvXx4JCQn4888/ER4erjDMy8OHD1GsWDEsX75cej7x5cuXOHbsGIDUpOvmzZvYsmULjIyMpGdCb9++jc2bN6NatWqIi4vDxo0bsXPnzixbhAwePBgjRoyQzgUPDw9ERERg9uzZsLCwwKFDh6RnAZXFRESUrXzszKVAyqm3zIy9UKb1mHj//n1p2qNHj0SnTp2EtbW10NPTE66urqJ79+7i4cOHWW43bd1r164Vzs7OQl9fXzRt2lRERUUplAsJCRFubm7CwMBA+Pv7i2PHjintLTNjL3RfMq6YmBjRvn17YWpqKuzt7cWkSZPEyJEjhbOzs1QmY89+nz59En379hWWlpbCyspK9O/fXyxYsECh57Sses5zdHQUY8eOlV4nJiaKUaNGCScnJ6GrqytcXV2lHsyESO0Vbvr06cLNzU3o6uoKW1tbUa9ePbFz584s33fatvfv3y+8vb2Fnp6eKFmypAgNDVUoFxcXJ4YPHy5cXFyEjo6OcHBwEM2bNxfHjx+Xyhw+fFiULVtW6OrqKry/2NhYoaWlJXx8fDJN8/X1zRRTbo5fTmVyu0+VmTNnjnBychJyuVx4e3sLIXLfg+vr169Fnz59hIODg9DV1RVOTk6iffv2Uk+EK1asEF5eXsLc3FwYGRlJw42kd/36ddGiRQthbm4uDAwMhJubm/j111/F69evs4z54cOHom7dusLY2DhTTNWqVRP6+voiISEh22lCpA7d0a5dO2FqaioMDQ1Fo0aNlPbomF7GfTNo0CBRpkwZYWhoKCwsLIS/v7+4cuVKlsvv2rVL+Pj4CCsrK6Gvry/KlCkjFi9erFDm1KlTomLFisLAwEB899134urVq0p7y8zYA6CyXkQz3t+U3e+UHe+M13Ze7gdpMp6fzs7OAkCmv/Tn6smTJ6VjbGxsLMqVKydGjBghPn36JJWZOnWqsLW1FcbGxiIwMFDMnTs3V71l5uaeLMT/em7ds2dPtutMExwcLGxtbYWpqano3Lmz2Lp1a6bPkfTi4+NFt27dRIkSJYS+vr6wsbERbdq0yVR+1qxZonjx4kJXV1cULlxYYXiFxMREMWzYMGFvby90dXVF5cqVxb59+xSWz6q3yJyu36ysWrVKlCpVSujo6AgXFxcxc+ZMhfm57S0zrVfejH9dunSRygwfPlyUKFFCGBgYSNdDxuOR1ttm+usj7ZzL+Jf+fL13756oUaOGMDExEUZGRqJ+/friwoULSmM9fPiwKFGihML5J4QQa9euFYULFxa2trYK+0FZTERE2ZEJkaHbOfomde3aFXfv3sXJkyfzOxQiIlLBlClTMGfOHDx58gRaWlr5HQ4REWkwNsskIiL6Ah48eIB///0XM2fORO/evZnYERHRF/efHgqBiIjoSwkODkaLFi1QrVo1pb3UEhERqRubZRIREREREWkA1twRERERERFpACZ3REREREREGoDJHRERERERkQZgckdERERERKQBmNwRERERERFpACZ3udS1a1fUrFlTYdrmzZtRvHhxaGtro0WLFvkTmBooe295FRwcjMKFC0uvL1++jODgYKSkpHyxbWblwYMHkMlkOHjw4Geva/bs2Th8+LDCtLdv3yI4OBj37t377PXnpzp16qBTp06fvZ6Mx16Zo0ePQiaT4e7duwCUHyOZTIY///xTeq1s339Jjx8/hp+fH4yNjSGTyfD27dtcLXf37l3IZDIcPXpUpe0FBwfj4sWLqgeagwcPHiA4OBivX7/OtL2cjtPXNmLECNjZ2UEmk2H27Nn5HY5SX+o4fQuUXWPqvH9mpM51u7i4YNSoUWqI6us4ePAgZDIZHjx4kN+hqI067ikLFiyAv78/zM3NFT4j0ps2bRrKlSsHU1NTmJmZoUaNGjhw4ECO6964cSNatGgBW1vbbM+7y5cvo1atWjAwMEDRokUxf/58hfkxMTEICAiAqakp6tati2fPninMP3bsGIoVK4ZPnz6p8M6J1I/JXR4lJiYiMDAQderUwbFjxzBt2rT8DinPRo8ejSVLlqhlXd27d8euXbuk15cvX8a4ceMyJXfq3ObXkFVyN27cuAKf3H1NlStXRnh4OJycnLIsEx4ejubNm0uvv3ZyN2HCBNy/fx/bt29HeHg4TExMvuj2xo0b98WSu3HjxmVK7jJeo/nt1KlTmDx5MkaOHInw8HB8//33+R2SUl/qOH0LvvY1RppFHfeUNWvW4P3796hbt26WZWJjY9G1a1ds2rQJGzduROHChdG4cWOcP38+23Vv2bIFT548gb+/f5ZlXr58iXr16sHU1BS7d+9Gnz590L9/f6xZs0YqM2nSJDx8+BCbN2+GtrY2goKCpHlCCAwcOBBTpkyBrq6uCu+cSP208zuAgurp06f48OEDOnTogBo1auR3OHkSFxcHAwMDFCtW7LPXlZiYCLlcjsKFC+fqFzx1bFOTCCGQkJAAfX39b3J96mJqagpPT89sy+Q0/0u7ffs2atSogXr16uVrHF9Kbq/Rr+X27dsAgL59+0Iu5++NRPkh7ftAXqjjnvL3339DLpfj6NGj2LZtm9IyEydOVHhdv359FC1aFBs3bkTVqlWzXPfGjRshl8vx4MEDhWQtvUWLFkEmk2Hz5s0wNDRE3bp1cf/+fUyYMAE//PADAODw4cMYNmwYGjRoAAsLCzRu3Fhafu3atdDV1UWbNm1UfetEasdP0jxYuXIlihYtCgCoW7cuZDIZVq5cmanc/v37oa2tjXfv3knTChUqBFdXV+n1ixcvIJPJcOrUKWnali1bUKlSJejr66Nw4cKYMGECchprXiaTYf78+ejRowdMTU1hZ2eH6dOnK5RJa343e/ZsFClSBEZGRgCUN5Fcs2YNSpcuDT09Pbi6umZqKpW2zLp161CyZEno6+vj8ePHCs0zVq5cicDAQACAjo4OZDIZunbtqnSbjx49QkBAAKytrWFoaIhSpUph1qxZCttcuHChFFOxYsWwePHibPdJmtevX6NVq1YwMjKCi4tLppt7cnIyJkyYgKJFi0JPTw9lypTBjh07pPkuLi54+PAhJk2aBJlMJjWpSTsH6tWrB5lMBhcXF2mZK1euoEGDBjA2Noa5uTm6dOmi0Lxv5cqVkMlkOHfuHLy8vGBgYIANGzYojT9tX61fvx6urq4wMDBAixYt8PLly1ytb8aMGXB1dYWenh7c3d2xbt06pduZPXs2HBwcYGxsjB9//BEfP36U5v3zzz9o3bq1NL9atWrYt2+f0vUcPHgQZcqUgb6+PurUqaNQs5mxWaYy6ZtlKtv3ERERcHR0xKRJkxSWE0LA2dkZwcHBWa77/fv36N27N2xsbGBgYABvb29cuHBBYdvHjh3DmjVrIJPJUKdOnSzXtX//fpQuXRoGBgaoW7eu0mZWHz9+RFBQEBwdHaGnpwcPDw+cOHFCYXsA0KNHD+n9pbl//z5at24Nc3NzGBsbo0WLFnjy5InC+u/evYtWrVrBwsICxsbG8PLywt9//42jR4/Cx8cHAFCiRAmF96KsCVVYWBiqVKkCfX19ODo6YuTIkUhOTpbmpy3z999/o1KlSjAyMkLNmjVx69atLPdPmuzuJV27dpXuEVpaWtk2V1u+fDk8PT1hZmYGOzs7tGvXDlFRUTlu/+zZs6hduzYMDAxgY2ODPn364MOHD5neW3oZm9hmd5yyOga53X7atXv58mXp2q1ZsyYePXqEJ0+eSPeRKlWq4Pr16wpxvnr1Ct26dZPOZ19fX/zzzz857pP0srq/pYmNjUWnTp1gbGyMokWLKm1x8aXuzXk55iEhIahTpw4sLS1hZWWFRo0aZbrfpH0WLl26FEWKFIG5uTk6dOiA2NhYhXLnz59H/fr1YWJiAnNzc9StWxc3b96U5ud0nwdSv/S7uLjAyMgIrVq1ylSTrkxuPg/nzp2LUqVKQU9PD4ULF0bfvn2leUlJSRg+fDgcHR2hr6+PKlWqZGq+6OLighEjRkhNot3d3QHk7ZzKeA29efMGgYGBsLOzg76+PlxdXTF06NBs15GXH3bkcjnMzc2RmJj42evet28fGjVqBENDQ2lamzZtcOfOHekz7NOnT9J8Q0NDJCQkAEhNjEeNGoWZM2eq/B6IvghBudKlSxdRo0YNIYQQL168EJs3bxYAxB9//CHCw8PFixcvMi0TExMjtLS0xL59+4QQQty+fVvo6OgIuVwunj59KoQQYtu2bUJfX18kJCQIIYRYt26dkMvlon///mLfvn1i1qxZwtDQUPz+++/ZxgdA2Nvbiy5duoiwsDAxePBgAUBs2LBBKuPt7S0KFSokvLy8xI4dO8S2bdsyvTchhNi1a5cAIHr37i3CwsLEiBEjhEwmEwsXLlTYH9bW1sLd3V1s3LhR7NmzR7x9+1aMHTtWODo6Svtp1KhRAoA4efKkCA8PF3fv3lW6zTp16ghPT0+xY8cOcfjwYbFo0SIxfvx4af5vv/0m9PT0RHBwsDhw4IAYO3as0NLSElu2bMlyn9y/f18AEA4ODmLQoEEiLCxMBAYGCplMJsLDw6VyPXv2FKampmLWrFli//79ol+/fkIul4szZ84IIYS4ePGisLOzE127dhXh4eEiPDxcxMfHi23btgkAYu7cuSI8PFxcvHhRCCHErVu3hImJiWjUqJEICQkR69evF0WLFhVNmjSRtrlixQoBQJQoUULMmzdPHD58WNy8eVPp++jSpYuwtbUVpUuXFlu2bBFr1qwRdnZ2wt/fP8f1zZs3T8hkMjFy5EgRFhYmevbsKQCI0NBQhfPC3t5eeHp6ipCQELFw4UJhbGwsevfuLZXZt2+fmDhxotizZ484ePCgGDx4sNDS0hJnz56VyowdO1aYmJiIYsWKidWrV4utW7cKNzc3UaZMGZGcnCyEEOLIkSMCgLhz547CMTpw4IC0HgBi6dKl2e77YcOGCTc3N4X9dOjQISGTyURERESW50SrVq2Eubm5WLx4sQgJCRHe3t7C1NRUREVFCSGECA8PF+XLlxeNGjUS4eHh4p9//lG6nocPHwp9fX3RuHFjERoaKn777Tfh5OQkAIgjR44IIYRISUkR/v7+wt7eXixdulSEhYWJ77//XhgYGIhHjx5J2wMghg8fLr0/IYR4+fKlcHR0FNWrVxdbt24VO3bsEJUqVRLly5eX9uXz58+Fra2tcHd3F2vXrhX79+8XEyZMEBs2bBAxMTHijz/+EADE5s2bFd5L+mtUCCEuXboktLS0ROvWrUVoaKiYPn260NXVFUOHDs10bMuXLy/Wrl0rQkJCRIkSJUSVKlWy3NdC5HwvuXv3rhg+fLgAoHB8lQkODhbLly8XR44cEdu2bRPfffedKF++vEhJScly+8+fPxfGxsaiTp06IiQkRCxevFiYmZmJdu3aKby39PtDCCHu3LmjcCyzOk7ZHYPcbj/t2q1QoYJYvny52Llzp3BxcRE+Pj6iVq1aYs6cOWLv3r2icuXKoly5ctJy8fHxonz58sLNzU389ddfYs+ePcLPz0/Y2dmJ9+/fZ3tc0svqGku7Np2dncXIkSPF/v37xY8//igAiKtXr0rLf8l7c26OeVp8aebOnSsWLFggDh48KHbv3i2aNGmSaZ94e3uLwoULCx8fH7Fr1y6xdOlSYWRkJIKCgqQy165dEwYGBqJmzZpi06ZNIjQ0VAwbNkw6J3Jznw8PDxcymUz6XB44cKBwcHAQAMT9+/ez3D85fR6OHj1ayOVyMWjQILFv3z6xfv160blzZ2n+wIEDhZ6envj9999FaGioCAgIENra2grHzdnZWRQqVEg0adJE7NmzR+zZsyfP51TGa6hr167Czc1NbNy4URw9elSsWLFCDBgwIMvl08v4GaFMYmKiiI6OFnPmzBGGhobi0qVLuVq3ss+bNDY2NmLy5MkK0549e6bwedmlSxcREBAgoqOjRd++fUWdOnWEEEJMmjRJ4Zomym9M7nIpYzKS8cM/KxUrVhSjR48WQqR+iHt6eooKFSqIjRs3CiFSb8K1atUSQqR+GXRychJ9+/ZVWMf06dOFtbW1+PTpU5bbAZDpi1bbtm1FxYoVpdfe3t7C2NhYvH79Otv3VrVqVdG4cWOFMr179xb29vbSF8suXboIuVyeKSHJeJNP++KSmJiY7TaNjIxESEiI0vcWExMjDA0NxfTp0xWm9+3bV1SoUEHpMkL870YeEBCgMN3Dw0O0aNFCCJGacMtkMrF582aFMo0bNxbNmzeXXmf8ApF+/Rk/KDp27CgqVKggkpKSpGnnzp0TAKQEMG2/pCUx2enSpUumL1ShoaECgLh8+XKW60tKShJ2dnaZzid/f3/h4eEhvfb29hZ6enoKP1AsWLBA6OrqSklPesnJySIxMVH4+fkprHvs2LECgMJx/OeffwQAsWPHDiGE6smdEMr3/c2bNwUAcfr0aYX9lHYtKXPt2jUp2Unz/v17YWVlJYYMGSJNq1GjhujSpUuW6xFCiKCgIGFnZyf9KJM2Lf094cCBAwKAOHfunFQmJSVFlCtXTvz6669Zvl8hhBg5cqSwt7cXsbGx0rQnT54IXV1dsX37diGEEIMHDxZmZmYiOjpaaYxZfUnKeI22bt1alC1bVuEL85QpU4SBgYG07rRjm/6L95YtWwQAKVFVJjf3kqVLlwpVf2dMSkoSDx8+zLR/Mxo0aJCwtrYWHz9+lKZt2LBByGSyLJNdIZTf35Udp5yOQW62n3btbtq0SSqzYMECAUDhR720az7tx4ulS5cq/FAghBAfPnwQtra2YtasWVnuE2Wyu7/16tVLmvbp0ydhaWkpJRpf8t6cUVbHXFns6Zf5+PGjMDQ0VLjuvb29hZWVlULC8vPPPwtXV1fpdZs2bYSrq2uWn7u5uc8HBARk+lwOCAjIMbnL7vMwOjpa6OnpiVGjRimd/+rVK6Gvr69wTJKTk4W7u7to27atNM3Z2Vk4OzsrfDbn9ZzKeA2VKVNGzJ07N8vy2ckpuUv7oQWAMDQ0FLt27cr1urNL7rS1tRV+wBZCiLi4OAFA/PXXX0IIISIiIoSLi4sAIKytrcX58+dFVFSUsLa2zvZ4En1t/+lmmUIIJCUlSX8ZO/1Qhxo1akjNsE6ePImaNWuiZs2aCtPSntm7ffs2Hj9+jNatWyvE5ePjg1evXuHRo0fZbqtp06aZXl+9elWh5yZPT09YWFhkuY7k5GRcvnwZrVq1Upjepk0bPH/+XKFZmKurK9zc3HKxF3JWsWJFDB8+HKtXr87UA1V4eDg+fvyIVq1aZdov165dy7FnqmbNmim8btq0Kc6dOwcgtQ29rq4uGjdurLBuX19fheZ6qjh06BBatmypcH5VrFgRZmZmmTpkaNiwYa7W6eLignLlykmvGzRoAF1dXel9KFvfkydPEBkZqfRYXrp0SaHZnZeXF2xsbKTXTZs2xadPn3D16lUAwIcPHzBo0CA4OztDR0cHOjo6OHjwYKbmTtra2mjUqJH02t3dHcWKFcsU5+dyc3PDd999h9WrVwNIbf64detWdO7cOctlLly4AC0tLYWebY2MjNCoUSOV4zt//jz8/f0VHpzPeP0dOnQIRYsWRcWKFaXzIDk5GXXq1Mnx3Dp06BAaNGgAAwMDadlChQqhVKlS0rLHjh1D48aNYWlpqVLsyt5LQECAQlPDNm3aIC4uTqEZoJGRkcLzkKVLlwaQ+vyxMqrcS3LjypUr8Pf3h5WVFbS1teHs7AwA2TbxPX/+PBo1aqTwLFHae82pE4bcyOkYqLJ9X19f6f9pzySnbxacNi3t/njo0CF4enrC3t5eOkd0dXXh6emZ53uXMn5+ftL/dXR0UKxYMemYf8l7M5C3Y37//n20adMGhQoVgra2NgwNDfHx48dMy3h6ekqPJgCp53P6c/nYsWP4/vvvoaOjo3Q7ubnPnz9/Xunnck6y+zw8c+YMEhISsrzXXb9+HfHx8QrXnVwuR6tWrTLd5+rVqwdt7f91vaCuc6pixYr4/fffsXDhQrV3OFauXDmcO3cO+/fvR/v27dGuXTuFx1q+JFdXV9y5cwe3bt3CkydPUKVKFYwdOxaBgYFwcXHB7Nmz4ejoCFdXV2zevPmrxESkzH86uTt27Jj0RVVHRwc//vij2rdRs2ZNnD17FomJifj7779Rq1Yt1KhRAydPnkRcXBwuXrwoPXv26tUrAICPj49CXGkPCj9+/DjbbaX/cp72OiUlBS9evJCm2draZruOly9fIikpKVO5QoUKAQCeP3+e63WpYuPGjahUqRL69esHR0dHeHp64uzZswD+t19cXV0V9kvr1q2RkpKS6cMvI2X7Je25jVevXiEhIQGGhoYK6x44cCCePXuWp4T/1atXCA4OVlifjo4OYmJiMh3D3O7DjO9BLpfD0tISkZGRWa4v7VgpO5aJiYnSflW2/rTXaesfPHgwli1bhkGDBuHgwYM4d+4c6tWrh/j4eIXlLCwsoKWllWldGeNUh8DAQGzcuBGfPn3Ctm3bkJycjLZt22ZZ/vnz57CwsFD4MgOk7o/053VuREVFZbnP0rx69Qr379/PdB7Mmzcvx2v51atXWLlyZaZlr169Ki0bHR0Ne3t7leJW5vnz57m63s3NzRXKpCW2Gc+BNKrcS3ISExMDf39/fPjwAYsXL8apU6ek59qy2n7aNjJuX0dHB5aWliofc2VyOgaqbN/MzEz6f9q+VTYt7f2+evUKR44cyXSOhISE5Hh+qULZcU8fA/Bl7s15OebJyclo1qwZbt68iZkzZ+LkyZM4d+4cLC0tMy2j7H2lPUMF5Hxsc3Ofz819QpnsPg+jo6MBIMvYsrvvZzznMpZR1zk1f/58NG3aFGPGjEGxYsVQtmxZ7N27N9fLZ8fIyAhVq1ZFvXr18Oeff+K7777L9jnr3LKwsEBMTIzCtLTnJ9P/IK6trY2SJUtCT08PN27cwI4dOzBy5EhcunQJEyZMwLFjx7Bu3Tp069YtV88EE30J/+neMqtUqaLwS5a1tbXat1GjRg18/PgR+/fvl3rh+/jxIzp16oSDBw8iKSkJ3333HQBIv/6uWrVKerg5vZxqydJ3sJH2Wi6XK9zA0/86r4yNjQ20tbUVEkIA0k0q/QdKTutShaOjI9asWYPk5GScOnUKw4cPR9OmTfHs2TNpvxw4cCDTB3LGmJRRtl/SvmBaWlrCwMAAx48fV7psXh7ytrS0xPfffy/1sJWeg4ODwuvc7sOM7yElJQWvX7+GnZ1dlutL2y8vXrxAmTJlpOlRUVHQ0dFRON+V7SMA0vq3b9+OAQMGoF+/flKZ+Pj4TPvnzZs3SE5OVkjwXr58mSlOdWjbti1+/fVX7NmzB6tXr0aLFi1gamqaZXl7e3u8efMGSUlJCgleVFSUyklSoUKFstxnaSwtLeHq6oqNGzdmWj6nrrItLS3Rpk0bDBkyJNM8Kysr6V91JCj29va5ut5Vpcq9JCenT59GZGQkzpw5gyJFigBArmoElL23xMREvH79Wtq+np5ephqmN2/e5CqunI5BbrafV5aWlqhRo4bScQG/9PAd6WMAvsy9OS/H/O7du7h+/TqOHTuG2rVrA0jd37kdqzK9nI5tbu7zublPKJPd52Ha9f/8+XOUKFEi07Lp7/tpnX4Byu9zGT9/1HVOmZubY/78+Zg3bx4uXbqEcePGISAgAA8fPlTrj8JAai3h9u3bP3s9JUuWVOgsB4D0OqvvXoMHD8bIkSNhZmaG48ePw9fXF8WLF0fx4sVRsmRJnDlzJlPtNNHX8J9O7kxMTLLtPlcdnJycUKRIEUydOhVubm6wsrKClZUVChcujOnTp8Pd3V36VcjNzQ0ODg54/Phxts3LsrJr1y6MHTtW4XX58uVVGnNFS0sLlSpVwrZt26Re7IDUHjzt7e1V7u44bdsJCQmZakyy2n6tWrUwdOhQNGvWDNHR0fD09ISBgQGioqIUmgjlVkhICLp06SK93rVrF6pVqwYgtZY0Li4OCQkJ2Q5pkfFX3YzvLT1fX1/cuHFDrefWgwcPcO3aNalp5r59+/Dp06dst1G4cGHY2dlh27ZtUs+JQOqxrFy5skICFh4ejlevXkkJ365du6Crq4vy5csDSO0NLP159PjxY5w+fVr6YSJNUlISQkNDpaZHN27cQEREhLS/80LZvgdSh1Vo1aoVpk+fjjNnziA0NDTb9VStWhXJycnYuXOn1GTp48ePCA0NRffu3VWKqWrVqli3bh0+ffok7ZeM4zz5+vpi9uzZsLKyUviSlZGOjo7ScygkJAQVKlTIslmYj48PFi1ahDdv3ihtap3V+ZlRtWrVsGPHDgQHB0tf9rZs2QIDAwOULVs222Wzo857SVxcHADFpHjTpk05LletWjWsXLkS8fHx0rAg27dvhxBCunYKFy6M6OhoREdHS1+clQ1yrOw45XQMcrP9vPL19cXo0aNRvHhxpYmVKrK6xnLyJe/NeTnmypbZunVrnlpg+Pj4YOPGjVLtXEa5uc9XrVpV6edybmX1eaivr4+1a9di3LhxmZYpW7Ys9PX1sW3bNgwcOBBA6iMo27Ztg4eHR7bbU+c5BaQmj5UrV8bEiRMREhKCBw8eqDW5E0IgPDxcoafqvGrQoAHmz5+vMCTEli1bUKJECYUeztMcOnQIERER6N27tzQtfQ/T6f9P9LX9p5O7r6VGjRpYv349evTokWlaz549pWlyuRzTp09HYGAg3rx5Az8/P8jlcty+fRsHDhzAzp07s93Os2fP0LVrV7Rv3x6HDx/Gpk2bsH79epXjHTNmDJo2bYq+ffuiefPmOHHiBBYtWoQFCxaoXJOV9ovX/Pnz4evrCxsbm0w34rTmN507d0bJkiXx/v17/PbbbyhTpoz0QTB69Gj07t0bERER8PLyQmJiIm7cuIEbN25g+fLl2cZw+vRpDB48GH5+fti4cSPOnTuHkydPAgBKlSqFnj17IiAgAEOHDkXFihXx/v17XLlyBe/fv8fUqVOl9xEWFoYmTZrAyMgI5cuXh52dHczMzLB27VpYWVnByMgI5cqVQ3BwMKpVq4aWLVuic+fOMDc3x6NHjxAaGorg4GDpWSVV2Nraol27dpgwYQLi4+MxaNAgNGjQABUrVsxyGS0tLYwcORK//vorLCwsULNmTWzfvh179+7N1ETG0tISTZs2xYgRI/D06VMMGTIEgYGB0v739fXF3Llz4erqCi0tLYwdOzZTLSSQ+oPJgAEDEBMTA0NDQ4wYMQKlS5fO1XMmWVG279O+vAUGBsLX1xf29vY5frksU6YMWrVqhZ49e+LNmzews7PDjBkzkJiYqDAYbW788ssv+OOPPxAQEIC+ffvi8uXL2LJli0KZ+vXrw8fHB3Xr1sXQoUPh5uaGN2/e4OzZs7C2tpa+eLm5uWHr1q2oWLEi9PT0ULVqVQQFBWHNmjXw8/NDnz59YGdnh2fPnuHgwYPo0KED6tatiwEDBmDlypXw9vbG8OHDYWNjg/Pnz6No0aJo164dSpQoAblcjj///BPt27eHmZmZ0l+gR44ciSpVqqBdu3b48ccf8c8//2DMmDHo37//Zz/Pp657iaenJwwNDdGrVy/069cPFy9exIoVK3JcLigoCAsXLkTjxo0xYMAAPH/+HEOGDEHbtm2l1hFpz69269YNffv2xdWrV5UObaPsOOV0DHKz/bzq0qULFi5ciDp16iAoKAjOzs548eIFTpw4AQ8PD3Tq1AnA/57bSxvWQRll11huWFhYfLF7c16OealSpWBvb4+BAwdizJgxePDgAaZMmZJtjX5WxowZg2rVqsHPzw+//PILjI2NceLECfj5+aFOnTq5us8PHDgQNWvWlD6XDx48iNOnT2e73dx8Hg4bNkz6LPDz88Pbt28RGhqKFStWwMrKCn379sWoUaMgk8ng7u6OZcuW4datWzl+H8jtOZWTmjVrIiAgAGXLlkVKSgrmzJkDW1tbhRYkGZ0/fx4PHjyQhl0ICwuThmhwd3dHTEwMmjVrhh9++AGurq6IjY3F6tWrER4ervDD3urVq/Hjjz8iIiJCekYz7XxMqzU9ceIE3r59CxcXFyk57927N+bOnYu2bduif//+uHTpEhYvXqz0HE5JScHAgQMxbdo06UfrtCR89erVUpP8tGT62LFjqFu3Lg4dOgRvb+9c7UOiz5KPnbkUKHntLVMIIXVJvmrVqkzTVq9enan8rl27hJeXlzAwMBBmZmaiatWqYtq0adluA//fJX9gYKAwNjYWNjY2YsqUKQplvL29RceOHXN8b0IIsWrVKlGqVCmho6MjXFxcxMyZM3NcRgjlPc8NGzZM2NnZSV1CZ1w+Pj5edOvWTZQoUULo6+sLGxsb0aZNm0y9Ty1fvlxUqFBB6OnpCUtLS1GzZk2xfPnyLPdJWs9YGzZsEM2bNxcGBgbCyclJrFy5UqFccnKymD59unBzcxO6urrC1tZW1KtXT+zcuVMqc/nyZVG9enVhYGCg0NPZxo0bRfHixYW2trZwdnaWyl+/fl20aNFCmJubCwMDA+Hm5iZ+/fVXqafSrHoRVSZtX61du1Y4OzsLfX190bRpU4WeLLNb3/Tp04WLi4vQ0dERpUqVEmvXrlWYn3Ze/P7778LOzk4YGRmJLl26iA8fPkhlnj59Kho2bCiMjIyEi4uLWLp0qejYsaPw9vaWyqQd+3379olSpUoJPT09Ubt2bYVez/LSW2ZW+16I1N4nTUxMxODBg3Pcj0IIERsbK3r27CmsrKyEvr6+qFWrVqbeFnPTW6YQQuzdu1eULFlS6OnpCW9vb7F///5M94S4uDgxfPhwaf87ODiI5s2bi+PHj0tlDh8+LMqWLSt0dXUVeo189OiR6NSpk7C2thZ6enrC1dVVdO/eXTx8+FAqc/v2bdGsWTNhYmIijI2NhZeXl/j777+l+XPmzBFOTk5CLpdLx0rZNRoaGioqVaokdHV1hb29vRgxYoTCuZTbHiWVyelektveMnfs2CHdI2rXri31frpixYpslztz5oyoWbOm0NPTE1ZWVqJ3796ZunUPCQkRbm5uwsDAQPj7+4tjx45lem9ZHaecjkFO21d27SrrMVDZtfL69WvRp08f4eDgIHR1dYWTk5No3769Qs+61apVE23atMl2Hym7xrLqWVDZ9fGl7s25OeYZe8v8+++/RYUKFYS+vr6oUqWKOHXqlHB0dBRjx46Vyij7LFR2Hp47d074+voKAwMDYW5uLurWravQQ3RO93khUs//IkWKCAMDA9G8eXOxYcOGbHvLzO3n4axZs0Tx4sWFrq6uKFy4sOjXr580LzExUQwbNkzY29sLXV1dUblyZWlIpqz2W5rcnFMZZbw/DBo0SJQpU0YYGhoKCwsL4e/vL65cuZLl8kL8r1fojH9pxy0+Pl507txZuLi4CD09PWFnZycaNGggTp48qbCetOsp/f5K6+0341/G8/jSpUuiRo0aQk9PTxQpUiTLHj+XL18uDYOQ3vTp04Wtra1wcnIS69evl6anXc+5+b5IpA4yIXIYHZsKBJlMhqVLl6rcvIy+fV27dsXdu3elX7Tpf06fPg0vLy9cv34921+Fif6LPn36BFNTU+zbt481BkRE/xFslklEBU50dDRu3ryJIUOGoFatWkzsiJS4ePEiypYty8SOiOg/5D89FAIRFUy7du1CrVq18O7dOyxcuDC/wyH6Jnl6eqplPD8iIio42CyTiIiIiIhIA7DmjoiIiIiISAMwuSMiIiIiItIATO6IiIiIiIg0AJM7IiIiIiIiDcDkjoiIiIiISAMwuSMiIiIiItIATO6IiIiIiIg0AJM7IiIiIiIiDcDkjoiIiIiISAMwuSMiIiIiItIATO6IiIiIiIg0AJM7IiIiIiIiDcDkjoiIiIiISAMwuSMiIiIiItIATO6IiIiIiIg0AJM7IiIiIiIiDcDkjoiIiIiISAMwuSMiIiIiItIATO6IiIiIiIg0AJM7IiIiIiIiDcDkjoiIiIiISAMwuSMiIiIiItIATO6IiIiIiIg0AJM7IiIiIiIiDcDkjoiIiIiISAMwuSMiIiIiItIATO6IiIiIiIg0AJM7IiIiIiIiDcDkjoiIiIiISAMwuSMiIiIiItIATO6IiIiIiIg0AJM7IiIiIiIiDcDkjoiIiIiISAMwuSMiIiIiItIATO6IiIiIiIg0AJM7IiIiIiIiDcDkjoiIiIiISAMwuSMiIiIiItIATO6IiIiIiIg0AJM7IiIiIiIiDcDkjoiIiIiISAMwuSMiIiIiItIATO6IiIiIiIg0AJM7IiIiIiIiDcDkjoiIiIiISAMwuSMiIiIiItIATO6IiIiIiIg0AJM7IiIiIiIiDcDkjoiIiIiISAMwuSMiIiIiItIATO6IiIiIiIg0AJM7IiIiIiIiDcDkjoiIiIiISAMwuSMiIiIiItIATO6IiIiIiIg0AJM7IiIiIiIiDcDkjoiIiIiISAMwuSMiIiIiItIATO6IiIiIiIg0AJM7IiIiIiIiDcDkjoiIiIiISAMwuSMiIiIiItIATO6IiIiIiIg0AJM7IiIiIiIiDcDkjoiIiIiISAMwuSMiIiIiItIATO6IiIiIiIg0AJM7IiIiIiIiDcDkjoiIiIiISAMwuSMiIiIiItIATO6IiIiIiIg0AJM7IiIiIiIiDcDkjoiIiIiISAMwuSMiIiIiItIATO6IiIiIiIg0AJM7IiIiIiIiDcDkjoiIiIiISAMwuSMiIiIiItIATO6IiIiIiIg0AJM7IiIiIiIiDcDkjoiIiIiISAMwuSMiIiIiItIATO6IiIiIiIg0AJM7IiIiIiIiDcDkjoiIiIiISAMwuSMiIiIiItIATO6IiIiIiIg0AJM7IiIiIiIiDcDkjoiIiIiISAMwuSMiIiIiItIATO6IiIiIiIg0AJM7IiIiIiIiDcDkjoiIiIiISAMwuSMiIiIiItIATO6IiIiIiIg0AJM7IiIiIiIiDcDkjoiIiIiISAMwuSMiIiIiItIATO6IiIiIiIg0AJM7IiIiIiIiDcDkjoiIiIiISAMwuSMiIiIiItIATO6IiIiIiIg0AJM7IiIiIiIiDcDkjoiIiIiISAMwuSMiIiIiItIATO6IiIiIiIg0AJM7IqLPsG7dOlSoUAGGhoaQyWQwNzf/Yts6evQoZDIZZDIZunbt+sW2o4nq1Kkj7bsHDx7kdzh54uLiIr0HVa1cuVJaNjg4WP3BERHRN4HJHREVOB8+fMCsWbNQu3ZtWFlZQV9fH0WLFkWTJk2wdu1afPr06avEER4ejk6dOuHq1auIi4v7Ktv8VgQHB0vJgkwmQ/369TOVuXDhgkIZmUyG+Pj4PG1vx44dCA4ORnBwcIFNztLLuP9kMhm0tbVha2sLf39/7N27N79D/Kbdu3cP/fr1Q6lSpWBkZAQjIyOUKlUKP//8M+7du/fZ6798+bJ0vh09evTzAyYi+kq08zsAIiJV3LhxA02bNs30Be7Bgwd48OAB9uzZg7Jly6JixYpfPJY9e/ZACAEA6NWrFzp27AgdHZ0vtr1KlSrhxIkTAIBChQp9se3kxaFDh/Dw4UM4OztL05YuXaq29e/YsQOrVq0CkFoL5+LiotLy8+bNQ0xMDADA3t5ebXGpU3JyMl6+fIl9+/Zh//792L59O5o3by7N37JlS56TY02yZcsW/PDDD5n2xa1bt3Dr1i0sW7YMa9asQevWrfO8jcuXL2PcuHHS6zp16uR5XUREXxOTOyIqMF6/fo2GDRvi0aNHAAAHBwcMHjwY5cqVw7t373Ds2DGsWLHiq8Xz7Nkz6f/t2rVDrVq1vuj2zMzMULNmzS+6jbxKSUnBsmXLMH78eACptavr1q3L56hS4zAyMkK5cuXyO5QsNWzYECNGjMCrV68QHByMK1euQAiBefPmKSR3VatWzccovw2XLl1Cx44dpdr5Zs2aoUePHgCAP//8Ezt37kR8fDw6deqE4sWLf5UfeYiIvimCiKiAGD58uAAgAAgzMzPx5MmTTGWioqJEdHS09DohIUFMmTJFVKhQQRgaGgoDAwNRvnx5MXnyZJGQkKCwrLOzs7T+58+fi06dOglzc3NhbGws2rZtK633/v37UrmMf97e3kIIIb12dnZW2Ia3t7c07/79+9L0LVu2iBo1aghTU1Oho6MjChUqJGrUqCGGDBkiUlJShBBCHDlyRFq2S5cuCut9/vy56Nevn3B1dRW6urrCzMxMeHt7i02bNimUSx+7t7e3OHv2rKhTp44wMDAQhQoVEiNHjhTJyck5HouxY8dK6zExMREAROHChaVlly1bpjAv7S8uLk5aR1BQkPDy8hJ2dnZCV1dXGBkZiUqVKonp06eLxMTEHPc1AHHkyJFM+/vq1avCz89PGBkZSccj435PSUkRvr6+0rTdu3dLcf3000/S9N9++y3HfZEX6fdf+mO5detWaXrJkiUVlkl/fqa3aNEiUaVKFWFkZCR0dXWFg4ODqFu3rpg6dapUZsWKFdKyY8eOlaZ369ZNmt6oUaNM10Safv36SeW2bdumMG/SpEnSvD/++EMIkXrc2rdvL+zt7YW2trYwMzMTpUuXFl27dhVXrlzJyy4TQgjRtGlTaVs+Pj7StSGEECkpKcLHx0ea37RpU2lely5dMp0zWe2X9Ps541/6fffo0SPRt29fUaxYMaGnpyfMzc2Fp6en2LBhg0LMFy5cEK1btxaFChWSru1WrVqJ8+fPK5TLGMv8+fOFs7OzMDQ0FA0bNhSPHj0ScXFx4pdffhFWVlaZ7kvpHT9+XDRt2lRYW1sLHR0d4eLiIgYMGCBev36d531PRAUDkzsiKjBcXV2lLz/BwcE5lo+Pjxe1a9fO8ota7dq1Fb7Mpv9Sl35baX8dO3YUQqg/uTt69KiQy+VZrjMt0ckqubt3756ws7PLcvmhQ4dKZdPHbm9vLwwMDDKVX7p0aY77Nn1y0rVrV6GjoyMAiD179gghhKhevboAIHr27Jllcqenp5dlzIGBgTnua2XJnZmZmbCyssp0PJTt9/v37wtjY2PpOL1//16cPHlSyGQyAUB4eHiIpKSkHPdFXmSV3G3ZskWaXqdOHYVllCV3q1evznLfODo6SuWUJTHpfyypW7euwrHJ6PTp01LZDh06KMyrVKmSACB0dHTEq1evRGJioihZsmSWceXm/FLm48ePQldXV1pP+oQ8za5du6T5urq60ntSd3J36dIlYWlpqbRM+uO5c+dO6drI+KejoyN27typNJZixYplKl++fHnRokWLLO9LaZYuXZrl/cTNzY0JHpGGY4cqRFQgvH//XuE5u9w0gZw9ezaOHz8OAHBycsK6deuwfv16FClSBABw/PhxzJo1S+mycXFxWLt2LRYsWABdXV0AwIYNGxATEwN7e3ucOHECDRs2lMrPnTsXJ06cwLx581R+b7t27UJKSgoA4LfffsOhQ4ewYcMGjBo1Cu7u7jn2jtinTx9ERkYCSH02KCQkBDNnzoS+vj4AYOrUqThz5kym5Z4/f47KlStj586d+OWXX6TpixcvVin+QoUKoUmTJgBSm8Zdu3ZN2l737t2zXG7kyJFYv349wsLCcPToUWzbtg3Vq1cHkNq745MnT7Ld1ydOnEClSpUU1hkTEwMtLS0sWbIE+/bty3b7Li4umD59OgDg4cOHGD58OHr27AkhBPT19bFq1SpoaWmptC/y4sWLFzh58iR27NiBCRMmSNN79eqV47I7d+4EAGhra2PRokU4dOgQ/vrrLwwcOBBFixbNcrk5c+Zg8uTJAFKvpZCQEOl8UaZ69eooXrw4AGD37t1ISEgAkNqxyaVLlwAA/v7+sLKyws2bN3H79m0AgJ+fH8LCwrB7927MmzcPDRs2hJ6eXo7vS5m7d+8qdJakrMll+mmfPn3C3bt3Vd7Oli1bMGLECOl1YGCgdL79+OOPEEKgc+fOeP36NQCgbNmyWLNmDfbs2YMxY8bAysoKQGqT4G7duiExMREA8NNPPyE0NBR9+vQBACQmJqJbt2748OFDphgiIiIwZMgQ7Ny5E46OjgCAq1evYvfu3fj999+xbt06GBgYAPjffQkAnj59ip9//hkpKSkwMTHBvHnzsG/fPgQGBgJIfS4x/XsjIg2U39klEVFuPHnyROEX6H///TfHZcqXLy+V37VrlzQ9/a/7FSpUkKan/8V++/bt0nR/f39p+uXLl6XpWdUGCKFazd2wYcOkaZs3bxavXr1S+n6U1dxFR0dLNU16enoKyw4cOFAq/+uvvwohFGvCdHV1RWRkpBBCiOTkZGFoaCgACHNz8xz3bfqap6FDh4o9e/ZItRFt27aVahrS7wtkqLk7efKkaN68ubCzsxPa2tqZahnS12pkt68zbmP//v2Z5mfVHFYIIfz8/DJte8aMGTnug/j4eHHixAmlf1FRUbnefxn/bG1txapVqzIto6zm7vvvvxcAhKGhoTh48KCIiYlRur30tUKVK1eWzpnq1auL2NjYHN9rxphDQkKEEEJMnTpVmpbWHPHmzZvStB9++EFERETkqqlvTk6ePKmwn5Q1IY2Pj1coc/LkSSGEajV32U0XIrXWLm2eqampePHihdJ4t23bJpWrUqWKwrwqVapkutek3+Z3330nle3bt6/C/kzTuHHjTPelWbNmSdMCAwOl8/H48ePS9W1mZqaW40FE3ybW3BFRgWBmZqbwOn1nJllJqz0AINUIAYCHh4fSMul5e3tL/0/7JR4A3r59m+N2VdWxY0epNqNNmzawtrZGoUKFEBAQgIMHD2a77J07d6QeO4sVK6YQa07vs1SpUlKvm3K5HBYWFgDy9h79/f3h5OSExMREbNq0CQCkji6UOXv2LHx8fLBz505ERkYiKSkpU5m8xKGvr4969eqptMyyZctgZGQkvfb09ET//v1zXO758+eoVauW0r/Q0FBVQ5e8fPkS//zzT67KBgYGQiaT4ePHj/Dz84OZmRmcnJzQqVMnnD9/XukyFy9ehBACJiYm2LNnD0xMTHK1rU6dOkn/37Jli8K/JiYmaNasGQCgRIkSUs36mjVrUKxYMRgbG8PLywvTp0+Xav1UZWpqqvD65cuXmcpknJbxvqEOGe8rNjY2uSqXXk7XZvr5lpaW0v/Td6pjbW0t/T/tWkm/rhUrVkjnY+3atfHx40cAqbXbubl/ElHBxOSOiAoEY2NjuLq6Sq///vvvPK8rN4NApyU6QGqTtzRpiVRuJScnK7x+9epVpjJly5bFhQsX8Msvv6B69eowMzPDixcvsH37djRo0ACnTp1SaZtpcnqf6d8joPg+VSWXy6WmX0BqkpU+Gcho0aJFUnO1Jk2aIDQ0FCdOnEDnzp2lMmlNVVVha2ur8jIPHz6UvvgCwKNHjxAbG6vyevKqS5cuSExMRFhYGAwNDSGEwLRp07Br164cl61fvz7+/vtv9OjRA5UqVYKhoSGePHmCv/76C97e3krHfEtravru3TuMGTMm13EWL15cSlJCQkJw9+5dnDt3DgAQEBAgNROUy+UIDQ3FjBkz4O/vjyJFiiAuLg6nT5/GkCFD8Ouvv+Z6mxm3n9ZEGkgdriCjK1euSP/X1dWVmpKmvxbSX5PKrsevIadrM31SKpf/76taxgQ3jar3JWVNQYlIMzC5I6ICo127dtL/Z86cqfTX5xcvXkjPwpQsWVKafvbsWen/6Z8/S19GndK+nEVHR0tJzIMHD3Dz5s1MZYUQKFOmDObMmYPTp0/j7du3Uo1ISkoKduzYkeV2ihcvLn1RjIiIQHR0tDTva7zP9H788Ufpi2irVq1gbm6eZdmnT59K/588eTIaNmyImjVrIioqSmn59F9ws0v6cpO4p/fx40cEBgZCCCElPc+ePctVzZ2LiwtEasdkmf66du2qUhza2tpo0KABhgwZIk0bPXp0jssJIeDl5YUlS5bg4sWLePfuHWbMmCG9t7CwsEzL/PTTT1LSs2DBAkyZMiXXcXbs2BFAak1R2rNjgGKtnhACxsbGCAoKwt69e/Hw4UO8ePFCegZw27Ztud5eegYGBqhfv770etasWQpJjRBC4RnaBg0aSM8Rpk+W0p5PBaB0/wDZn28Z7ytZJYhZ3X8yvlbntZl+XWPHjlV6bn748AFubm5q2yYRfVs4zh0RFRiDBg3CX3/9hUePHuHt27eoXr06Bg0aJI1zd/ToUaxYsQJHjx6FpaUlOnTogKtXrwIA+vbti3fv3kEmk2HYsGHSOtu3b/9FYi1evDguXLiAuLg4dOjQAbVr18aCBQsy1eQBwLRp03D06FE0btwYRYoUgZGREfbt2yfNz64Zm5WVFRo0aICwsDAkJCSgbdu2GDBgACIiIrBgwQKp3Jd6n+k5Ozvjjz/+QGRkZI4DSKcf7Hzy5Mno0qUL9u7dq/C+00tfy7h27VpoaWlBS0vrs8f9Gzp0KCIiIgCkdsCzc+dOHDx4EKtWrUKbNm3QuHHjz1q/qvr164dp06bh48ePuHLlCvbv36+Q0GT0yy+/4Pnz56hXrx6cnJygra0tDXQPKD93rKyssGfPHnh6euLNmzcYMWIEChcunG1Na5rvv/8eQUFBSEpKwoEDBwCkjjfp6+srlXn69Cn8/PzQtm1buLu7o1ChQrh//77UZDJ9TMHBwdJg4StWrMgxKQ4ODsa+ffuQmJiIQ4cOISAgAN26dYNMJsOyZctw6NAhAKm1dsHBwdJyacksAIwaNQpv377FqVOnpPIZpT/fwsLCULt2bejr66NcuXKoUKECypYti+vXryMmJgZ169bFkCFDYGlpiQsXLuDNmzeYMWMG6tevDysrK0RHR+P8+fP4+eef0bhxY4SGhkpNZq2trVVuRpyd1q1bY9iwYUhISMCUKVMgk8ng5eWFjx8/4v79+zhy5Aji4uKkY0dEGuhrPuBHRPS5/vnnH6XDFKT/u3TpkhAitXOFWrVqZVkuu6EQ0suqM4bsOvlYvHhxpu0ZGxuLwoULZ+rYY8KECVnGKJfLpU4hshoKISIiIk9DIaQNE5DT+1cmY4cq2UkfS1qHKmfOnJE69Uj7k8lkwsvLS3q9YsUKaR3pO8FJ/5dxGxk7sEmjrEOVI0eOSDF4eXmJ5ORkce/ePWFkZCQACAcHB/HmzZsc90VeZDUUghCKHWj4+flJ05Udn/Tj1GX8MzAwEBEREUII5R2EHDlyROqmX0dHRxw4cCBXsTds2FBhO0FBQQrzHz9+nO312atXL6X7If3xzs769euFvr5+luvX19fPNNbcq1evpGEv0v+VLl06034RQoiXL18qHaoj7Tq/cOGCMDc3V7r99Mdzx44deRoKIX0sWe2jrO4/2Q2FoOy6JyLNwmaZRFSguLu74+rVq5g5cyZq1qwJS0tL6OrqwsnJCQ0aNMCqVavg7u4OANDT08OBAwcwZcoUlC9fHgYGBtKv75MnT8b+/fsVnuFRp+7du2P48OGwtbWFgYEBfH19ceLECRQrVixT2UaNGqFXr14oW7YsLCwsoKWlBUtLS9SvXx/79u1DjRo1st2Wq6srLl68iJ9//hlFixaFjo4OTE1NUbt2bWzcuFGlZndfi4eHB7Zv345y5cpBX18fZcqUwebNm7OspWrSpAl+//13FCtW7LOeDUzz4cMHqVt7HR0dLF26FHK5HEWLFsWkSZMApDbPTD9ExNfSv39/qVngwYMHpaEGlOnYsSO6dOkCNzc3mJmZQUtLC7a2tmjRogVOnDih8JxqRnXq1JGGvUhMTESrVq0UnlnLSsYavoyvLS0tMXbsWHh7e8Pe3h46OjowMDBA+fLlMXHixDwNF5Le999/j+vXr6NPnz4oWbIkDAwMYGBggJIlS6JPnz64du2aQhNuILW2cseOHShfvjx0dXVRrFgx/PHHHwrNYNOztrbGjh07UKlSJelZwvQqV66MK1eu4KeffoKrqyt0dXVhbm4OT09PhWE7mjdvjvDwcLRu3Rq2trbQ1taGjY0NAgICcOrUKakTGnXq3r07jh8/joCAABQqVAja2tooVKgQPDw8MHr0aIUafSLSPDIhVHwKl4iIiIiIiL45rLkjIiIiIiLSAP/ZDlVSUlLw7NkzmJiYqNy7GhERERER0dcghMC7d+/g4OCg0JuvMv/Z5O7Zs2dwcnLK7zCIiIiIiIhy9PjxYxQuXDjbMv/Z5M7ExARA6k7KalBQIiIiIiKi/BQbGwsnJycpf8nOfza5S2uKaWpqCgE2yyQios9nZvq/D963Me/yMRIiItIUaRVRuXmUjB2qEBERERERaQAmd0RERERERBqAyR0REREREZEGYHJHRERERESkAZjcERERERERaQAmd0RERERERBqAyR0REREREZEGYHJHRERERESkAZjcERERERERaQAmd0RERERERBqAyR0REREREZEGYHJHRERERESkAZjcERERERERaQAmd0RERERERBqAyR0REREREZEGYHJHRERERESkAZjcERERERERaQAmd0RERERERBqAyR0REREREZEGYHJHRERERESkAZjcERERERERaYACkdxdv349y3k7duz4eoEQERERERF9owpEctegQQPcv38/0/StW7eiY8eO+RARERERERHRt6VAJHfdu3eHn58fIiMjpWkbN25E586dsXLlyvwLjIiIiIiI6Buhnd8B5Ma4cePw+vVr+Pn54fjx4wgLC0P37t2xZs0atGrVKr/DIyIiIiIiyncFIrkDgHnz5qFjx47w9PTE06dPsX79ejRv3jy/wyIiIiIiIvomfLPJXUhISKZpAQEBOHHiBNq3bw+ZTCaVadas2dcOj4iIiIiI6JsiE0KI/A5CGbk8d48DymQyJCcnq7z+2NhYmJmZISYmBgIylZcnIiLKyMzURPr/25h3+RgJERFpCrlMSHmLqalptmW/2Zq7lJSU/A6BiIiIiIiowCgQvWUq8/bt2/wOgYiIiIiI6JtRIJK7qVOnYuPGjdLrNm3awNLSEo6Ojrhy5Uo+RkZERERERPRtKBDJ3aJFi+Dk5AQAOHDgAA4ePIiwsDA0bNgQgwcPzufoiIiIiIiI8t83+8xdepGRkVJyt3v3brRt2xb169eHi4sLqlevns/RERERERER5b8CUXNnYWGBx48fAwDCwsLg5+cHABBC5KmnTCIiIiIiIk1TIGruAgIC0KFDB5QoUQLR0dFo2LAhAODSpUsoXrx4PkdHRERERESU/wpEcjdr1iy4uLjg8ePHmDZtGoyNjQEAz58/R58+ffI5OiIiIiIiovz3zQ5i/qVxEHMiIlI3DmJORETqphGDmIeEhKBhw4bQ0dFBSEhItmWbNWv2laIiIiIiIiL6Nn2zNXdyuRyRkZGwtbWFXJ51vy8ymSxPnaqw5o6IiNSNNXdERKRuGlFzl5KSovT/RERERERElFmBGAohO0+fPs3vEIiIiIiIiPJdgU3uIiMj0a9fP5QoUSK/QyEiIiIiIsp333Ry9+bNG7Rv3x7W1tZwcHDA3LlzkZKSgjFjxsDV1RXnzp3DihUr8jtMIiIiIiKifPfNPnMHAMOGDcOpU6fQtWtX7Nu3DwMGDEBYWBjkcjkOHz4MT0/P/A6RiIiIiIjom/BN19zt3bsXK1aswO+//45du3ZBCIGKFSti9+7dTOyIiIiIiIjS+aaTu2fPnqF06dIAABcXF+jr66NTp075HBUREREREdG355tO7oQQ0Nb+X8tRLS0tGBgY5GNERERERERE36Zv+pk7IQTq1q0rJXhxcXFo2rQpdHV1FcpdvHgxP8IjIiIiIiL6ZnzTyd3YsWMVXjdv3jyfIiEiIiIiIvq2yYQQIr+DyA+xsbEwMzNDTEwMBGT5HQ4REWkAM1MT6f9vY97lYyRERKQp5DIh5S2mpqbZl/1KMREREREREdEXxOSOiIiIiIhIAzC5IyIiIiIi0gBM7oiIiIiIiDRAgU3u3r59m98hEBERERERfTMKRHI3depUbNy4UXrdtm1bWFlZwdHREVeuXMnHyIiIiIiIiL4NBSK5W7RoEZycnAAABw4cwIEDB7B37140bNgQgwcPzufoiIiIiIiI8t83PYh5msjISCm52717N9q2bYv69evDxcUF1atXz+foiIiIiIiI8l+BqLmzsLDA48ePAQBhYWHw8/MDAAghkJycnJ+hERERERERfRMKRM1dQEAAOnTogBIlSiA6OhoNGzYEAFy6dAnFixfP5+iIiIiIiIjyX4GouZs1axZ+/vlnuLu748CBAzA2NgYAPH/+HH369Mnn6Igovd27dsHXp06O5TyqVcXRo0e/dDhERKTE7t27UNe3Tn6HkWfVPariWA6fIePHBWPwoIFfJyCib4RMCCHyO4j8EBsbCzMzM8TExEBAlt/h0H+AR7Wq2c7v3qMHevbs9VVi6d2rJy5evAgA0NXVhaOjI9q0aYvWbdp89rrj4+Px8eNHWFpaAgCWLFmMY0eP4a916xTKvXr1CqamptDV1f3sbRJ9K8xMTaT/v415l4+R0H/B+HHB2LNnd6bpW7Zul/oqyMru3bswa+YMHDp89IvEtnv3LkwYPw4AIJPJYG1jAw+P6vj5537S58PniH71Cib//xny7NkztGzRDGvW/oWSJd2kMu/fv4cQAiYmJtmsiejbJ5cJKW8xNTXNtmyBaJaZ5saNG3j06BE+ffqkML1Zs2b5FBFR7oXuDZP+f/DAASxevAibt2yVphkaGkr/T3ueVFv7y12iLVq0RM9evZAQH489oXswbdpUmJiaoEED/89ar76+PvT19XMsZ21t/VnbISIiwMvrO4wePUZhmrmFRT5Fo8jIyAibN29FihC4c+c2Jowfj1cvX2LuvPmfvW6rXHyGpLX0IvovKRDNMu/du4cKFSqgbNmyaNy4MVq0aIEWLVqgZcuWaNmyZX6HR5Qr1tbW0p+xsXHqL5n///rhwweo410bp/7+G51/6IQa33nhypXLGBccjEEZmpTMnDEDvXv1lF6npKRg5YoVaN68GWrVrIEOHdrj0KGDOcajr68Pa2trOBYujJ49e8GpSBGcOH4cQGoPtYMGBsG7di341PHG8OHDEB0dLS17+/Zt/NS7F+p414ZPHW90/qETbty4AUCxWebuXbvw59KluHPnNjyqVYVHtarYvWsXAMVmmd1+/BHz5s1ViO/Nmzfw8qwu1TB++vQJc2bPRuNGDVG7Vk0Edu2CCxfOS+WfP3+OoAEDUNfXB7Vr1US7tm3x998nc3FkiIgKLh0dHVhZWyv8aWlpYd1fa9GhfTt4166Jpk0aY9rUKfj48WOW67l9+zZ++qkXfOrUho+PNzp37oR///++DgCXL19Gzx7dUbtWDTRt0hgzfp+OuLi4bGOTyWSwsraGjY0NvvuuBtq1a4dz584iPj4eKSkp+PPPpWjSpBFq1vBCp44dEB5+Slo2MTER06dPRaOGDVCr5ndo3qwJVq5cIc1P3yyzZYvUH/l/6NQR1T2q4qfeqZ+R6Ztlbt++DY0b+SMlJUUhxkGDgjBhwjjp9bFjR9H5h46oVfM7tGzRHH8uXYKkpCQAqT+8Ll2yGM2aNkbNGl5o3MgfM36fnu0+IPraCkTN3a+//oqiRYvi0KFDKFq0KM6ePYvo6GgMHDgQv//+e36HR6Q28/+Yj19//RWOjoVz3Yxk5coVCNu7F8OGDUcRJydcunQJY8eMgYW5BSpXqZLrbevp6SExMREpKSkYNDAIBoaGWLR4CZKTkzFt2lSMHDEcixYvAQCMGT0Kbm5uGDpsOORyOW7fvq20ltGvXj1EREQgPPwU5v+xAIDyX1L9/f2xZs1q/PxzP8hkqc2kDxzYDxsbG1SqVAkAMH3aNNy/fw8TJ/0GGxsbHD1yBL/+8gvWrd+AIkWKYNq0qUhKTMTiJUthoK+Pe/fvw8DAMNO2iIj+C2RyOYIGDoaDgwOePX2KadOmYP68uRgydJjS8mPHjEJJNzcMHZp6X79z+za0/v++/uTJE/T/tR969f4Jo0aPwdu3b/D79GmYPn0axowZm+uY9PT0kJKSguTkZGzcsB7r/lqLYcNHwM3NDbtCQjBoYBDWb9iEIkWKYOPGDThx/Dgm/TYFdnZ2iIqKQlRUpNL1rli5CoFdu2D+/AVwdXWFto5OpjJ16/phxu/TceH8eVTz8AAAxMTE4HR4OGbNmgMgtaO+ccFjMXDgYFSsVBFPnjzB5N9+AwB079EThw8fwvr16zBx0m9wdS2G6OhXuHPnTq7fP9HXUCCSu/DwcBw+fBjW1taQy+WQy+WoWbMmJk+ejF9++QWXLl3K7xCJ1KJXr16oXt0z1+U/ffqElStWYP4fC1C+fHkAgGPhwrh85TK2bd+Wq+QuOTkZ+/ftw907d9CyRUucO3cWERER2LFjJwrZ2QEAgoPH4ft2bXHjn3/gXqYMoqKi0OmHznBxcQEAFClSROm69fX1YWBoAC0t7WybYfrVq4eZM2fg8uXLUjK3L2wf6tdvAJlMhsjISOzevQshu3bDxsYGANDphx8QHh6O3bt2oU/fvoiKjISPr6/Ug65j4cK524lERAXY33+fRB3vWtJrL6/vMHnKVLRv30Ga5uDggF69f8LUKZOzTO4io6LQqZPy+/qqlSvQwN9fWmeRIkUQNHAwfurdE0OHDoOenl6OcT569Ajbtm1F6dLuMDIywl9/rUXnzl1Qv34DAMDP/X7BhQvnsWHDegwZMhRRkZFwciqCihUrQiaTwd7ePst1m5unNkM1MzfLsrmmqakpvLy+w759YVJyd/jwIZibm6NK1dRn4pf9uRSdu3RF4yZNAACOjoXRq3dvzJ83F9179ERUZCSsrKzg4VEd2trasLOzQ5kyZXN870RfU4FI7pKTk6VaDGtrazx79gxubm5wdnbGrVu38jk6IvUpXdpdpfKPHz9GfHw8+v3cV2F6YmIi3Nzcslgq1ZYtm7Fz5w4kJiZCS0sL7Tt0QKvWrbF50ybYFiokJXYA4OrqChMTE9x/cB/uZcqgfYcOmDRxAvaGhsLDwwN1/fxQ+DOSKQsLC3h6eiIsbC8qVaqEp0+f4tq1qxg+YgQA4O7du0hOTkbrVgEKy3369AlmZmYAgLbtvsfUKZNx5vRpeHhUh4+vL0qUKJHnmIiICoIqVapgyNDh0msDAwMAwNmzZ7Bq5Uo8fPgAHz58QHJyMhISEhAfH6/0uegO7Ttg0qQJ2Ls3FNU8PFC37v/u63fu3MHdu3ewL+x/z44LIZCSkoJnz56haNGiSmN7//496njXQkpKCj59+oQKFSpi5MhReP/+PV6+fInyFSoolC9fvoJUE9a4SVP0+7kv2rRuBS8vL9SoWQuenrn/8VMZf/+G+O23iRgydBh0dXWxLywM9erVh1wu///3eRtXr17ByhXLpWVSUlKk/VbXzw8bNqxHyxbN4eXlhe++q4GatWp90efjiVRVIM7GsmXL4sqVKyhatCiqV6+OadOmQVdXF0uWLIGrq2t+h0ekNmkfymnkchmQoUPbtLb/AKTnHWbNmg0bW1uFcrpKmqWk5+/fEIE//gg9PT2pVjy3evbshQYN/PH33ycRfuoUlixZjImTfoOPj0+u15FRA/+GmPH7dAwePAT79oWhePHiUi1c3MeP0NLSwurVayDX0lJYLm2ftWjRAl6enjj590mcOX0GK1euwK/9+6Ndu+/zHBMR0bdOX98gU8+Yz549w8CgAQgIaIXeP/WBmakpLl+5jEkTJyAxMVFpctcj3X39VPgpLF2yGBMn/oY6Pj6Ii/uIli0D0FbJ/dQu3Q+BGRkaGWH16rWQy2WwsrKWtvv+/fsc31epUqWwfcdOhIefwrmzZzFyxDBU8/DAlCnTclw2KzVr1YIQAn//fRLu7u64fPkS+g8IkubHxcWhR4+eqOPjm2lZXV1dFCpkh02bt+LcubM4e+YMpk2bgrVr12DR4iVM8OibUSDOxFGjRuHDhw8AgPHjx6NJkyaoVasWrKyssHHjxnyOjujLMbewQEREhMK027dvSR8iRYsWha6uLiKjIlV6vg5IffZNWVfZLkVd8CIqClGRkVLt3b179/Du3TsULfq/H1OcnZ3h7OyMDh06YtTIEdi9K0Rpcqejo4OUlOQc4/H29sbk3yYh/NQp7Avbh0aNG0nzSrq5ITk5Ga/fvJGabSpTyM4OrVq1RqtWrfHH/PnYuWMHkzsi+s+5efNfpKSk4Nf+A6Qf7g4ePJDjckWcnVHE2RntO3TEqFEjsHt3COr4+MDNrRTu37+f4/AKGcllMqXLGBsbw8bGBlevXEHlyv/77Lp69Qrcy5RRKFevXn3Uq1cfvr518euv/RATEyO12Eij8/8/ZiYnK3aWkpGenh7q+PgiLGwvnjx+DGdnZ5QqVUqa7+bmhocPH2b7PvX19VGrVm3UqlUbrdu0Qds2rXH37l2F9RDlpwKR3DVo0ED6f/HixXHz5k28fv0aFhYWUucLRJqoatVqWLtmDfbs2Y1y5cojbO9eRERESE0ujYyM0LFTJ8yaORMpKQIVK1bE+/fvceXKZRgZGaPJ/z83oAoPj+ooVqwYRo8ZjaCggUhOTsLUqVNRuXJluLu7Iz4+HvPmzoFv3bpwcHDEixdRuHHjBnx8M//SCQD29g549uwZbt+6BdtChWBoaKh0bDsDAwN4e9fBokWL8ODBfYUhGZydneHv3xDBwWPR/9f+KOnmhrdv3+Dc2XMoXqIEatasiZkzZsDru+9QpEgRvHv3DhcunIeLi/KmQkREmqxwYSckJSVh06aNqFWrFq5cuYJt27dlWT4+Ph7z5s2Br+//7uv/3rgBn/+vwfqhcxd0+7Erpk+fiubNW0Bf3wD379/D2bNnMHjw0DzF2LHTD1i6ZDEcCxdGyZIlsXvXLty+fRvjxk8EAKz7ay2srK3h5lYKcpkMhw4dhJWVldLOxiwsLKCnp4fT4adga2sLPT29LIdB8Pf3x8CgAbh/7x78/RsqzOvWrQeCgvrDzs4Ovr51IZPLcefObdyLiEDvn/pg9+5dSElORpmyZaGvr4+9e/dCT08P9tnUXhJ9bQUiuVNGHQNgEn3rvLy80K1bd8ybOw+fPiWgabNmaNS4MSLu3pXK9O79EyzMLbBq5Qr89vQpTExM4OZWCl0DA/O0TZlMht9nzMTv06ehV88ekMvl8PTywqBBgwEAWlpaiImJQfDYsXj9+jXMzc1Rx8cnywHYfX19cfTIYfz0U2+8e/cOY8aMRZOmTZWW9ff3R//+v6JSpcqZmvqMGTsWy5ctw+w5s/HyxQuYm5ujbNlyqFkrtSOB5JRkTJ82FS9evICRkRE8vbwwIF1zGyKi/4qSJUuif/8BWLN6FRb8MR+VKlVGnz59MS5Yec+Waff1ccHp7ut1fNDj/+/rJUqUwKLFS7Bw4QL06tkDQgg4OhZGvXr18hxju3bf48P795gzZzbevH6NokVd8fuMmVJHLoZGRli7ZjUeP34MuVwOd/cymDV7jtJHCLS1tTFw4GAsW7YUS5YsRsWKFbFw0RKl261atRpMTU3x8OFDNPBXHNfV08sLM2fOxrJlS7F69Spoa2vDxcUFzZq3AACYGJtg1eqVmD17FlJSUlCsWHHMmDELZubmed4PROomEyLDAz3/EbGxsdJI7wKs/SMios9nZvq/WoW3Me/yMRIiItIUcpmQ8hZTU9Psy36lmIiIiIiIiOgLKrDNMlWVkJCAhIQE6XVsbGw+RkNERERERKRen1Vzl5ycLPVi+a2bPHkyzMzMpD9Ve3wiIiIiIiL6lqn0zF10dDTWrVuHAwcO4MyZM3j16hWA1LE/SpYsiVq1aqFNmzbw9vb+7MBCQkJyXbZZs2Y5llFWc+fk5MRn7oiISG34zB0REambKs/c5Sq5e/ToEcaMGYMNGzbA0tISnp6eqFChAqytraGnp4e3b9/iwYMHOH/+PC5cuICiRYti7Nix6NixY97fRIbekGQyGdKHmn4IhOTknMfQyogdqtB/Qc+ePRAQ0Ar+GXoEKwjevn2Ldm3bYPWatShUqFB+h0OUK0zu6L/o4cMH6N2rF7Zs3QYjI6P8Dkdlf8yfh7i4OAwaPCS/QyFSSu0dqri7u0Mmk+HAgQN4+vQptm3bhrFjx6Jv377o3r07Bg0ahPnz5+P06dN49uwZfv31V4wfPx5TpkzJ85tISUmR/vbv34+KFSti7969ePv2Ld6+fYvQ0FBUrlwZYWFhed4GUUHx4sULjBk9Gn5+dVGrZg20/74dbty4ke0yx48dw+voaNSvX1+alpCQgGlTp8LPry68a9fC0CGDER0dne16jhw+jH4/94WfX114VKuK27duZVlWCIFff/kFHtWq4ujRo9L0mJgYBA0YAO/atdCpYwfcunVTYblpU6fir7VrFaaZm5ujUaPGWLJkcbbxERFRzlauXIGuXTrDp05t+Deoh8GDBuLhwwcKZSZPnoSAls1Ru1YNNKjvh0GDgvDgwQOl60tvwR9/oG3btgqJ3Z07d9CzR3fUqvkdmjZpjDWrV+W4nuoeVTP97d+/T2nZK1cu4zuv6ujUsYPC9LCwvWjapDH86vpg9qyZCvOePXuG1q0C8P79e4XpHTv9gD2he/D06ZMcYyT61uUqufvnn3+wYsUK1KpVK8dBw21sbNC3b1/cvHkTP/zwg1qC7N+/P+bMmYMGDRrA1NQUpqamaNCgAWbOnIlffvlFLdsg+lbFxsaiR/du0NbWxpw5c7Bh4yb82n9Ajr/cbNy4EU2bNlOoBZ81ayZOnDiOyZOnYNHiJXj56hWGDhmc7Xri4uNQoUJF/PxzvxxjXb9+HZTdIlYsX46PHz9g9Zq1qFylCiZNmiTNu3btGq7/cx3ft2+fabkmTZtiX1gYYmJictw2ERFl7dLFi2jdpg2WLVuBufP+QFJyEn7p9zPi4uKkMqVKlcbo0WOxYeNmzJk7HxACv/Trm20LqcjISJw8eQKNm/xv/NL379/jl34/w97eHqtWrUG/X37B0qVLsD2bgdTTjB4zFqGhYdKft3edTGXevXuHccFjUbVqNYXpb9++xW+TJuKXX3/F3HnzERa2FydPnJDmT5s2BX1//jnTAOfm5ubwrO6JrVu35hgf0bcuV8mds7OzyiuWyWRwdHRUeTllIiIiYK5kgEgzM7Nc/aJEVJCtXrUKtoUKYczYsShTpiwcHR3h6emJwoULZ7nMmzdvcP78OWmAbyD1wzZk5070HzAA1apVQ+nSpTFmzFhcvXoV165dy3JdjRo1RvcePeDh4ZFtnLdv3cK6v/7CqNFjMs178OA+6tWvD2dnZ7RsGYAH9+8DAJKSkjBl8mQMGzYcWlpamZYrVqwYrK1tcPTokWy3TURE2Zszdx6aNGkK12LFULJkSYwZE4zIyEjc/PdfqUzLlgGoVLkyHBwcUKpUKfTq3QdRUVF4/vx5lus9ePAASpQoCVtbW2navrAwJCUlYtToMXAtVgz16zdAu3bfY/26v3KM08TYBFbW1tKfnp5epjJTpvyG+g38Ua5cOYXpT58+gZGRMerVqw939zKoUqUq7j9I/bzZty8M2tra8PHxVbrdWrVq4cD+/TnGR/Sty3Nvmc+ePcPZs2dx/PjxTH/qVq1aNQQFBSEqKkqaFhUVhcGDB+f4hZOooDtx4jhKly6NYcOGokH9eujUsQN2bN+e7TKXL1+Gvr4+ihYtKk37999/kZSUBA+P6tI0FxcX2NnZ4dq1q58VY3x8PEaPHoXBQ4bA2to60/wSJUri/PnzSEpKwunwcBQvUQIAsHr1KlSpUgXu7u5ZrrtMGXdcvnT5s+IjIiJFaU0TTc2UtwKJi4vD7l0hcHBwzPa558uXL6F06dIK065du4qKFStBR0dHmlbd0wsPHz7McSiq6dOnon69ugjs2hkhITuRsWuIXbtC8OzpU3Tv3iPTsk5ORRCfEI9bt24iJiYGN27cQIniJRAbG4slixdhcDbP1LmXKYsXL6Lw7NmzbOMj+tapPM7dvXv38MMPP+D06dMAkOmik8lkeergJDvLly9Hy5YtUaRIEWkIg8ePH6NEiRLYsWOHWrdF9K15+vQptm3dig4dOiIwMBA3/rmBGTN+h7aODpo0aaJ0mcjnz2FpaanQJDM6Oho6OjowMTFRKGtpaZnjc3c5mTVzBsqVL6+0+QwAdOnaFVOmTEZAyxawt3fAqFGj8ejRI+zZswfLli3H5Mm/4czpMyjtXhojR45SaDJjbWOT7XN+RESkmpSUFMyaOQPlK1RAsWLFFeZt2bIZ8+fNRVxcHJydnTFv/h8KSVpGkc8jUbq04g900a+j4eDgoDDN0tIydV50dJaPFfTs1RtVq1aFvr4+zpw+jenTpiIuLg7t2n0PILWDvz/+mI8li5dCWzvzV1hTU1OMHROMccFjkZCQgEaNGsHTywsTJ4xH6zZt8ezpMwwaGISkpCR079ETdev6Scum/TAZGfk8U+xEBYnKyV2PHj3w5MkTLF++HO7u7tDV1f0ScSkoXrw4rl69igMHDuDmzdSOGEqXLg0/P78cnwEkKuhSUlJQurQ7+vTtCwBwcyuFiHsR2LZta5bJXUJCAnR1Mzdl+RKOHzuG8+fPY83arJvbGBsbY+LESQrTfvqpN3755RfsCwvDs6dPsWXrVkyaOBF/Ll2K/gMGSOX09PQQHx//xeInIvqvmT5tKu7di8DiJX9mmufv3xAeHtUR/eoV/vprDUaMGIalS5cpbR4JAAkJ8Wr7LtitW3fp/25upRAXH4+1a9agXbvvkZycjDGjR6Fnj54oks3jQnV8fFDHx0d6ffHiBdy9exeDBg9Bq4AWmDBxEqysrBDYtQsqVaosJZ36+voAwM8bKvBUTu7Onj2LVatWISAg4EvEkyWZTIb69eujdu3a0NPTY1JH/xnW1tYo6lpUYZqLS1EcOXw4y2XMzc3x7p1i0xcrKyskJibi3bt3CrV3r1+/hpWVVZ7jO3/+PJ48eYK6vj4K04cNHYKKFSti0eIlmZbZFRICE2MTeHvXwZDBg+HtXQfa2tqo6+eHJYsXKZSNjY2FuYVFnuMjIqL/mT59Kk6ePInFi5cobW5pbGwMY2NjFClSBGXLlYNfXR8cPXoEDRooH1In9fNGcdgPK0srvI5+rTDt9evU16p83pQpUxbLl/2JT58+ISEhAf/+ewO3b9/C779PB5D646cQAt95VcfcufNRtZpiByufPn3CtKlTETxuPB4/fozk5GRUrlwFAFCkiDP++ec6atWqDQBSx10W5vy8oYJN5eTO0dFRaccHX1JKSgomTZqERYsWISoqCrdv34arqytGjx4NFxcXdOvW7avGQ/Q1la9QAQ8fPlSY9ujRQ9jZ2We5TEk3N0RHRyM2NlZq/lK6dGloa2vj3Lmz8PWtCwB4+OABIiMjUa5c+TzH17lLFzRv3lxhWvv232PAgCCFDl3SvHnzBn8u+xNLl6b+YpySkoykpCQAqR2sJCenKJSPiIhAlf//MCYiorwRQuD336fh2NGjWLBwMRxy0emdEAJCCCQmJmZZpqSbG+7fu6cwrVy58li0aAGSkpKk5pNnz56Bs7Nzjj09p3fn9i2YmppCV1cX2traWLd+g8L8rVu24Pz5c5g8ZSocHDK/n+XLl8HLywulSpXCrVs3FR4bSkpKQkq6z5t7ERHQ1tZGUVfXXMdH9C1SuUOVSZMmYcqUKdIvMF/DxIkTsXLlSkybNk2h6r9s2bL488/MTQqINEmH9h1w/do1rFixHI8fP0ZYWBh2bN+ONm3aZLmMm5sbzM3NceXKFWmasbExmjVvjtmzZuH8+fP4999/MX78eJQrV16hx7E2rVvhyJH/9U4ZExOD27du4f791A/vhw8f4vatW3j16hWA1JrFYsWLK/wBQCE7O6U95s6cMQMdO3aUelYrX6ECQveG4v79+9ixfRsqVKgglY2Pj8fNf/9FdU/PvOw6IiL6f9OnTUXY3r0YP2EijAwNEf3qFaJfvZKaIT59+gQrV67Av//+i8jISFy9egUjhg+Fnp4+vvuuRpbr9fT0wrXr1xQSpwb+/tDW1sHECeNxLyICBw7sx8YN69G+Q0epzNEjR9C2TSvp9YkTx7Fzxw5ERNzF48ePsXXLFqxcuQJt2rYDAMjlchQrVlzhz8LCArq6eihWrDgMDAwU4rp37x4OHjiAnr16AwCcnV0gk8kQsnMHTp48iYcPH6B0us68Ll++hIoVK0nNM4kKKpVr7lauXIknT57AxcUFFStWzDREgUwmw86dO9UVHwBg9erVWLJkCerWrYvevXtL0ytUqCA9g0ekqdzLlMG06b9jwR/zsezPP+Hg4ICgoIHwb9gwy2W0tLT+f4y4vaiVrvZswIAgyGVyDBs6BJ8+fYKnpxeGDB2qsOzDhw/xId0AryeOH8f48eOk1yNHjgAAdO/RAz179lLpvYSHh+PJk8cYN368NK1t23b4999/8WNgV7i7l0H3Hv/rAe3YsaOws7NDpUqVVNoOEREp2rp1CwDgp96K9+3RY8aiSZOm0NXVw+XLl7Bhw3q8i42FpaUVKlWqhD+XLZOeS1PGy+s7aGtp4dzZs/D08gKQ+mPi3HnzMX3aVHTp8gPMzM3RrVt3tGz5v0d63n94r9AqRVtbG1u2bMLs2TMhhEDhwk74tf8AtGjRUuX3KoTA5MmT0L//ACnp09fXx5gxwZg+fSo+fUrEoEFDFIZvOHBgP7r36Knytoi+NTKRsbvLHPj4+ORYJv2v/upgYGCAmzdvwtnZGSYmJrhy5QpcXV1x48YNeHh4SN35qiI2NhZmZmaIiYmBAJ/fI83z6tUrfP99O6xZsxb29lk34fyW/RjYFW3bfQ9/f+XPehB9a8xM//c869uYd9mUJNIcmzdvwonjxzF33vz8DiVPTp36G3PmzMZff61X2gsnUX6Ty4SUt+TUtFnlM1jdiVtuuLu748SJE5kGU9+yZQt/0SfKgrW1NUaNGo3IyMgCmdy9ffsWdXx80KBBg/wOhYiIstGyZQDev3uHDx8+wMjIKL/DUVlcXBxGjx7LxI40QoE4i8eMGYMuXbrg6dOnSElJwbZt23Dr1i2sXr0au3fvzu/wiL5ZderUye8Q8szc3BydO3fJ7zCIiCgH2traCPyx4HZul368O6KCTuUOVQDg0qVLaNOmDezt7aGnpwd7e3u0bdsWly5dUnd8AIDmzZtj165dOHjwIIyMjDBmzBj8+++/2LVrF+rVq/dFtklERERERFSQqPzM3YkTJ1CvXj3Y2dkhICAAhQoVQlRUFLZv347IyEgcOHAANWvW/FLxqg2fuSMiInXjM3dERKRuqjxzp3JyV6NGDZiYmGD37t0KbZOTk5PRuHFjvH//HidPnsxb5F8RkzsiIlI3JndERKRuX7RDlUuXLmHLli2ZHjrV0tLCL7/8gtatW6u6yhxZWFhAJsucgMlkMujr66N48eLo2rUrAgMD1b5tIiIiIiKigkDl5M7IyAgvXrxQOi8qKuqL9JI0ZswYTJo0CQ0bNoSHhwcA4OzZswgLC0Pfvn1x//59/PTTT0hKSkKPdGNkERERERER/VeonNw1bdoUQ4cOReHCheHn97/ehQ4ePIjhw4ejWbNmag0QAE6ePImJEycqDGAOAIsXL8b+/fuxdetWlC9fHnPnzmVyR0RERERE/0kqP3P35s0b+Pv74/z58zA1NYWtrS1evHiB2NhYVKtWDXv37oWFhYVagzQ2Nsbly5dRvHhxhel3795FxYoV8f79e0RERKB8+fL48OFDrtbJZ+6IiEjd+MwdERGp2xd95s7CwgLh4eHYvXs3Tp48iTdv3sDS0hI1a9ZE48aNIZfnaXSFbFlaWmLXrl0YMGCAwvRdu3bB0tISAPDhwweYmJgoW5yIiIiIiEjj5WkQc7lcjmbNmn2RJpjKjB49Gj/99BOOHDkiPXN37tw5hIaGYtGiRQCAAwcOwNvb+6vEQ0RERERE9K3JVbPM169fw9zcHHK5HK9fv85xpWm1aer0999/Y/78+bh16xYAwM3NDf369cN3332Xp/WxWSYREakbm2USEZG6qX2cOy0tLYSHh8PDwwNyuVzpsATpJScnqxZxPmByR0RE6sbkjoiI1E3tz9wtX74cxYoVk/6fU3KnbrGxsUqny2Qy6OnpQVdX96vGQ0RERERE9K1RubfM/JBTbWHhwoXRtWtXjB07NtcdurDmjoiI1I01d0REpG6q1Nyp3LWlq6srrly5onTe9evX4erqquoqc7Ry5Uo4ODhgxIgR2LFjB3bs2IERI0bA0dERCxcuRM+ePTF37lxMmTJF7dsmIiIiIiIqCFTuLfPBgwdISEhQOu/jx494/PjxZweV0apVqzBjxgy0bdtWmta0aVOUK1cOixcvxqFDh1CkSBFMmjQJI0aMUPv2iYiIiIiIvnW5Su7i4+Px8eNHpLXgjI2NzdRrZnx8PHbs2AEHBwe1B3nq1ClpyIP0KlWqhPDwcABAzZo18ejRI7Vvm4iIiIiIqCDIVXI3depUjB8/HkBqJyYNGjTIsmxwcLBaAkvPyckJy5Yty9TsctmyZXBycgIAREdHw8LCQu3bJiIiIiIiKghyldy1aNECLi4uEELgxx9/xKhRo6TeM9Po6uqidOnSqFixotqD/P3339GmTRvs3bsX1apVAwCcP38eN2/exJYtWwCkDmrerl07tW+biIiIiIioIFC5t8xVq1ahSZMmsLKy+lIxKfXgwQMsXrxYYRDzXr16wcXFJU/rY2+ZRESkbuwtk4iI1E3tg5in9/jxY7x8+RKVK1fONO/ixYuwtbVF4cKFVYs4HzC5IyIidWNyR0RE6qb2QczT++mnn1CiRAmlyd26detw584d7Ny5U9XV5srHjx/x6NEjfPr0SWF6+fLlv8j2iIiIiIiICgqVk7szZ86gV69eSuf5+Phg9erVnx1URi9fvkRgYCD27t2rdH5ycrLat0lERERERFSQqDyI+fv376Gjo6N8ZXI53r1TfzOU/v374+3btzhz5gwMDAwQFhaGVatWoUSJEggJCVH79oiIiIiIiAoalWvuSpcuje3bt8Pf3z/TvJ07d8LNzU0tgaV3+PBh7Ny5E1WrVoVcLoezszPq1asHU1NTTJ48GY0bN1b7NomIiIiIiAoSlZO7/v37o2vXrtDS0sKPP/4IBwcHPHv2DCtWrMDSpUuxfPlytQf54cMH2NraAgAsLCzw8uVLlCxZEuXKlcPFixfVvj0iIiIiIqKCRuXkrnPnzoiKisK4ceOwePFiabqBgQGmTJmCLl26qDVAIHXYg1u3bsHFxQUVKlTA4sWL4eLigkWLFsHe3l7t2yMiIiIiIipoVB4KIU1sbCzCw8MRHR0NKysreHl55dg1Z16tXbsWSUlJ6Nq1Ky5cuAB/f3+8fv0aurq6WLlyZZ4GL+dQCEREpG4cCoGIiNTti45z9y34+PEjbt68iSJFisDa2jpP62ByR0RE6sbkjoiI1E3t49xt27YNvr6+MDc3x7Zt23IsHxAQkLtI88jQ0FDpOHtERERERET/VbmquZPL5Th9+jQ8PDwgl2c/eoJMJlPLuHNBQUG5Ljtz5kyV18+aOyIiUjfW3BERkbqpvebu/v37Uscl9+/f//wIc+HSpUu5KieTMTEjIiIiIiIqkM/cqQNr7oiISN1Yc0dEROqm9pq7R48eqRRAkSJFVCqflXv37qFo0aKsnSMiIiIiIspBrpI7FxcXlRIsdTxzBwAlSpTA8+fPpQHM27Vrh7lz56JQoUJqWT8REREREZGmyFVyt337dun/79+/x7Bhw1CsWDG0atUKhQoVQmRkJLZu3Yp79+5h6tSpagsuY4vR0NBQTJ48WW3rJyIiIiIi0hQqP3PXo0cPJCcnY/ny5ZnmBQYGQiaTKZ2XF3K5HJGRkVLNnYmJCa5cuQJXV9fPXjefuSMiInXjM3dERKRuqjxzl/24Bkps3rwZ7du3Vzqvffv2CrV8n0smk2VqDsrn74iIiIiIiDLLVbPM9LS0tHDp0iXUq1cv07yLFy/mOA6eKoQQ6Nq1K/T09AAA8fHx6N27N4yMjBTK5WZgdSIiImpYMy8AAIIiSURBVCIiIk2mcnL3ww8/YMyYMYiLi0OLFi1ga2uLFy9eYPv27ZgyZQp69+6ttuC6dOmi8LpTp05qWzcREREREZEmUfmZu6SkJAwbNgwLFy5EfHy8NF1fXx+9e/fGlClToKOjo/ZA1Y3P3BERkbrxmTsiIlI3VZ65y/Mg5m/evMHVq1cRGRkJe3t7lCtXDhYWFnkKOD8wuSMiInVjckdEROqm9kHMlbGwsIC3t3deFyciIiIiIiI1ylPvJ69evcKwYcNQt25duLm54Z9//gEAzJkzB6dPn1ZrgERERERERJQzlZO7ixcvokSJEtiwYQMKFy6Mu3fvIiEhAQDw9OlTzJo1S+1BEhERERERUfZUTu4GDBgALy8v3LlzB8uWLUP6R/aqV6/OmjsiIiIiIqJ8oPIzd+fOncO2bdugo6OD5ORkhXk2NjZ48eKF2oIjIiIiIiKi3FG55s7IyAixsbFK5z169AhWVlafHRQRERERERGpRuXkrkGDBpg4cSKio6OlaTKZDHFxcZgzZw4aNWqk1gCJiIiIiIgoZyqPc/f06VPUqFEDsbGx8PHxwY4dO+Dv748bN25AJpPh9OnTsLW1/VLxqg3HuSMiInXjOHdERKRuqoxzp3LNnaOjIy5fvox+/frh+fPnKFasGKKjo9GxY0ecP3++QCR2REREREREmkalmrv4+HgMGTIEP/zwA6pVq/Yl4/riWHNHRETqxpo7IiJSty9Wc6evr4/ly5fj48ePnxUgERERERERqZfKzTK/++47jmVHRERERET0jVF5nLvx48ejY8eO0NLSQqNGjVCoUCHIZIrNGi0tLdUWIBEREREREeVM5d4y5fL/VfZlTOrSZBzc/FvEZ+6IiEjd+MwdERGpmyrP3Klcc7d8+fIskzoiIiIiIiLKHyond127dv0CYRAREREREdHnyHWHKkuXLkX58uVhYmICNzc3jB49Gp8+ffqSsREREREREVEu5Sq5W7FiBXr16oWEhAQ0btwY5ubmmDRpEoKCgr50fERERERERJQLuepQpXLlyihRogTWr18vdajy22+/Ydy4cfjw4QO0tVVu3Znv2KEKERGpGztUISIidVOlQ5VcJXempqbYsmUL6tevL017/fo1rK2tcfv2bRQvXvzzo/7K0id3Oe0kIiIiIiKi/KBK3pKrZpnv37+Hubm5wjQzMzNpY0RERERERJS/ct2e8tatWwrNL9PGsrt582amspUrV1ZDaERERERERJRbuWqWKZfLlY5tl7Zo2jwhBGQyWYEbxDw5Jb+jISIiTWBh/r/mMpXbTsrHSIiISFMc/bOfegcxP3LkiFoCIyIiIiIioi8jV8mdt7f3l46DiIiIiIiIPkOuBzEnIiIiIiKib1eukrvq1atjx44dSEnJ3cNpjx8/xqBBgzBz5szPCo6IiIiIiIhyJ1fNMjt37ow+ffqgZ8+eaN68OWrUqIHy5cvDxsYGenp6ePv2Le7fv48LFy5g7969OH36NJo1a4affvrpS8dPREREREREyGVy17dvX/z444/YsGEDVq9ejdWrVyMpKUmhjBAC9vb2aN26NRYsWIBy5cp9kYCJiIiIiIgos1yPc2dgYIDAwEAEBgYiPj4ely9fxvPnzxEfHw9LS0u4ubnBxcXlC4ZKREREREREWcl1cpeevr4+PD091R0LERERERER5RF7yyQiIiIiItIATO6IiIiIiIg0QIFI7tavX5/lvMGDB3/FSIiIiIiIiL5NBSK5++mnn7B3795M0wcMGIC1a9fmQ0RERERERETflgKR3P31119o3749Tp48KU3r168fNm3ahCNHjuRjZERERERERN8GlXvLfPToUZbz5HI5zMzMYGJi8llBZdS4cWMsWLAAzZo1w4EDB7Bs2TLs3LkTR44cQcmSJdW6LSIiIiIiooJI5eTOxcUFMpksxzL9+/dHv3798hxYRh06dMDbt29Ro0YN2NjY4NixYyhevLja1k9ERERERFSQqZzcrV27FsOHD0fJkiXRvHlz2Nra4sWLF9i+fTvu3LmDYcOGITw8HAMGDACAPCd4QUFBSqfb2NigcuXKWLBggTRt5syZedoGERERERGRplA5uTtx4gT8/f2xePFihek///wzevbsiQsXLmDNmjUwNTXFggUL8pzcXbp0Sen04sWLIzY2VpqfUy0iERERERHRf4HKyd2GDRuwadMmpfPatGmDtm3bYtmyZWjSpAmWLVuW58DYUQoREREREVHuqdxbplwux5UrV5TOu3z5MuTy1FVqaWnBwMDg86LLQmxsLHbs2IGbN29+kfUTEREREREVNCrX3HXs2BGjR4/Gp0+f0LRpU9jY2ODly5fYuXMnJk6ciF69egEALly4AHd3d7UE2bZtW9SuXRs///wz4uLiULVqVTx48ABCCGzYsAGtWrVSy3aIiIiIiIgKKpWTuxkzZkBbWxsTJ07E6NGjpel6enro27cvpk6dCgCoUaMGGjRooJYgjx8/jpEjRwIAtm/fDiEE3r59i1WrVmHixIlM7oiIiIiI6D9P5eROR0cHM2fOxOjRo3Ht2jU8f/4c9vb2KFu2LCwtLaVytWvXVluQMTEx0rrDwsLQqlUrGBoaonHjxhg8eLDatkNERERERFRQqZzcpbGwsFBrApcdJycnhIeHw9LSEmFhYdiwYQMA4M2bN9DX1/8qMRAREREREX3L8pTcvXnzBnv37sWTJ08QHx+vME8mkyk011SH/v37o2PHjjA2NoazszPq1KkDILW5Zrly5dS6LSIiIiIiooJI5eRu//79aN26Nd6/fw8DAwPo6uoqzP8SyV2fPn3g4eGBx48fo169elKPnK6urpg4caJat0VERERERFQQqZzcDRw4ENWqVcPy5cvh7Oz8JWJSqmrVqqhatarCtMaNG3+17RMREREREX3LVE7u7t27h5kzZ37xxC4oKAgTJkyAkZERgoKCsi07c+bMLxoLERERERHRt07l5K5y5cp4/Pjxl4hFwaVLl5CYmCj9n4iIiIiIiLKmcnK3cOFCdOrUCY6Ojqhbty60tfPc4Wa2jhw5ovT/RERERERElJnKmZmXlxcSExPRqFEjyOVyGBgYKMyXyWSIiYlRW4A52bJlC1q3bv3VtkdERERERPQtylOHKjKZ7EvEolRSUhJu3rwJXV1dlCxZUpq+c+dOjBkzBjdv3mRyR0RERERE/3kqJ3fBwcFfIAzlrl+/jiZNmkjP+DVv3hwLFy5E27Ztcf36dfTo0QN79uz5avEQERERERF9q77MA3NqMnToUBQvXhzz58/H+vXrsX79evz777/o1q0bwsLCMjUJJSIiIiIi+q/KVXLXrFkzzJgxAyVKlECzZs2yLSuTybBz5061BHfu3Dns378fFStWRK1atbB+/XqMGDECP/zwg1rWT0REREREpClyldy9e/cOycnJAIDY2Niv9szdq1ev4ODgAAAwMzODkZERPD09v8q2iYiIiIiICpJcJXfphyI4evTol4olE5lMhnfv3kFfXx9CCMhkMsTFxSE2NlahnKmp6VeLiYiIiIiI6Fv0TT9zJ4RQ6CFTCIFKlSopvJbJZFKtIhERERER0X+Vysnd+PHjs5wnl8thZmYmPSP3uTh4ORERERERUe6onNzNmjULnz59QlxcHABAX18f8fHxAAADAwMkJiYiOTkZlStXRmhoKGxsbPIcnLe3d56XJSIiIiIi+i+Rq7rA4cOH4ejoiDVr1iA2NhYfP35EbGwsVq1aBQcHBxw7dgz79+/HkydPMHjw4C8RMxEREREREWWgcs1d3759MXDgQHTs2FGaZmxsjB9++AEfPnxA//79cebMGYwaNSrbJpxERERERESkPirX3F26dAnOzs5K57m4uODatWsAgLJlyyImJubzoiMiIiIiIqJcUTm5c3Z2xp9//ql03pIlS6TELzo6GtbW1p8XHREREREREeWKys0yJ0+ejLZt28LNzQ1NmjSBjY0NXr58id27d+PevXvYvHkzAODQoUOoXbu22gN+8uQJAKBw4cJqXzcREREREVFBpXJy17JlS5w9exaTJ0/G9u3b8fz5c9jb26NatWrYuHEjKlasCAD4448/1BZkSkoKJk6ciBkzZuD9+/cAABMTEwwcOBAjR46EXK5yBSQREREREZFGydMg5pUqVcKmTZvUHUuWRo4ciWXLlmHKlCmoUaMGAODkyZMIDg5GfHw8Jk2a9NViISIiIiIi+hblKbn72latWoU///wTzZo1k6aVL18ejo6O6NOnD5M7IiIiIiL6z1M5ufP19c1ynlwuh5mZGSpVqoTAwEA4Ojp+VnBpXr9+jVKlSmWaXqpUKbx+/Vot2yAiIiIiIirIVH5YzczMDHfv3sWJEycQGxsLfX19xMbG4sSJE7h9+zbevHmDGTNmwN3dHRcvXlRLkBUqVMD8+fMzTZ8/fz4qVKiglm0QEREREREVZCrX3LVp0wYRERE4ceKEwnh3Dx48QNOmTdGlSxds3boVfn5+GD58OPbt2/fZQU6bNg2NGzfGwYMH4eXlBQAIDw/H48ePERoa+tnrJyIiIiIiKuhUrrkbN24cgoODMw1k7uLigrFjx2LChAmwsLDAoEGDcPr0abUE6e3tjdu3b6Nly5Z4+/Yt3r59i4CAANy6dQu1atVSyzaIiIiIiIgKMpVr7h49egSZTKZ0nkwmw9OnTwEADg4OSEpK+rzo0nFwcGDHKURERERERFlQObmrVq0axowZg6pVq8LJyUma/vDhQ4wdOxYeHh4AUptpfm6HKo8ePcpVuSJFinzWdoiIiIiIiAo6lZO7RYsWoV69eihWrBjKlSsHGxsbvHz5ElevXkWhQoWwefNmAEBUVBR69uz5WcG5uLgorSUUQkjTZTKZWmsIiYiIiIiICiKVkzt3d3dERERg+fLlOH/+PJ4/f44KFSqge/fuCAwMhL6+PgBgyJAhnx3cpUuXlE4XQmDDhg2YO3cujI2NP3s7REREREREBV2eBjHX19dHnz591B1LJsqGOTh48CCGDRuG27dvY8iQIRg4cOAXj4OIiIiIiOhbl6fkLj9cvHgRQ4cOxYkTJ9C9e3eEhobC1tY2v8MiIiIiIiL6Jqg8FAIArFmzBjVr1oStrS1MTU0z/alTREQE2rVrBw8PD9jY2ODGjRuYP38+EzsiIiIiIqJ0VE7u1q5dix49eqBs2bJ49eoV2rZti1atWkFXVxe2trYYNGiQ2oLr06cP3N3dERMTg/Pnz2PdunVwdXVV2/qJiIiIiIg0hcrNMmfMmIHRo0dj2LBhWLJkCfr06YPKlSvj3bt3qF+/vlo7OFm0aBH09fXx4sUL/Pjjj1mWu3jxotq2SUREREREVBCpnNzduXMHNWrUgJaWFrS0tBAbGwsAMDExwdChQ9G/f38EBQWpJbixY8eqZT1EBcXu3bswe9ZMHDx0JL9DyVfjxwfj/bv3mDb99/wOhYiICriLm0YiaPpmHD13O79DIfriVE7uzMzMkJCQAABwdHTEjRs3UKdOHQBAcnIyoqOj1RYckzsqiMaPD0bonj2Zpm/esg1OTk5fPZ70du/ehYkTxsPT0xOz58z7v/buOyqKqw0D+LNLWfpSBZWqIFZEo0axi7333mKJNfYee4mxG7tGY4vGjorB3rFrxI6VIs1CRzp7vz/4mLhSxIqQ53cOR7lz5847s7szvHvv3JHKY2Nj0aB+PaxctQbffffdV4snJCQEbdu0wpatf6JECWepfNSoMRBCfLU4iIjyi392/Zzj8rW7z2Ht7vNfJZZ107qjUhk7TFjqgWMX70vlXZtWRtemVdB86MqvEkeGAR1qok5lZ3QZt16tvEH/pYh5k/hVYyHKKx+c3FWqVAm3b99Go0aN0LJlS8yYMQMqlQpaWlr49ddfUbVq1S8RJ1G+UrVaNUyZMlWtzNjYJI+iUaehoYFr167hxvXr+K5SpbwOJ0t8fiURUdYa9F8q/b+hW2kM7FQLbYevkcriE5PV6mvIZUhTfbkvyxKTUzCkc22cuuKL1DTVF9vOpwiPfpPXIRB9NR+c3E2cOBEBAQEAgJkzZyIgIAAjRoyASqVC5cqVsXbt2s8eJFF+o62lDTMz80zl27dvw9+HPBEcHAwjIyPUqFkTQ4cOg56eXpbtPH70CEuWLIav7wMAMtjY2GDCxIkoVao0AMDHxwerV62Er+8DKJVK1K5TF4MHD4Gurm62senq6sLdvT5WrlqBP/7YlG29Fy/CsOy333DlymXI5XKUL++KkaNGo0iRIgCA1NRU/PbbUhz2+htyuQZatmqFiPBwxMX9O5zy0qWL2PjHH3j27Cnkcg2UK1cOI0eNhrW1NQCgbZtWAICePboDACpUrIjVq9eqDcvc77EP69f/joOef0Mu/3cOqLFjRkOpVGLy/5Poc2fPYv2G3+Hv5wdzc3M0bdYcvXv/AE1NTQghsH797zjkeRARERFQKpWoW88do0d/vgmgiIi+hrcTlbj4JED8W/ZdaVv8Pr0Hhv6yA0M614ajbSEMnr0dLeq4wFBfB6MX7JHWHdOrAUrYW+LHGX8CAGQyoHcrN7StXwFmxvoIDInA73u9cfKKb47xHL1wH7W+c0Ib9wrYfexGtvVqVyqBH9vXRDFrc7yKjMWhs3ewYZ+3lHjaFzHDlIHNULpYYQS/jMT8jcewZko3teGUw7rVRd3KzihkZoTwqDgc9r6H3/ecR2qaCi1qu2BAh1oA/u3dnLbSE55nb6sNy9w4qxdu+gZi2bZ/b38wNtTD0bXDMGjWNvzz4Dm0NDUwpEsdNK5eBoZ6Cjx5/grLtp3CjfuBAIDC5kYY37cxXJ2toaWpgZBX0Vj650lcuPk0dy8i0Rf0wcld1apVpd45Y2NjHDhwAElJSUhKSvrsj0EgKmjkMhlGjRqDwkWKICQkGAvmz8OKFcswbtyELOtPmzYFJUo4Y9z4CZDL5Xj8+BE0NdI/tkFBQRg5YhgGDBiInydPQVRUJBYuXICFC+ZjytSchzT36/8j2rdrg1MnT6Keu3um5ampqRg+bBjKlSuHNWt/h4aGBjZu3ICRI4bhz21/QUtLC1u3bsHRI0cwecpU2Ns7YOfOHTh79gy+++7f3sCEhER06doVjo5OSEiIx7p1azF+/Fhs3boNcrkcf2zchD4/9MbyFStRrFgxaGpqZYqlnnt9LFq0EDduXEflylUAANHR0bh8+RIWL1kKAPC5eRMzZkzDqNFj4OrqiqCgYPw695f0fe3XH6dPncKOv7Zj1uw5KFasOMLDw/H4Me+9IKKCaVjXuliy9SSCX0YiJi53wxH7tK6OpjXL4pffDyMwNAIVS9li9k+tEBkTj38eBGa73pv4JPzhcQH929eA59nbSExKyVSnQkkbzBzaAgs2HsPNB89hbWmCyQOaAgDW7TkPuUyGRWPbI+x1DHr+vBH6OtoY2bN+5m0lJGPaKk+8ioyDk20hTB7QFPEJSdh88DKOXbyP4rYWcCtfDINmbQfw/+T3HYe976JXy2pqyV0jt9J4HRmHfx48BwCM79sIxYqaY+JSD7yKjEXdKs5YMakLOo5Zh+dhkZjQtzE0NTXQb9pWJCSloJi1ORLe6TElyisf9Zy7dykUCiZ2RG+5cMEbdevUkn4mTUxP3jp36YrvKlVCkSJFUKlSZQwYMAgnT5zItp2wsBeoXKUK7O3tYWtrC3f3+nAqUQIAsHnzJjRq1Bidu3SFra0tXFzKY9SoMTh82Eu6LzY7FhYW6NSpM9asWYXU1NRMy48fPwYhVJj082Q4OjrCwcEBU6ZMQ1hYGP65kf7N7O5dO9GrVy/UqVMX9vb2GDNmLAwNDdXaqVevHurWrQcbGxuUKOGMyZOn4umTJ/Dzewbg36GqSqUSZmbmUCqVmWIxMjJCtWpuOHb0qFR2+tRJGBsbS4nk+g2/o2fPXmjWrDmKFrXG999/jx8HDMB+j33px/FFGMzMzFClyvewsrJCmTJl0Lp1mxyPERFRfrV61zlcueOHoBdRubrXTEtTA33auGHG6kO4dOsZgl9GwfPsbXidv4t2DSq8d/1dR28gOTkV3Zt/n+XyH9vXxKb9l3Do7B0Ev4zClTt+WL3zLNrVT2+7qosDrC1NMHXFQTwOeAmfh0FYueNMpnY27LuA24+CEfoqGuduPMZWz8toUC19JEtSSioSEpORphIIj36D8Og3SErJfH07dvEBzE0MUKHkv/fAN65RBkcu3AMAWJkZoWWd8hi3ZB9u+j5H0IsobPW8Ah/f52hVt3x6HXMj3HoYhCfPXyH4ZRTO//NESgyJ8lqueu6GDRuW6wZlMhl+++23jw4ot6KiomBsbPzFt0P0MSp+951ab1zGMMmrV69gy+ZNCAgIwJs3b5CWloakpCQkJiZCR0cnUztdunbFL3Nm4/BhL1SpXAX13OtLQxqfPH6EJ0+e4OjRI1J9IQRUKhVCQkLg4OCQY4w9evbC/v0eOOR5EO71G6gte/L4MYKCglCvbm218uTkZAQFB6FMXBwiIiJQukwZaZmGhgacS5aEeOvejsDAQPy+bi3u3buLqKhoCJF+P8aLsBcoXtwxx/je1qhxY8z9ZQ7GjhsPbW1tHD16BPUbNJCGaT55/Bh3bt/Gpk0bpXVUKpV0bN3d3bFzx19o26YVqlarBje36qhRoyY0NT948AIR0Tfv/tPQD6pvY2UCXR1trJrSVa1cS1MDvn5h710/JTUNq3edw7g+DbEni6GZJewLoXxJa/RtW10qk8tl0NHWgo62JuyKmOFFeIzakNN7T0IytdOwWil0blIZ1lYm0NPRhoZcjjcJOX+Z+a6o2Hhcvu2HJjXL4qbvcxSxUKK8szXmrPMCADjaFoKmhhz7fxuktp6Wpgai4xIAAH8dvo6J/RqjqosDrt7xx8krvngc+PKD4iD6UnL1l42np2euG/wSyd28efNgb2+PTp06AQA6duyIvXv3wsrKCl5eXihfvvxn3R7Rp9LV0c00M2ZISAjGjB6Ftm3bYeDAwTBSGuGWzy3MmTMLKSkpWSZ3/fv/iEaNGuHChQu4dPEifv99HWbNnoM6deoiPiEBrdu0RceOnTKtZ2Vl9d4YDQ0N0bNnb2zYsB7Va9RUWxafkADnkiUxY8asTOuZmOR+YpixY0bByqowJk76GebmFhBCha5dOiMlNfOwnZzUqFETQghcuOCN0qVLw8fHB8NH/PvIlYSEBPTr/yPq1KmbaV1tbW1YWlph5649uHbtKq5evYoF8+dh259bsXrNOiZ4RFTgJCSpDxEUApBBplamqfnv4C09HW0AwLC5O/EqIlatXnIWozuy4nX+Dnq2+B792tZAyKsotWW6OtpYu+scTl15mGm9rHrXsuLiVBSzh7XG2l3ncPHWM8TFJ6JR9TLokU1vYU4On7+LsT80xPw/jqJJjbJ4HPACT56/AgDo6WghNU2FbuM3QPXORDQZk9XsP+WDS7eeokZFJ1RzccAPbdyweMsJ7Dxy/YNjIfrccvVXjZ+f35eOI0dr1qzBtm3bAADHjx/H8ePHcfjwYezatQtjx47FsWPH8jQ+otzw9fWFSqXCsOEjpB6nEzkMycxga2sHW1s7dOnSFVMm/4xDhzxRp05dODs7w8/v2Sc9XqFDx47YtWsHdu7coVbu7OyMkyeOw9TEBPrZzFxpamqK+/fvo0KFigDSH4Xy8OFDlHBKHzYaHR2FgIAATJz4M1wrpA+98fHxUWtDSyv9HjvVe2ZYUygUqFOnLo4eOYKgoCDY2tmhZMmS0vISzs4IDAjI8Vjo6OigZs1aqFmzFtq3b49OHTvgyZMnau0QERVEkTFvUNzGQq2shJ2lNLvls6DXSEpORWFzoxzvr8uJEMDy7WewcEw77Dn2j9oy32dhsCtihucvIrNcNyAkHJZmRjBV6iPi/713ZYoXUavj4myN0FfR2OBxQSorbK4+lD8lNQ1yuXoSm5Uz1x9h8oCmcHMtjsY1yuDQuTv/xur/Apoacpgq9XHTN/uhli/CY7H3+D/Ye/wfDO1SB23dXZnc0Tfhs9xz96WFhYVJf7QdOnQIHTt2RMOGDTFu3Dhcu3Ytj6Mjyh0ba2ukpqZi966dCA4OwmEvL3js25dt/cTERCxcMB83btxAaGgobt26hQcP7sPePn24ZY8evXDn9m0sXDAfjx49RGBgIM6dPYuFC+bnOiaFQoH+/Qdg966dauWNGzeBUmmMsWPHwOfmTYSEBOPGjRtYtGghXr54AQDo0LETtmzehHNnzyIgwB9LFi9CbEwMZLL0C6uhoRGUSiX27/fA8+fPcf36NSz7bYnadkxMTKBQKHDp8iWE/3+mzew0atwYFy9ewCHPg2jUqLHasr59+8HL62+sX/87nj17Cj8/Pxw/dgxr1qwGkP58v4MHD+Dp0ycIDg7CkcOHoVAoULjw+3s4iYjyu2t3A1C6WGE0q1UONlYmGNihForb/pvsxScmY6vnZYzq1QDNa5eDtaUxSjpYoVPjSmheu1yut+N98wnuPg5B23fu0/t9rzea1SonzZbpUNQMDd1KY3Cn9KH/l2/7IehFJGYOaQEn20Io72yNwZ3Tl2U88jQwNAJW5kZo6FYa1pbG6NykEupWKaG2nZCX0ShayBgl7CxhbKgLLU2NLONMTErBmWsPMahTbTgUNcdR73vSssDQCHidv4OZQ1uiXhVnFLFQokzxIvihtRtqVEi/nWBMrwaoVr4YilgoUdLBCpXL2MMv+PM955noU+Sq587FxQXbt29H2bJlpbLt27ejadOmX+W+NxMTEzx//hw2NjY4cuQIZs+eDSD9/qK0tLQvvn2iz8GpRAkMHzESW7duwapVK1GhQgUMHjwEM2ZkPbOlhoYGoqOjMXPGNERERMDY2Bi169RF//4/prfn5ITVa9ZizerVGDjgRwghULSoNeo3aJBle9lp2qwZtm//U62HXkdHB2vWrsXKFSswYcI4xMfHw8LCApUqVYa+vj4AoEePnggPD8eMGdOgoaGBVq1bo2rValKvpFwux6zZc7B40SJ069oZtrZ2GDV6NAYPGihtR1NTE6NGj8EfG9bj93VrUd7VFatXZ/04lUqVKsPIyAgBAQFo1KiR2rKqVath0eIl2LBhPbZu2QxNTU3Y2dujZcv0Ry0YGhpiy+bN+G3pEqhUKhQv7oiFixZDqTT+oGNFRJQfXbr1DOv3emN493pQaGniwOlb+PvsHTjaFpLqrNp5FpEx8fihtRusLU0Q+yYRvn5h+OOtnrLcWLbtFDbN6Z1p+yPm7UL/djXQq1U1pKalwT84HPtP+QAAVEJg9II9mDKwGbbO/QHBL6Kw9M+T+G1CJyT/f9jmuRuPsf3vqxjfpxG0tTTg/c8TrN/rLT3+AABOXvFFve+dsW5aNxgZ6EqPQsiK1/l7WDGpHG7cD0BYeIzasumrDqFf2xoY2bM+CpkaIiomHnceB+P8jccA0u8XnNC3EQqZGuFNQhIu+jzFos3vH4lD9DXIhBDvfbKlXC7H5cuXUaVK+jTkaWlp0NbWxrVr11CxYsUvHuTQoUNx6NAhODk54ebNm/D394eBgQF27NiB+fPn459//nl/I++IiYmBUqlEdHQ0vtFnbhLlKyqVCp07dYC7e30MGDjo/SsQFUAmxv/OHF2x45w8jIQofyvvbI2Ns3qh5U8rEfQiKq/DIcpTZ9b/JOUt73tCwUfPJJCLnPCzWbJkCezt7fH8+XPMnz8fBv+/Byg0NBSDBw/+anEQ0b9CQ0Nx5cplVKxYEcnJKdizexdCQkLQ8J0hk0RERO9Tt7Iz4hOTERgWARsrE4zt3VB6FAER5V6+mCZOS0sLY8aMyVQ+cuTIXLeR8aD1DDExMTnUJqL3kctl+PvvQ1i+7DcIARQvXgzLV6x87yMYiIiI3qWnq41h3erCylyJqNh4XLnjhyVbTuZ1WET5Tq6Tu4xJEt5X9iXdv38fgYGBSE5Wn+K3ZcuW71137ty5mDFjxpcKjeg/x9LSCr//viGvwyAiogLg73N38Pdbs1YS0cfJ9T13enp60kQJABAXF5epDEhP+KKjoz9rkM+ePUObNm1w584dyGQyaUhoRnKZm0lVsuq5s7Gx4T13RET02fCeOyIi+tw++z1306ZlPZvf1zJ8+HA4ODjg5MmTcHBwwNWrVxEeHo7Ro0dj4cKFuWpDoVBAoVB84UiJvm0BAf4YNHAAdu/ZJ816mZ/s27cXFy54Y9GiJe+vTEREeU5TQ469SwZgyoqDuP0oOK/D+SIcippj1eQuaDNiDRKTUvI6HPqPyxfJ3aVLl3Dq1CmYm5tDLpdDLpejRo0amDt3LoYNG4abN2/maXxEX8qWzZuwatVKdOrUGSNHjc60XAiBkSOH4/KlS5g3fwFq166TY3urVq1Eh46dpMQuKSkJ8+bNxUNfX/j7+6N69RqYv+D9X5hER0dj0aIF8D7vDblchrp162HkqNHQ09MDkJ5Ezvv1V/j5+eHNmziYm5ujYaPG6NevPzQ10087V65cwcIF8xEeHo5atWrh58lTpIeax8XF4YfevbBs+QoULlxY2m6LFi2x8Y8N8Ll5U3owOhHRf1HvVtUwrFs9bP/7KhZuPp5tvWLW5hjUqTZKOVihSCFjLNx0DNu91J8RLJfJMKBjLTStWRZmxvp4FREHz7O3sX6vt1THVKmPYd3qoppLMRjo6+Dmg0DM++Monodl/WDyDO0bVkTwyyi1xK6kgxWGdauLMsWLIE2lwqkrD7Fo83EkvJUYlS5eGMO61kWpYoUhhMC9JyFYuu0UHge8zHI7Rvo6GNixFqqWLwYrcyNExsTjzLVHWL3jLOIS/h25VaWsPQZ1qg1HWwskJKXg0NnbWPnXGaSp0keFFbZQYtaQlihVzAoPnoVhysqDCH3174i038Z3xIEzt3DqykOpzC/4Ne48Dkb35t+rHTOivJAvHmKelpYGQ0NDAIC5uTlCQkIAAHZ2dnj48GFOqxLlW/fv34OHhwccHZ2yrbNjx1+QIXf3voaFheGCtzeaNWsulalUKigUOujQsRMqV66c69imTZsCv2fPsGz5CixctAQ3b97Er3N/kZZramqiadOmWLZsOXbu2oMRI0fhwP79+H3dWmm706ZORpu2bbF+wwY88H2A/fs9pPVXrlyBNm3bqiV2QPrkSg0bNsKudx66TkT0X1K6eGG0a1ARj/xfvLeujkILwS8isWz7abyKjMuyTu/W1dC+QUXM23AU7UauxbJtp9CrZVV0blJJqrN4bHtYFzLByAW70XXceoS+isaaKd2go9DKcfudGlXC/lO3pN/NTQywekpXPA+LRM9JGzH0lx0oZm2OGUNaSHV0FVpYMakzwl7HoOekjegzdQveJCZj5c9doKmR9Z+uFqaGsDA1xNKtJ9Fx9DpMX+kJt/LFMHVQM6mOk10hLJvYCRd9nqLruA2YsMQDtb8rgZ+61ZPqjOpZHy8jY9F53Hq8jorDyB7u0rKG1UpBJYRaYpfh4Onb6NCgIjTkX3c+CqJ35YvkrmzZsrh1K/3E8P3332P+/Pm4cOECZs6ciWLFiuVxdESfX3x8PKZNnYqJkybB0MgwyzqPHj3E9m3bMHnKlFy1efLEcTg5OaFQoX8fWqurq4vx4yegdes2MDUzy1U7fn5+uHzpEib9PBlly5aFq6srRo8Zg+PHj+HVq1cAgKJFrdG8RUs4lSiBwoULo1at2mjUuDF8fHwAAFFRUYiKikK7du1RrFhx1KxZC/7/f4j67du38OD+fXTq1DnL7deoWRPnz59DYmJiruIlIipIdBVamPNTK8xa+zdi3rz/PHj/aSiW/nkKxy7eR8r/Hwj+rvIlrHH2+iN433yC0FfROHnFF5dv+6GsYxEAgG1hU7iUsMYv6w/j/tNQBIRG4Jf1h6HQ1kTj6mWy3XapYoVhbWUC73+eSGW1KjohNTUNv244goDQCNx/Gopffj+M+lVLwcbSBABgX9QcxoZ6WL3rLAJCI/As6DXW7T4Pc2MDFDZXZrmtp89fYeyivTh34zGCXkTh2r0ArNxxBrW+c5ISrkZupfE44CV+3+uN5y8i8c+DQPy27RQ6NvoOejraAACHomY4dOY2nodF4uCZ23Aoag4AMNBTYHDnOvh1w5Est3/59jMYGejiu9J2Ob0cRF9cvkjuJk+eDJUqfdaTmTNnws/PDzVr1oSXlxeWLVuWx9ERfX4LF8xH9erVUaXK91kuT0xMxNQpUzB27DiYmZnnqk0fHx+ULFX6k2O7e+cODA0NUeqttipXrgK5XI579+5muc7z589x+dIlVKhYEQBgYmICc3NzXLlyGYmJibjlcxOOjk5ITU3F/HnzMGHCRGhoaGTZVqlSpZGWloZ79+598r4QEeU3E/o1hvfNJ7h6x/+ztXnrURCqlLWHbWFTAOk9XK7O1rhw8ykAQFsz/Xyc/FZyKASQnJIG15LW2bZbsZQNAkMiEJ/47yznWloaSElV4e3p/JKS09t1LWkDAAgICUdkTDxa13OFpoYcCi1NtK7nimdBrxDyKirX+2Wgp4M3CUnSkEstTQ21fQCAxOQU6GhroVQxKwDAo4CXqOLiAJkMqFbeAY8D04eBjujhjl1Hr+NFeGyW20pNU+GR/wtUKGWT6/iIvoR8kdw1atQIbdu2BQA4OjrC19cXr1+/xsuXL1GvXr33rE2Uvxw/dgwPH/pi0OAh2dZZumQxyrm4oFbt2rluNywsFBbmuUsEcxIeEQ4TExO1Mk1NTRgZGSE8PFytvH+/PqhVszo6tG8LV1dX/PjjAADpM93OnjMXG//YgC6dO6FECWe0aNkSWzZvwnfffQdthTb69++Ljh3aYffuXWpt6ujowMDAAGFhoZ+8L0RE+UlDt9Io6WCF5dtPf9Z2N+6/iKMX72PfkoG4sn0C/prXD9u9ruGwd/qXaP4h4Qh9FY2hXevCUF8Hmhpy9GpVDVbmRrAwNsi23cLmSryKVE+Grt31h5mxPnq2qApNDTkM9XXwU7e6ANKHbAJAfGIyfpzxJ5rWLItL28bDe+tYVHMthp9+2SElau9jbKiL/u1qYN8JH6ns0q1ncHG2RqPqpSGXyWBhYogf29VU2/aSLSfhUMQMh1YOha2VKZZsOYmKpWzgbGeJQ2fv4NeRbXBw+WBM6t8k0xDRV5Gx2fYsEn0t+eIh5lkxNTXN6xCIPrsXL8KwePEiLFu+ItvZXc+dO4vr169jy9Y/P6jtpKQkaGt/3RljZ8/5BfFv4vH48WMsX74M27b9iR49egIAXF1dsXHTFqluYGAAvLy8sGXrnxg48Ed06tQZ1aq5oVvXznB1rQAnp3/vPVQoFByWSUT/KZZmhhjbuwEGz/4LySnvfwTUh2hQrTSa1CiLScv249nzV3C2t8To3g3wKjIWh87eQWqaCmMW7sHUQc1xduNopKapcPWOH7z/eZLjM48V2ppIeifWZ0GvMW2lJ0b1qo+hXetCpVJhx+FreB0VB9X/u/MUWpqYOrAZfB4GYeJv+6Ehl6FHi6r4bUIn9Ji4EUnZDC/NoK+rjd8mdMKzoNdYu/ucVH75th+Wbj2JSf2bYNbQVkhJScXve71RsbQtxP+TxleRsRg+798vFbU0NbDy586YttIT/drVQHxCMtqOWIMVkzqjXYOK2HnkulQ3MTn1vfcgEn1p+Ta5IyqIfH19ERkZgd69ekhlaWlp8Ll5E3v27Ma58xdw4/p1BAcHoUF99V7riRPGo7yrK1avXptl20pjY8TGxnxyjGamZoiMVJ8dLTU1FTExMTB75749S8v0YS4OxYohTZWGX+f+gq5du2U55PLXuXMxbPhwCJUKjx4+hLt7fejo6KBChYq4efMfteQuJiYGJsYmmdogIiqoShUrDDNjA2yb11cq09SQo2IpW3RsXAlVu/4qJUcfakR3d2w6cBHHLt4HADx5/gpWFkr80NoNh86mP1j8gV8YuoxbDwNdBTQ1NRAVG4/Nc3rjwbPsR1FExSbA0bZQpvIjF+7hyIV7MFXqIyExGQJAt+bfI/hF+rWlcY0yKGKhRO/Jm6Thm5N+24+zG0ejduUSUpxZ0dPRxopJXRCfkIzRC3cj9Z2HGW/7+yq2/X0V5iYGiI1LRJFCSgzrVg9BL6OybK9vm+q4fNsPD/zCMHlAM6zaeQapaSqcuvoQlcvaqyV3SgNdBL3IefZQoi+NyR3RN6RSpcrYtv0vtbLZs2bCzs4ePXr2hIaGBnr26oWWrVqp1enWtQuGjxiJmjVrZtu2cwln+P1/0pJPUbZcOcTGxsL3wQOULFUKAHDj+nWoVCqUKVM22/WEEEhNTYXI4o+PgwcPwMjICLVq1UZMTHoCmpqaKv2rSvv3m9+goCAkJSWhhLPzJ+8LEVF+cfWOPzqMXqdWNn1Qc/iHhGPTgUsfndgBgI5CE6p3hjuqVALyLHrlMh4rYGNlgtLFC2P1zrPZtuvrF4b2DStmuzwi+g0AoFXd8khOTsXl237/j0cLKgG1+/KEEBBAljFl0NfVxsqfuyA5JQ0j5+/KsYfz9f9nDm1UvQxCX0fD91lYpjoORc3QuEYZdB63HgCgIZdB8/9fTmpqyCF/Z2bM4jYWOHH5QbbbJPoamNwRfUP09fVRvLijWpmOri6USqVUbmZmnuUkKlZWVihSpGi2bX9ftSp+mTMHaWlpaj1nfs+eISU1BTExMYh/E49Hj9KneC5RIj15unfvHmbOmIblK1ahUKFCcHBwQNVq1fDL3DkYP34iUlNTsXDhAjRo0BAWFhYAgCNHDkNTUxPFiztCW1sLDx48wOpVK1G/QQPpOXcZIiIisPGPP7Du9/SLp5GREeztHbBjx1/4/vvvcf36NfT+4Qepvo/PTRQtWhTW1tnfxE9EVNDEJybj6fNXamUJSSmIjk3IVP42TQ05ilmnn5u1NDVQyNQQJewskZCYjOf/72U6d+Mx+ratjrDXMXga9Aol7a3QvXkVHDj97yMM6lcticiYeIS9joGjbSGM7d0AZ649khKyrFy/FwA9HW0Ut7FQi7FTo0q49SgI8YnJqOrigOHd3bF8+ynExacnjldu+2FEd3dM6NsYO49cg0wmww+t3ZCWpsL1ewEAAAsTQ6yZ2hVTV3ji3tMQ6OtqY9XPXaGj0MTk5Qegr6uAvm76rQiRMfFS8tuzRVVc9HkKlRCo931J/NDaDeOX7MsyOZ78Y1Ms2nxcejC5z8MgtHV3RWBoOJrVcsHRC/9O7FXYQolCpoa4eufTv0Ql+hRM7oj+I6pVc4OmpgauXbuKqlWrSeUjR41AWOi/w2p69ugOALh8Jf0ht4mJiQgICJB60gBgxoxZWLRwAX4aOhgyWfpDzEeNHiMt19DQwNYtW/D8eSCEELCyskL79h3QuUvXTHEtWbwIXbt1kxJDAJgydRpmzpyOXTt3olu37ihd+t+pto8fO4ZWrVp/6uEgIiqQpg9ujiIWxvhxRvp92RamhtixoJ+0vGfLaujZshqu3wuQ6sz/4xgGd6qNif0aw0Sph1cRcdh7/CbW7TkvrWduYoBRPRvAzFgfryPjcOjcHfz+1vKsRMcl4PTVh2hSowxW/HVGKi/jWBgDOtaEno42/IPD8cs6L/x9/t/Zlv1DwjFi3i782KEmNs3uDZUQeOgXhqG//IXXUek9bpqacjgUNYeOIv1P2ZIOVihXIv0LzoPL1SckazZkhfQg8uoViqNv2+rQ0tLAY/+XGDl/Ny76PM0Ue7v6FRAe/Qbn33qMw9rd5/DLsNbYPOcHXLz1FLuO/jsks3H1Mrh8+xlCX3/67Q9En0Imshoj9Q04ePBgruu2bNnyg9uPiYmBUqlEdHQ03hmOTVRg7dm9C+fPn8dvy5bndSgf5dmzpxgyeDB279kLA4PsZ2gjyismxkbS/yt2nJOHkdB/1e/Tu+P6vQCs3Z1z4vW1ONkWwqrJXdDyp1VI+H8PWEGjqSHHgWWDMWnZftx6GJTX4VABdGb9T1LeYmRklGPdb7bnrnXr1mq/y2QytXt13p6dKS3t884aRVRQtW7TFrFxcXjz5g309fXzOpwP9vr1a0ybPp2JHRFRFgx0FbC2NMGwuTvzOhTJ48CXWLbtNIoWMsaTHIaP5meFzZX4w+MCEzv6Jnyzz7lTqVTSz7Fjx+Dq6orDhw8jKioKUVFR8PLyQsWKFXHkyJG8DpUo39DU1MQPP/TJl4kdAFSp8r3akFIiIvpXXEISmgxa/s31kHmevV1gEzsAeP4iEntP3MzrMIgAfMM9d28bMWIE1qxZgxo1akhljRo1gp6eHn788Uc8eMCZiYiIiIiI6L/tm+25e9vTp09hbGycqVypVMLf3/+rx0NERERERPStyRfJXeXKlTFq1Ci8ePFCKnvx4gXGjh2LKlWq5GFkRERERERE34Z8kdz98ccfCA0Nha2tLRwdHeHo6AhbW1sEBwdjw4YNeR0eERERERFRnssX99w5Ojri9u3bOH78OHx9fQEApUqVQv369dVmzSQiIiIiIvqvyhfJHZD+6IOGDRuiVq1aUCgUTOqIiIiIiIjeki+GZapUKsyaNQtFixaFgYEB/Pz8AABTpkzhsEwiIiIiIiLkk+Ru9uzZ2LRpE+bPnw9tbW2pvGzZsli/fn0eRkZERERERPRtyBfJ3ZYtW7Bu3Tp069YNGhoaUnn58uWle/CIiIiIiIj+y/JFchccHAxHR8dM5SqVCikpKXkQERERERER0bclXyR3pUuXxvnz5zOV79mzBxUqVMiDiIiIiIiIiL4t+WK2zKlTp6JXr14IDg6GSqXCvn378PDhQ2zZsgWHDh3K6/CIiIiIiIjyXL7ouWvVqhU8PT1x4sQJ6OvrY+rUqXjw4AE8PT3RoEGDvA6PiIiIiIgoz+WLnjsAqFmzJo4fP57XYRAREREREX2T8kXPHREREREREeUsX/TcmZiYQCaTZSqXyWTQ0dGBo6MjevfujR9++CEPoiMiIiIiIsp7+SK5mzp1KubMmYMmTZqgSpUqAICrV6/iyJEjGDJkCPz8/DBo0CCkpqaif//+eRwtERERERHR15cvkjtvb2/Mnj0bAwcOVCtfu3Ytjh07hr1798LFxQXLli1jckdERERERP9J+eKeu6NHj6J+/fqZyt3d3XH06FEAQNOmTfHs2bOvHRoREREREdE3IV8kd6ampvD09MxU7unpCVNTUwDAmzdvYGho+LVDIyIiIiIi+ibki2GZU6ZMwaBBg3D69Gnpnrtr167By8sLa9asAQAcP34ctWvXzsswiYiIiIiI8ky+SO769++P0qVLY8WKFdi3bx8AwNnZGWfPnoWbmxsAYPTo0XkZIhERERERUZ7KF8kdAFSvXh3Vq1fP6zCIiIiIiIi+SfkiuYuJicmyXCaTQaFQQFtb+ytHRERERERE9G3JF8mdsbFxlg8xz2BtbY3evXtj2rRpkMvzxRwxREREREREn1W+SO42bdqEn3/+Gb1791Z7iPnmzZsxefJkvHr1CgsXLoRCocCkSZPyOFoiIiIiIqKvL18kd5s3b8aiRYvQsWNHqaxFixYoV64c1q5di5MnT8LW1hZz5sxhckdERERERP9J+WIM48WLF1GhQoVM5RUqVMClS5cAADVq1EBgYODXDo2IiIiIiOibkC+SOxsbG2zYsCFT+YYNG2BjYwMACA8Ph4mJydcOjYiIiIiI6JuQL4ZlLly4EB06dMDhw4dRuXJlAMD169fh6+uLPXv2AEh/qHmnTp3yMkwiIiIiIqI8ky+Su5YtW+Lhw4dYu3YtHj58CABo0qQJ9u/fD3t7ewDAoEGD8jBCIiIiIiKivJUvkjsAsLe3x9y5c/M6DCIiIiIiom9SvknuACA+Ph6BgYFITk5WK3dxccmjiIiIiIiIiL4N+SK5e/XqFX744QccPnw4y+VpaWlfOSIiIiIiIqJvS76YLXPEiBGIiorClStXoKuriyNHjmDz5s1wcnLCwYMH8zo8IiIiIiKiPJcveu5OnTqFAwcOoFKlSpDL5bCzs0ODBg1gZGSEuXPnolmzZnkdIhERERERUZ7KFz13b968QaFChQAAJiYmePXqFQCgXLly+Oeff/IyNCIiIiIiom9CvkjunJ2dpUcglC9fHmvXrkVwcDDWrFmDwoUL53F0REREREREeS9fDMscPnw4QkNDAQDTpk1D48aNsW3bNmhra2PTpk15GxwREREREdE3IF8kd927d5f+/9133yEgIAC+vr6wtbWFubl5HkZGRERERET0bcgXyd279PT0ULFixbwOg4iIiIiI6JvxzSZ3o0aNynXdxYsXf8FIiIiIiIiIvn3fbHJ38+bNXNWTyWRfOBIiIiIiIqJv3zeb3J0+fTqvQyAiIiIiIso3vulHITx79gxCiLwOg4iIiIiI6Jv3TSd3Tk5O0gPLAaBTp0548eJFHkZERERERET0bfqmk7t3e+28vLzw5s2bPIqGiIiIiIjo2/VNJ3dERERERESUO990cieTyTLNhsnZMYmIiIiIiDL7ZmfLBNKHZfbu3RsKhQIAkJiYiIEDB0JfX1+t3r59+/IiPCIiIiIiom/GN53c9erVS+337t2751EkRERERERE37ZvOrnbuHFjXodARERERESUL3zT99wRERERERFR7jC5IyIiIiIiKgCY3BERERERERUATO6IiIiIiIgKACZ3REREREREBQCTOyIiIiIiogKAyR0REREREVEBwOSOiIiIiIioAPimH2L+JQkhAAAxMTEwMjLK42iIiKggiImJkf5/Zv1PeRgJEREVFBnXloz8JSf/2eQuNjYWAGBjY5PHkRAREREREeUsNjYWSqUyxzoykZsUsABSqVQICQmBoaEhZDJZXodD9M2KiYmBjY0Nnj9/zl5uIiL6LHhtIco9IQRiY2NRpEgRyOU531X3n+25k8vlsLa2zuswiPINIyMjXoCJiOiz4rWFKHfe12OXgROqEBERERERFQBM7oiIiIiIiAoAJndElCOFQoFp06ZBoVDkdShERFRA8NpC9GX8ZydUISIiIiIiKkjYc0dERERERFQAMLkjIiIiIiIqAJjcERERERERFQBM7oiIiIiIiAoAJndE/2EymQz79+/Pk22fOXMGMpkMUVFROdazt7fH0qVLv0pMRET04fLyWvI58XpDBQGTO6Kv4NKlS9DQ0ECzZs0+eN28vNj07t0bMpkMMpkM2tracHR0xMyZM5GamvrJbbu5uSE0NBRKpRIAsGnTJhgbG2eqd+3aNfz444+fvD0iovwuv19Lfv31V7Xy/fv3QyaTffV4eL2hgozJHdFXsGHDBvz00084d+4cQkJC8jqcD9K4cWOEhobi8ePHGD16NKZPn44FCxZ8crva2tqwsrJ674XdwsICenp6n7w9IqL8Lj9fS3R0dDBv3jxERkbmdSjZ4vWGCgImd0RfWFxcHHbu3IlBgwahWbNm2LRpU6Y6np6eqFy5MnR0dGBubo42bdoAAOrUqYOAgACMHDlS6kEDgOnTp8PV1VWtjaVLl8Le3l76/dq1a2jQoAHMzc2hVCpRu3Zt/PPPPx8cv0KhgJWVFezs7DBo0CDUr18fBw8eBABERkaiZ8+eMDExgZ6eHpo0aYLHjx9L6wYEBKBFixYwMTGBvr4+ypQpAy8vLwDqwzLPnDmDH374AdHR0dJ+Tp8+HYD6t81du3ZFp06d1OJLSUmBubk5tmzZAgBQqVSYO3cuHBwcoKuri/Lly2PPnj0fvN9ERN+S/H4tqV+/PqysrDB37twc63l7e6NmzZrQ1dWFjY0Nhg0bhjdv3kjLQ0ND0axZM+jq6sLBwQHbt2/P1Cu5ePFilCtXDvr6+rCxscHgwYMRFxcHALzeUIHH5I7oC9u1axdKliwJZ2dndO/eHX/88QeEENLyv//+G23atEHTpk1x8+ZNnDx5ElWqVAEA7Nu3D9bW1pg5cyZCQ0MRGhqa6+3GxsaiV69e8Pb2xuXLl+Hk5ISmTZsiNjb2k/ZHV1cXycnJANKH2ly/fh0HDx7EpUuXIIRA06ZNkZKSAgAYMmQIkpKScO7cOdy5cwfz5s2DgYFBpjbd3NywdOlSGBkZSfs5ZsyYTPW6desGT09P6SINAEePHkV8fLz0R8zcuXOxZcsWrFmzBvfu3cPIkSPRvXt3nD179pP2m4goL+X3a4mGhgZ++eUXLF++HEFBQVnWefr0KRo3box27drh9u3b2LlzJ7y9vTF06FCpTs+ePRESEoIzZ85g7969WLduHV6+fKnWjlwux7Jly3Dv3j1s3rwZp06dwrhx4wDwekP/AYKIvig3NzexdOlSIYQQKSkpwtzcXJw+fVpaXq1aNdGtW7ds17ezsxNLlixRK5s2bZooX768WtmSJUuEnZ1dtu2kpaUJQ0ND4enpKZUBEB4eHtmu06tXL9GqVSshhBAqlUocP35cKBQKMWbMGPHo0SMBQFy4cEGq//r1a6Grqyt27dolhBCiXLlyYvr06Vm2ffr0aQFAREZGCiGE2Lhxo1AqlZnqvb3/Gcdvy5Yt0vIuXbqITp06CSGESExMFHp6euLixYtqbfTt21d06dIl2/0kIvrWFZRrSdWqVUWfPn2EEEJ4eHiIt/8U7du3r/jxxx/V1j1//ryQy+UiISFBPHjwQAAQ165dk5Y/fvxYAMi0b2/bvXu3MDMzk37n9YYKMvbcEX1BDx8+xNWrV9GlSxcAgKamJjp16oQNGzZIdXx8fODu7v7Zt/3ixQv0798fTk5OUCqVMDIyQlxcHAIDAz+onUOHDsHAwAA6Ojpo0qQJOnXqhOnTp+PBgwfQ1NTE999/L9U1MzODs7MzHjx4AAAYNmwYZs+ejerVq2PatGm4ffv2J+2TpqYmOnbsiG3btgEA3rx5gwMHDqBbt24AgCdPniA+Ph4NGjSAgYGB9LNlyxY8ffr0k7ZNRJRXCsK1JMO8efOwefNm6Trxtlu3bmHTpk1q5+9GjRpBpVLBz88PDx8+hKamJipWrCit4+joCBMTE7V2Tpw4AXd3dxQtWhSGhobo0aMHwsPDER8fn+s4eb2h/EozrwMgKsg2bNiA1NRUFClSRCoTQkChUGDFihVQKpXQ1dX94HblcrnacBwA0lDIDL169UJ4eDh+++032NnZQaFQoFq1atKQytyqW7cuVq9eDW1tbRQpUgSamrk/bfTr1w+NGjXC33//jWPHjmHu3LlYtGgRfvrppw+K4W3dunVD7dq18fLlSxw/fhy6urpo3LgxAEjDZ/7++28ULVpUbT2FQvHR2yQiyksF4VqSoVatWmjUqBEmTpyI3r17qy2Li4vDgAEDMGzYsEzr2dra4tGjR+9t39/fH82bN8egQYMwZ84cmJqawtvbG3379kVycvIHTZjC6w3lR0zuiL6Q1NRUbNmyBYsWLULDhg3VlrVu3Rp//fUXBg4cCBcXF5w8eRI//PBDlu1oa2sjLS1NrczCwgJhYWEQQkg3xvv4+KjVuXDhAlatWoWmTZsCAJ4/f47Xr19/8H7o6+vD0dExU3mpUqWQmpqKK1euwM3NDQAQHh6Ohw8fonTp0lI9GxsbDBw4EAMHDsTEiRPx+++/Z5ncZbWfWXFzc4ONjQ127tyJw4cPo0OHDtDS0gIAlC5dGgqFAoGBgahdu/YH7ysR0bemoFxL3vbrr7/C1dUVzs7OauUVK1bE/fv3s7zmAICzszNSU1Nx8+ZNfPfddwDSe9DenoHzxo0bUKlUWLRoEeTy9AFqu3btUmuH1xsqyJjcEX0hhw4dQmRkJPr27Ss9yy1Du3btsGHDBgwcOBDTpk2Du7s7ihcvjs6dOyM1NRVeXl4YP348gPTZu86dO4fOnTtDoVDA3NwcderUwatXrzB//ny0b98eR44cweHDh2FkZCRtw8nJCVu3bkWlSpUQExODsWPHftQ3u9lxcnJCq1at0L9/f6xduxaGhoaYMGECihYtilatWgEARowYgSZNmqBEiRKIjIzE6dOnUapUqSzbs7e3R1xcHE6ePIny5ctDT08v229Yu3btijVr1uDRo0c4ffq0VG5oaIgxY8Zg5MiRUKlUqFGjBqKjo3HhwgUYGRmhV69en23/iYi+hoJ4LSlXrhy6deuGZcuWqZWPHz8eVatWxdChQ9GvXz/o6+vj/v37OH78OFasWIGSJUuifv36+PHHH7F69WpoaWlh9OjR0NXVlZJTR0dHpKSkYPny5WjRogUuXLiANWvWqG2H1xsq0PLyhj+igqx58+aiadOmWS67cuWKACBu3bolhBBi7969wtXVVWhrawtzc3PRtm1bqe6lS5eEi4uLUCgUajeer169WtjY2Ah9fX3Rs2dPMWfOHLWb4P/55x9RqVIloaOjI5ycnMTu3bsz3VCPD7gJPisRERGiR48eQqlUCl1dXdGoUSPx6NEjafnQoUNF8eLFhUKhEBYWFqJHjx7i9evXQojME6oIIcTAgQOFmZmZACCmTZsmhMh6EoD79+8LAMLOzk6oVCq1ZSqVSixdulQ4OzsLLS0tYWFhIRo1aiTOnj2b7X4QEX2rCuq1xM/PT2hra4t3/xS9evWqaNCggTAwMBD6+vrCxcVFzJkzR1oeEhIimjRpIhQKhbCzsxPbt28XhQoVEmvWrJHqLF68WBQuXFi6Lm3ZsoXXG/rPkAnxzmBrIiIiIqJ8ICgoCDY2NtIkKkT/dUzuiIiIiChfOHXqFOLi4lCuXDmEhoZi3LhxCA4OxqNHj6T74Yj+y3jPHRERERHlCykpKZg0aRKePXsGQ0NDuLm5Ydu2bUzsiP6PPXdEREREREQFAB9iTkREREREVAAwuSMiIiIiIioAmNwREREREREVAEzuiIiIiIiICgAmd0RERERERAUAkzsiIiIiIqICgMkdERERERFRAcDkjoiIiIiIqABgckdERERERFQAMLkjIiIiIiIqAJjcERERERERFQBM7oiIiIiIiAoAJndEREREREQFAJM7IqJv2PTp0yGTyaQfMzMz1KhRA15eXnkWU506ddC8efMPXm/p0qVZxm1vb4+hQ4d+jtByLS0tDStWrEDFihWhp6cHpVIJd3f3jz6uUVFRmD59Ou7fv/+ZI817d+7cgaGhIV69epVpmYeHB2QyGdzd3T+q7TNnzuCXX3751BBzNH36dBgYGEi/X7hwAebm5oiJifmi2yUiygtM7oiIvnG6urq4dOkSLl26hN9//x2JiYlo0aIFLl68mNehfZDskjsPDw+MGTPmq8WhUqnQrl07jBo1CvXq1YOnpyf+/PNPGBsbo1mzZli0aNEHtxkVFYUZM2YUyORu8uTJ6N27NywsLDIt27ZtG4D0JC0kJOSD2/4ayd27qlevjjJlynzU60xE9K1jckdE9I2Ty+WoWrUqqlatirZt2+LAgQMQQmDz5s15HdpnUaFCBdjb23+17a1YsQIHDhzAunXrsHDhQri7u6NFixbYu3cvevbsifHjx8PHx+erxfMte/bsGTw9PdGnT59My2JiYvD333+jfv36UKlU2LFjRx5E+HH69u2L1atXIyUlJa9DISL6rJjcERHlM0WLFoWFhQUCAwPVyi9duoR69epBX18fSqUSXbt2xcuXL9Xq/Prrr3B0dISOjg4sLCxQv359+Pn5ScsjIiLQp08fmJubQ1dXF25ubjh37lyO8fTu3Rtly5ZVK4uKioJMJsOmTZsApA+9DAgIwMqVK6Uhpm8ve3dY5r59++Dq6godHR0UKVIEo0aNQmJiorT8zJkzkMlkOH78OLp27QpDQ0PY2dlh/vz57z1+S5cuhbOzM3r27Jlp2cyZMyGTybB8+XKpLKv49u/fD5lMBn9/f/j7+8PBwQEA0KFDB2n//P39AQBJSUmYPHkyihUrBoVCAWtra/Tu3fuj9vfo0aPo2LEjDAwMYGtri+3btwMAli1bBltbW5iamqJfv35ISkpSaz8oKAjdu3eXXtdatWrhxo0b7z1WW7ZsQbFixVChQoVMy/bt24fExERMnz4d3333ndSL9zaVSoXFixejVKlSUCgUsLKyQocOHRAdHY3p06djxowZePPmjXTM6tSpAyB376mM+GrUqAFTU1OYmJigTp06uHr16nv3q3Xr1oiKisrT4c1ERF8CkzsionwmLi4OERERUkIBpCd2derUgVKpxM6dO7Fu3Tpcu3YNrVq1kups2bIFU6ZMQd++fXHkyBGsX78erq6u0r1HaWlpaNKkCTw9PTFv3jzs3r0bBgYGaNCgQa4SgZx4eHjAysoK7du3l4aYNmvWLMu6Bw8eRPv27VG6dGns378f48aNw5o1a9C9e/dMdQcOHIgSJUrAw8MDLVq0wPjx43HkyJFs43j+/Dn8/PzQrFkzyOWZL4F2dnZwcXF5b0L7tsKFC2Pfvn0AgF9++UXav8KFCwMA2rVrh8WLF6NPnz74+++/sWDBArx58+aj9nfQoEEoW7YsPDw8ULVqVfTo0QPjx4/H0aNHsWbNGsycORNbtmxRG3IYGRmJGjVqwMfHB8uXL8fevXuhr6+PevXqZUr+33XixAm4ublluWzbtm2wt7eHm5sbunbtin/++QcPHz5Uq/PTTz9h3LhxaN68OTw9PbFy5UoYGhoiLi4O/fr1Q9++fdWGHa9atSp3B/3//P390bNnT+zevRvbt2+Hra0tatWqhUePHuW4npGREcqUKYPjx49/0PaIiL55goiIvlnTpk0T+vr6IiUlRaSkpIiAgADRqVMnYWJiInx9faV6tWrVEm5ubkKlUkll9+7dEzKZTPz9999CCCGGDBkiKlasmO22Dhw4IACII0eOSGXJycnC1tZWtG3bViqrXbu2aNasmfR7r169RJkyZdTaioyMFADExo0bpTI7OzsxZMiQTNt9t7xChQqiWrVqanXWrl0rAIjbt28LIYQ4ffq0ACDGjh0r1VGpVMLe3l707ds32328dOmSACCWLl2abZ3WrVsLHR2dHOP28PAQAISfn58QQgg/Pz8BQOzevVut3rFjxwQAsX379my39yH7O27cOKlOVFSU0NDQEDY2NiI5OVkqb9eunXB1dZV+nzp1qlAqleLFixdSWWJiorC1tVU7fu9SqVRCoVCIBQsWZFoWGhoqNDQ0xIQJE4QQQgQHBwu5XC6mTJki1Xn48KGQyWTil19+yXYbGe/vd+X2PfW2tLQ0kZKSIpydncXEiRNztY1KlSplGxsRUX7Enjsiom/cmzdvoKWlBS0tLdjZ2WHPnj3YunUrnJ2dAQDx8fG4cOECOnTogLS0NKSmpiI1NRUlSpSAjY0Nrl27BgCoWLEibt68iVGjRsHb2zvT/Ubnz5+HkZERGjVqJJVpaWmhbdu28Pb2/ir7GhcXBx8fH7Rv316tvFOnTgCQKY6GDRtK/5fJZChVqhSCgoK+fKC5dPLkSejp6aFz585ZLv/Q/W3QoIH0f6VSiUKFCqFWrVrQ0tKSykuUKIHnz59Lvx87dgx169aFqamp9N7Q0NBA7dq1pfdGViIjI5GUlJTlRCo7d+5EWloaunbtCgAoUqQIateuLQ0TBYBTp05BCIG+fftmu41P9eDBA7Rp0waWlpbQ0NCAlpYWHj58+N6eOwAwNzdHaGjoF4uNiCgvMLkjIvrG6erq4tq1a7hy5Qr+/PNPFC5cGD179pT+MI2MjERaWhpGjhwpJYEZP4GBgdIf+r1798aSJUtw9OhR1KxZExYWFhg+fDgSEhKkdgoVKpRp+5aWloiIiPgq+xoVFQUhBCwtLdXKlUolFApFpjiMjY3VftfW1la7V+1dRYsWBYBM9yu+LTAwENbW1h8YedbCw8NRuHBhyGSyLJd/jv193zF4/fo19u/fn+m9sXXrVrUk8F0ZbSgUikzLtm3bBmdnZ9jY2CAqKgpRUVFo2bIlnj59iitXrkj7rqmpmeV76nOIjY1Fw4YNERAQgMWLF+P8+fO4du0aypcvn+N7IINCoZDe+0REBYVmXgdAREQ5k8vlqFSpEgCgSpUqcHZ2xvfff4+ZM2di9erVMDY2hkwmw6RJk9C6detM65ubm0vtDB8+HMOHD0dwcDB27NiBCRMmwNzcHFOmTIGpqWmW92C9ePECpqam2cano6OD5ORktbLIyMiP2teMfXk3jujoaCQlJeUYR27Y2NjAwcEBhw8fxsKFCzMlXYGBgbh9+7baZCufsn9mZmYIDQ2FECLLBO9L7y8AmJqaonHjxpg1a1amZVklbm+vB6QnoG978uSJ1ONnYmKSab1t27bh+++/h5mZGVJTU/Hy5csPTvByc8wvXbqEoKAgHDp0COXLl5fKo6Ojc5WcR0VFwczM7IPiIiL61rHnjogon6lUqRK6dOmCjRs3IiwsDPr6+qhWrRoePHiASpUqZfrJ6jEDRYsWxejRo+Hi4oIHDx4AAGrUqIGYmBgcO3ZMqpeamgoPDw/UqFEj23isra0RFBSEuLg4qeztNjK8r1cNAAwMDODq6oo9e/aole/atUuK8VONGDECDx48wNatWzMtmz59OoQQ+Omnn6Qya2tr6RhleHf/tLW1ASDT/tWvXx/x8fFS/O/6Gvtbv3593L9/H6VKlcr03ihXrly26+no6MDW1lZtNlUA2L59O2QyGTw8PHD69Gm1n0aNGklDNuvVqweZTIaNGzdmuw1tbe1MM3sCuXtPZfS6ZRx7ALh48aI0S+n7+Pv7S0ObiYgKCvbcERHlQ1OmTMGOHTuwdOlS/Prrr1iwYAHq1auHTp06oXPnzjAxMUFQUBCOHz+OH374AXXq1MGAAQNgYmKCqlWrwsTEBBcuXMCtW7cwePBgAECzZs1QpUoVdO/eHb/++issLS2xfPlyhIaGYtKkSdnG0rZtW0ydOhV9+vRB//79ce/ePaxfvz5TvVKlSuHUqVM4fvw4TExM4ODgkGXPyfTp09G6dWt0794d3bt3x8OHDzFp0iS0a9cux2Qkt4YOHYpTp06hX79+uHPnDpo0aYKEhARs2rQJe/bswcKFC+Hq6irVb9++PQYNGoQZM2bAzc0NXl5euHTpklqbVlZWMDY2xl9//QUHBwcoFAq4uLigfv36aNq0Kfr06YOnT5/i+++/R0REBPbs2YOdO3d+lf0dNWoUtm3bhtq1a2P48OGwtbXFq1evcOXKFRQpUgQjR47Mdt3q1atnmil1+/btqFmzZpa9xDExMWjVqhVOnDiBRo0aYeDAgZg8eTIiIiLg7u6O+Ph4/P3335g+fTqKFi2KUqVKITU1Fb/99hvc3NxgZGQEZ2fnXL2nqlatCgMDAwwZMgQTJkxAcHAwpk2bJg29fZ/r169j9OjRuapLRJRv5Ol0LkRElKPsZvoTQohu3boJIyMjERUVJYQQ4tq1a6Jp06ZCqVQKXV1d4eTkJAYOHCieP38uhBBi06ZNonr16sLU1FTo6OiI0qVLi2XLlqm1+fr1a9G7d29hamoqFAqFqFatmjhz5oxanXdnyxRCiC1btghHR0ehq6srGjRoIHx8fDLNbHj37l1Rs2ZNYWhoqLYsq9ko9+zZI1xcXIS2trawsrISI0aMEAkJCdLyjNkjr127prZeq1atRO3atXM+qEKI1NRUsWzZMuHq6ip0dXWFkZGRqFu3rjSz6NtSUlLEmDFjhKWlpVAqlWLAgAFi+/btarNlCpE+g2apUqWEQqFQW5aQkCAmTJggbG1thZaWlrC2thZ9+vT5LPub1bHL6j0TGhoq+vbtKwoXLiy0tbWFtbW1aN++vbhw4UKOx2nv3r1CR0dHxMTECCGEuH79ugAg1q9fn2X95ORkYWFhIXr06CGESJ/Bcv78+cLJyUloaWkJKysr0alTJxEdHS0d28GDBwtLS0shk8nUXrvcvKcOHz4sypQpI3R0dISLi4vw8vLK9P7M6njcuHFDyGQy8eTJkxz3n4gov5EJIUTepZZERET0rUpJSYGtrS3mzZuX5UPf86uxY8fixo0bOHXqVF6HQkT0WTG5IyIiomz99ttv2LJlyyc/yP5bERMTAzs7Oxw4cAC1atXK63CIiD4r3nNHRERE2Ro4cCBiYmLw+vVraebV/CwwMBCzZs1iYkdEBRJ77oiIiIiIiAoAPgqBiIiIiIioAGByR0REREREVAAwuSMiIiIiIioAmNwREREREREVAEzuiIiIiIiICgAmd0RERERERAUAkzsiIiIiIqICgMkdERERERFRAcDkjoiIiIiIqABgckdERERERFQAMLkjIiIiIiIqAJjcERERERERFQBM7oiIiIiIiAoAJndEREREREQFAJM7IiIiIiKiAoDJHRERERERUQHA5I6IiIiIiKgAYHJHRERERERUADC5IyIiIiIiKgCY3BERERERERUATO6IiIiIiIgKACZ3REREREREBQCTOyIiIiIiogKAyR0REREREVEBwOSOiIiIiIioAGByR0REREREVAAwuSMiIiIiIioAmNwREREREREVAEzuiIiIiIiICgAmd0RERERERAUAkzsiIiIiIqICgMkdERERERFRAcDkjoiIiIiIqABgckdERERERFQAMLkjIiIiIiIqAJjcERERERERFQBM7oiIiIiIiAoAJndEREREREQFAJM7IiIiIiKiAoDJHRERERERUQHA5I6IiIiIiKgAYHJHRERERERUADC5IyIiIiIiKgCY3BERERERERUATO6IiIiIiIgKACZ3REREREREBQCTOyIiIiIiogKAyR0REREREVEBwOSOiIiIiIioAGByR0REREREVAAwuSMiIiIiIioAmNwREREREREVAEzuiIiIiIiICgAmd/TJZDIZfHx88mTbvXv3xogRI7Jctm3bNri5uX3dgOizqlOnDs6cOZPXYXywM2fOwNjYWPq9Tp06WLp0aZ7F863LL69zYGAgDAwMEB0d/Vnq0cfJL+8XylubNm1C79698zoMoq+OyV0BZWBgIP1oaGhAoVBIvzdp0iTb9XJKlj7Gpk2boKGhIW27cOHCGDx4MJKSkj7bNrLTrVs3XLx48Ytuw9PTE7Vq1YKhoSHMzMxQpUoVrFmz5otuM4O9vT3279//UesKIVCjRg3IZDJERUUBAJKSktC/f384ODjA0NAQJUuWxB9//JFp3fXr18PZ2Rn6+vqwt7fHgQMHAACPHj1CmzZtYGVlBWNjY1SvXh0XLlz42N37LOzt7aGrqwsDAwOYm5ujWbNmePLkSZ7GlBtTpkxBuXLloKmpmenz+DHH+cGDB6hevTr09PRQokQJHDx4MNfLY2Ji0KxZMyiVSjRv3hxxcXHSsh07dqBHjx6fvsOf6N3XuUWLFnj69Oln346trS3i4uKgVCo/S73PITef25iYGHTt2hVGRkawtLTErFmz3ttudp9zADh+/DgqVqwIQ0NDlC5dGkeOHFHbVn56v2T8HDp0CACwYsUKVKpUCQqFAq1bt35vW1euXEHdunVhYmICY2NjuLi4YNOmTV92Bz7S3bt30ahRI5ibm6ud+zO8e702MDDA/Pnzs23v9OnTqFu3LpRKpdqXWRlevnyJzp07w8LCAhYWFhgzZgzS0tKk5UuXLkWhQoXg6OiIc+fOSeVRUVEoU6YMXr169cn7/CmmT58OTU1NtePRpUsXAMDmzZtRpUoVKJVKFC5cGH379s10PN8WGxuLwYMHo2jRojAwMICNjQ06d+78lfbkw/34449wdnaGXC7P9MVkUFAQ3NzcYGZmBqVSCVdXV3h4eGTbVmhoKFq2bIkiRYpk2xmwf/9+ODk5QU9PDzVq1ICvr6+07O7du3BxcYGpqSkmTJigtt7AgQOxYcOGT9rXgojJXQEVFxcn/dSsWRPz5s2Tfj98+PBXjaVcuXLStm/cuIELFy5g4cKFXzWGL2H16tXo1asX+vfvj6CgILx+/RqrV6+W/kj4lq1atQoKhUKtLDU1FYULF8aJEycQExODTZs2YfTo0Th27JhUZ926dVi0aBF27NiBuLg4XLlyBeXKlQOQfkFu0qQJ7ty5g/DwcPTu3RtNmzbF69evv+q+veuvv/5CXFwc/P39YWxsjD59+uRpPLnh6OiI+fPno2XLlpmWfehxTklJQYsWLeDu7o6IiAgsXrwYXbt2lZLc9y1fu3YtjIyMEB4eDl1dXaxdu1aKY9asWViyZMkXOgofJuN1fvbsGfT09NCzZ88s66Wmpn7lyL6s3Hxuf/rpJ0RERCAwMBDnz5/H77//ji1btmTbZk6f82fPnqFNmzaYOXMmoqOjMX/+fLRr1w7Pnj0DkP/eLxk/zZs3BwAUKVIEkydPRv/+/d/bRmxsLBo3boxOnTrh5cuXePXqFTZs2IBChQp99nhTUlI+uQ0tLS107Ngxx+Tz7et1XFwcxo0bl21dfX199OnTB4sXL85yeY8ePaBQKBAQEIBbt27h5MmTmDdvHgAgLCwMs2fPxq1bt7B48WIMGTJEWm/8+PEYM2YMLCwsPm5HP6OMLygyfv766y8AQHx8PObPn48XL17g3r17CA0NxeDBg7NtZ+TIkfD398c///yDuLg4XLp0CXXq1Pns8aampkII8cntlC9fHqtWrUKVKlUyLTMxMcGmTZvw6tUrREdHY9WqVejevTv8/PyybEsul6Nx48bZfhn98OFDdOvWDUuWLEFERATq1auHVq1aSefq8ePHY9CgQfDz88OuXbtw48YNAMCFCxfw6NGjfHFN/+oEFXi1a9cWS5YskX4/evSocHV1FUZGRqJChQri+PHjQgghfvvtN6GpqSm0tLSEvr6+KF26tBBCiK1bt4oyZcoIAwMDYWNjIyZPnixUKpXUHgBx8+bNLLe9ceNGUb58ebWysWPHii5duki/h4WFiQ4dOghzc3NhY2MjJk2aJFJSUt4brxBC9OrVSwwfPlwIIURKSoro1auXcHd3FzExMZm2bWdnJ+bNmye+//57YWBgIGrVqiUCAwOl5Xfv3pWW1alTR4wdO1bUrl07y/2KiYkRhoaGYuvWrVkuz03s774uN2/eFG9/JGvXri0mTJggGjZsKAwMDESFChXE7du3hRBCtG/fXshkMqGjoyP09fXFgAEDcozjbYGBgaJYsWLi+vXrAoCIjIzMtm6bNm3ElClThBBCpKamCktLS3H06NFcb8vExEScPHky1/XfVbt2bXH69OmPXt/Ozk54eHhIvx86dEjo6elJvycnJ4spU6aIYsWKCVNTU9GiRQsRHBwsLQ8NDRXdunUTVlZWQqlUipo1a4r4+HghRPr72NbWVhgYGIhSpUqJXbt2SeudPn1aKJVKtf14+7XOrbff3znJ6TifOHFCGBsbi+TkZKmsadOmYurUqblaPnDgQLFmzRohhBCrV68WgwYNEkII0b9/f7Fx48YP3qesfO7X2dPTUxgYGEhtjx07VjRo0EDo6emJgwcPitjYWDFkyBBhY2MjLCwsRI8ePURUVJS0/qNHj0SLFi2Eubm5MDExEW3atBFCCOHn56f2mTl27JgoV66cMDAwEIUKFRIDBw7Msl5ycrKYMGGCsLGxEebm5qJjx47i5cuX0vYAiNWrV4syZcoIQ0ND0aJFC7V4PtTbn9s3b94IbW1tce3aNWn5/PnzRa1atbJc932f85UrV4qaNWuqldWpU0dMmzZNCJE/3y9ZmTZtmmjVqlWOda5duya0tLREWlpatnVyOoc8fvxYNGzYUJiYmIhixYqpnSMyrl9Tp04VlpaWom3btkIIIf766y9Rrlw5oVQqRaVKlcSFCxdytc9ve/f9+e42P9S75zshhIiLixMymUw8ffpUKtu0aZOws7MTQghx+fJlUbVqVSGEEAkJCUJXV1cIIYS3t7eoW7fuB8eQlY0bN4pevXp99Pq5eQ9kOHDggLCxscl2eZkyZcSWLVuyXZ6WliZ+++034ezsLAwMDISjo6M4fPiwECJ354/ly5eLMmXKCG1tbRETEyOePHkimjdvLszNzYWtra2YNWtWju/T7Lzv2qVSqcSlS5eEQqEQp06dem97Wf29OHnyZNGsWTPp9+TkZGFsbCy1V7JkSeHr6yuEEKJTp05i586dIjk5WVSsWFEqJ3XsufuPefLkCVq1aoUpU6YgPDwckyZNQsuWLeHn54dhw4ahW7duGDx4MOLi4nDv3j0AgJmZGfbt24eYmBgcPHgQ69atw/bt2z9q+8+fP8eRI0dQvXp1qaxr167Q0tKCn58fzp8/j/3790tDQXKK921v3rxBy5YtkZCQAC8vLxgaGma5/T///BN//fUXXr16BX19fUyZMgVA+reiLVu2RJMmTRAeHo5ff/01yyGJGS5duoT4+Hh07Ngx2zq5jT0nW7duxfz58xEZGYlKlSrhp59+AgDs3r0btra20rfPGUNBBw8enOO3hwAwaNAgTJ8+HWZmZjnWS0xMxNWrV+Hi4gIg/du1Fy9e4J9//oG9vT2sra3Rv39/xMTEZLn+nTt3EBsbi9KlS+d6f7+k6OhobN26FSVKlJDKfv75Z1y4cAHe3t4IDQ1FiRIlpKEyKpUKLVq0gKamJu7fv4/Xr1/jl19+gVyeftosX748rl27hqioKEydOhU9evTI9Wvr4uLy0Z+hd73vON++fRtlypSBlpaWVObq6orbt2/nanm5cuVw6tQpJCUl4fTp0yhXrhy8vb3x9OnTb/J+lqioKGzZsgUVK1aUyjZt2oTZs2cjLi4O9evXR58+fRAREYHbt2/Dz88PKSkpGDp0KID0c0n9+vVRtmxZ+Pv7IywsTPrcvatXr14YO3YsYmNj8ezZs2yHHM6dOxeHDh2Ct7c3/Pz8IJPJ0K1bN7U6u3btwqlTpxAYGIigoCC1Hq7mzZvj119/zdX+Z/W5TU5Ohqurq1Tn7df3Xe/7nKtUqkw9AyqVKt++Xz5FiRIloFQq0blzZxw4cABhYWFqy3M6h6SmpqJ58+YoX748QkJC4OHhgfnz56udF+7evQtNTU0EBgZi69at8PLywpgxY7Bp0yZERERg4sSJaNGiBcLDwwEA27dvl173j/Xw4UMUKlQIDg4OGDx4cI5DDXMihJB+3j4eAQEBiImJgZOTE/z8/BAUFITjx4+jXLlySElJwbBhw77arQ2f09mzZ3M89tWrV8fMmTOxbt063L59O9NnaMWKFVi6dCm2bduGmJgYnDx5EnZ2dgByd/7Yvn07jh07hpiYGGhoaMDd3R3u7u4IDg7G+fPnsWPHDmzcuFGqb2xsDG9v70/aZxcXFygUClSrVg3Vq1dHzZo1P6qd27dvq52ftLS0ULp0abVzyvHjxxEVFYUbN26gbNmy0sgWZ2fnT9qHAitPU0v6Kt7+5mX27NmicePGassbNGgg5syZI4TIXU/B8OHDRb9+/aTf8Z6eO7lcLpRKpTAyMhIAhJubm4iOjhZCCBEUFCQAiLCwMGmdbdu2CScnp1zH261bN1GlShXx008/qX0zlVXP3erVq6Xf//zzT1G2bFkhhBDnzp0TSqVSrcdw8ODB2fbc/fnnn8LS0jK7Q5Sr2HPTczd+/Hjpd29vb6k3ImN/3vft87u2b98u3N3dhRDZf3srRPq3cd26dRN16tSRjun58+cFAOHu7i5evXolXr16Jdzd3UWfPn0yrR8ZGSlKly4t9f58rM/xDb2enp703itRooS4e/euECJ9H/X19YWPj49UPyEhQcjlchEYGCguX74s9PX1pW/Z36d8+fLizz//FEJ8vZ673BznmTNnqn0rKkR6z03G++B9yxMTE8WgQYNE2bJlxaBBg0RMTIyoUKGCePTokVi5cqWoVauWaNOmjVqP54f6XK+zsbGxKFKkiGjXrp3w9/eX2n77GL58+VLI5XIREREhlT169EhoaWmJ1NRUsWPHDlG8eHG10QkZ3v3M2NraiqlTp6p9i55VPUdHR7Fjxw5peXBwsAAgHTMA0rf0QqSfO5o3b/7BxyGrz+25c+eEvr6+Wr2rV68KDQ2NLNt43+fc19dXKBQK4eHhIVJSUoSHh4fQ0NDIl+8XpVIplEqlKFasWKY6ue21efz4sRgwYIAoVqyYkMlkokqVKuLGjRtCCJHjOcTb21sYGRmJpKQkqWzOnDmiQYMGQoj065epqanaNa1p06Zi6dKlau24ubnl2COUlezO/U+fPhWPHz8WaWlp4tmzZ8Ld3V20bNnyve1l1XMnhBC1atUS3bp1E7GxsSIgIECUL19eABDPnz8XQgixa9cu8d1334m6deuK27dvi1mzZomZM2eKu3fvisaNG4vatWuLffv2fdC+ve1z9NxpampK7xOlUimOHDmSqZ6Xl5cwMjKSRtZkJTExUSxcuFBUq1ZNKBQKYWFhIRYtWiQtL1mypNi8eXOW6+bm/PH23wK7du0Srq6uam2sW7dO1KtXL1f7/bb3XbuSkpKEp6enWLBgQZbnzHdl9fdivXr1xIIFC9TKmjZtKmbNmiWESB9t1Lx5c1G+fHmxfPly8fjxY1GhQgVpBEbNmjXF0KFD1Uaf/Nex5+4/JigoCPb29mplxYoVQ1BQULbrHD16FG5ubjA3N4dSqcSaNWs+6D6qcuXKISoqCtHR0YiNjUWVKlXQuHFjKR4dHR1YWlpmGU9u4j1x4gSePn2KiRMnSr0q2bGyspL+r6+vj9jYWABASEgIChcuDE1NTWm5ra1ttu2Ym5vj9evXSE5OzrbOxxzr98X79uQEHyoiIgITJkzA6tWrc6wnhMDgwYPx8OFD7N+/XzqmBgYGAICJEyfC3Nwc5ubmmDhxIjw9PdXWj46ORqNGjVCjRg1Mnz79o+P9XLZt24bo6Gj4+voiNTVVmmjj9evXePPmDWrVqgVjY2MYGxvDysoK2traeP78OQICAlC0aFHo6upm2e6SJUtQpkwZaTKBu3fvftX7C3N7nLOatTE6Olrq3X7fcoVCgVWrVuHOnTtYtWoVli5dirZt2yIlJQUrV67EsWPH0LJlS4wePfrz7uAH2rZtGyIjIxEcHIw9e/ZI33oD6p9lf39/qFQqODg4SK975cqVIZfLERYWhoCAABQvXhwymey92/Tw8MDdu3fh7OyMChUqYNeuXVnWe/dcUKRIESgUCrVzQXbnptzK6XMbHx+vdq/h26/vu973OXd2dsbOnTsxY8YMFCpUCBs2bEDnzp2lkQD56f0SFRWFqKioT5p8x9HREWvWrMHTp08RFBQER0dHtGzZEkKIHM8hQUFBKFKkCLS1taWyd68PRYsWVbum+fv7Y9KkSdL71tjYGD4+PggODv7o+N9WrFgxODo6Qi6Xw8HBAcuWLcOhQ4cQHx//Ue1t27YNCQkJcHR0RP369dG1a1fIZDKYmJgAADp06IDr16/j1KlT0NHRwb59+zB+/Hj07dsXEydOhIeHB4YNG4bIyMjPsn8fo1mzZtL7JCoqCo0aNVJbfurUKXTv3h379u2T7kvNikKhwOjRo3Hx4kVER0dj8eLFmDBhgnRvbEBAAJycnLJcNzfnj3fPcXfv3lV7n4wePTpTz/LnoK2tjebNm+P06dPYtm3bR7XxvmuQjY0NPD094ePjg6FDh2LQoEH47bff8OeffyI+Ph7nzp1DbGxsjqOt/muY3P3HWFtbw9/fX63M398f1tbWAJApOUpOTkbbtm0xYMAABAcHIzo6GgMHDvzoG3YNDAzQt29fXLp0CeHh4bC2tkZiYiJevHiRZTzvixcAOnfujCFDhqBOnToffZErUqQIwsLC1P4ACgwMzLa+m5sb9PT0sHv37mzrvC/2jD+6MoSGhn5QzO9LZN91+/ZthISEoFq1ajA3N5eGrRUvXhx79uwBkP4H4pAhQ3DlyhUcO3ZMbbY/Z2dn6Ojo5LiNjISjTJkyWLNmTa7+QP5anJ2dsXDhQgwaNAgJCQkwMzODnp4erly5onbxTkhIgJubG+zs7BAcHIzExMRMbXl7e2P69OnYsmULIiMjERUVhbJly36WG9lz40OOs4uLC+7du6c2IYOPj4/0h8j7lr/t0aNH2L9/P8aNG4c7d+6oDcu5devWZ9zDz+vtz4qNjQ3kcjlCQkLUXvfExEQULVoUdnZ2ePr0aa5ey4oVK2Lv3r14/fo1pkyZgq5du6qdyzK8ey4ICwtDUlKS2nnsU7zvc6ulpaX2+mT3+mbUf9/nvFWrVrh58yYiIiLg6emJx48fo3bt2pnq5df3y8cqUqQIJkyYgODgYEREROR4DrG2tkZISIja5+7da9u753gbGxssWrRI7X375s2bTDMIfi4Z2//Y85q1tTX27t2LsLAwPHr0CIaGhqhUqRL09fUz1R00aBCWLVsGbW1t3Lp1C99//z1MTExgbW2Nx48ff9J+fCmnTp1C+/btsX37dri7u+d6PYVCge7du6NcuXK4c+cOAMDOzi7bmZxzc/549xz33Xffqb1PYmJipFttvoSUlJSPfp1cXFzUZtBMSUnB/fv3szxHbdmyBfb29qhZs6b0PgFQYM8pH4vJ3X9Mp06dcObMGRw4cACpqanYt28fzp07J91nZGlpiWfPnkkn86SkJCQmJsLMzAwKhQJXrlz5pHuFEhISsHHjRhQpUgSmpqYoWrQo6tatizFjxuDNmzcIDAzEnDlz0KtXr1zFm2HGjBno1q0b6tSpg+fPn39wXFWrVoWxsTHmzp2LlJQUXLt2Ldtv4QHA0NAQ8+bNw7Bhw6Qx8kII+Pj4SDMcvi/2ihUrYt++fYiOjsbLly9znHI6K5aWlh/0jXO1atXg5+cHHx8f+Pj4wMvLCwBw/vx5NG3aFAAwdOhQXLhwAcePH5e+Xc2gq6uL7t27Y968eVJCM2/ePLRq1QpA+hTojRs3RokSJbB+/fpvKrHL0Lp1a5iZmWHlypWQy+UYOHAgRo8eLb1nwsPDsXPnTgBA5cqV4ezsLN13kpqaCm9vbyQlJUn3NVhYWEClUuGPP/7A3bt3P1ucKSkpSExMRFpaGtLS0pCYmCj9Efihx7lWrVowNTXFnDlzkJSUBC8vL5w5c0aaTfJ9y982ePBg6Q+wYsWK4erVq4iOjsbx48dRvHjxz7b/X5KVlRVat26NoUOHSj2tYWFh0lTezZo1Q1JSEqZOnYo3b94gOTkZp0+fztROcnIytm7disjISMjlcmkq+Ld7/zN0794dv/zyC54/f464uDiMGjUK9evXR5EiRT7LPuX0udXT00OnTp0wZcoUREdH4/Hjx1i+fDn69euXZVvv+5wDwPXr15GamorY2FjMnDkTERER0jn7bfnx/ZKamorExESkpqZCpVIhMTEx2xEavr6+mDdvntQbHBUVhRUrVqBEiRIwMzPL8RxSpUoVWFpaYurUqUhKSsLdu3exfPnyLI9jhiFDhmDBggW4ceMGhBCIj4/HiRMncj0aRAiBxMRE6VFEGdf3jOu9l5eX9CVjUFAQhg8fjsaNG2eZjAHIdHwSExPVEllfX19ERUUhLS0NZ86cwezZszFz5sxM7WzevBnFixdHjRo1AKT3IB4/fhwhISF4/PixWi/8t+LMmTNo164dtm7dmqk3LyszZszAxYsXkZCQgLS0NBw8eBD3799HtWrVAAADBgzAjBkz4OPjAyEEAgMD8eDBAwAffv5o3rw5Xrx4gVWrVknXkYcPH37QsyGTk5ORmJgIlUql9pkA0u8vvHTpEpKTk5GcnIxNmzbh9OnTaNCgQbbtvf3eeLvtjP07deoUvLy8kJSUhDlz5sDc3By1atVSayM8PBzz58+X/lYqVqwYTp06hZSUFJw6deqbPafkiTwYCkpf2btjpr28vET58uWFoaGhKF++vNoY8idPnoiKFSsKY2NjUa5cOSFE+oxnhQsXlmZxGzp0qNq9CMjFPXf6+vpCX19fmJiYiPr166vVDw0NFe3atRNmZmbC2tpajB8/Xm3sdE7xvntP0pw5c0SxYsWEv79/lvfcvT0u3cPDQ5q5Swghbt26JapUqSL09fVFnTp1xIgRI0TDhg1zPLYHDhwQNWrUEPr6+sLU1FRUrlxZrF27NlexR0REiObNmwtDQ0NRpkwZsXr16kz33OV0T97BgweFvb29UCqV0ox0AwYMyPXMme/ed+Hv7y8ACIVCIb1e787EGRcXJ3r16iWUSqUoVKiQ6Nevn4iJiRFCpM+EBkDo6emprZ9xH9rH+BKz4m3fvl1YWFiIuLg4kZSUJGbNmiUcHR2FgYGBsLOzU7uHMDg4WHTq1EkUKlRIKJVKUbt2bREfHy/S0tJE//79hZGRkbCwsBCjRo0StWrVkl6v991zV7p06RyPS69evQQAtZ+Me0dyc5z19fXFuXPnpN/v3bsn3NzchI6OjnB0dBT79+9X2977lguR/ll+9701ZswYYWJiIsqVKyfu3buX7f68z5ec/TCre0ZiYmLEyJEjhb29vTA0NBSOjo7i559/lpb7+vqKJk2aCFNTU2FqairatWsnhFD/zCQlJYnGjRsLU1NTYWBgIEqXLi127tyZqZ4Q6feljB07VhQtWlSYmZmJ9u3bq91n/O45dMmSJWr3+zZu3Fi6V/ddufncRkdHi86dOwsDAwNhYWEhZsyYodbGu+3n9DkXQoj69esLQ0NDYWRkJNq1ayfdQ/W2/Pp+mTZtWqbPXnb3XgcFBYlOnToJa2troa+vLwoVKiTatGkjHj58KNXJ7hwihBAPHz4UDRo0EMbGxsLBwUEsXLhQum8pu5krd+3aJSpUqCC9Ns2bNxcBAQFCiPR7wTNmuc5Kxvvy3R8/Pz8hRPrrY2lpKXR1dYW1tbUYOHCgCA8Pl9Z/t/3Tp09n2V6GVatWiUKFCgldXV3h4uKS5Xnl1atXokyZMmr3/50+fVo4ODgICwsLsWzZsmz3532+5GyZderUUfvbJuMnO7NnzxYuLi7C0NBQKJVKUaFCBbVzdlpamli4cKFwcnIS+vr6wsnJSfp74UPPH0Kk/y3Xtm1bYWlpKZRKpahYsaL466+/pOXvXiPeVbt27Uyva8aMuH///bc0S7CxsbGoUqWK2LNnj7RuQECA0NfXl96XGTG++/P2Z3jfvn3C0dFR6OjoCDc3N/HgwYNMMfXq1UttH6Kjo0WTJk2EkZGRaNasmYiNjc12f/5rZEJ8pXFERPnMgAEDoFKp8Pvvv+d1KP9ZderUwfTp07/I84Do28HXmT4E3y+UG5s2bcKZM2e+2YfKE30pHJZJ9H/nz5/H8+fPoVKpcPLkSWzbtg0dOnTI67CIiIiIiHIl880BRP9Rz549Q+fOnREZGQlra2v8+uuvaNiwYV6H9Z/Wu3fvTDOOUsHD15k+BN8vlBuurq7SvbBE/yUclklERERERFQAcFgmERERERFRAcDkjoiIiIiIqABgckdERERERFQAMLkjIiIiIiIqAJjcERERERERFQBM7oiIiIiIiAoAJndEREREREQFAJM7IiIiIiKiAoDJHRERERERUQHA5I6IiIiIiKgAYHJHRERERERUADC5IyIiIiIiKgCY3BERERERERUAmnkdABERfZvS0tJw/vx53L17F3K5HBoaGlAqlahTpw6srKzyOjwAwJkzZ1CjRg1oan745WzXrl0oUaIEXF1dP39gAPbv3w8rKytUrVr1i7T/rgMHDiAkJAQymQwaGhpwd3dHsWLFAABv3ryBh4cHIiMjoaGhgWbNmsHOzi5XbQYGBkJLSwva2tpo1KgRihYtCgBISUnBwYMHERwcDJlMBnd3d5QuXRoAcPLkSTx48ACampqQy+WoV68eHB0dAaS/ZteuXYOhoSEAoFChQmjbtu2XOCRERP85TO6IiChLBw4cQHJyMvr27QtdXV0AwLNnz/D69euvktwJIQAAMpks2zpnz55F1apVPyq5K2gaNWoEHR0dAEBoaCi2bNmCcePGQSaT4cSJE7C2tkb37t0RHByMnTt3Yvjw4dDQ0MixzZIlS6JFixaQy+V49OgRdu/ejREjRgAALl68CA0NDQwbNgyRkZFYv3497O3toaenB1tbW9SqVQtaWloICwvDpk2bMGrUKGhrawMAypUrh8aNG3/R40FE9F/EqyEREWUSHh4OX19fjBw5UkrsAEg9QRkuXryIe/fuQaVSQV9fH82bN4exsTHOnDmD169fIyUlBRERETAwMEDHjh2ltnJa7+XLl0hOTkZ0dDR69OiBy5cvIyAgAGlpaVAoFGjRogXMzc1x6NAhAMDGjRshk8nQo0cPaGpq4ujRo3jx4gVSU1NhbW2Npk2bQkNDA69fv8aBAweQlJQEU1NTpKSkZLv/t27dwsWLFwEASqUSzZs3h5GREXx8fHD79m3o6+vj5cuX0NDQQIcOHWBiYpLj8Txz5gwSExOlhObq1asICQlB69at39vmrVu3cO3aNaSlpUFbWxtNmjTJMrnOSOwAICkpSW3ZvXv3MGzYMABA0aJFYWhoiICAgEyv57ucnZ2l/1tbWyM2NhYqlQpyuRz37t1Dy5YtAQAmJiawt7eHr68vKlasCCcnJ2k9S0tLCCEQHx8vJXdERPRlMLkjIqJMwsLCYGpqqpbYvevOnTt4/fo1+vbtC7lcjlu3bsHLywtdu3YFAAQFBeHHH3+Enp4e9uzZg+vXr6NmzZrvXe/58+cYMGAADAwMAADVq1dHw4YNAQB3797FkSNH0L17dzRv3hw3btzADz/8ICU2np6esLOzQ8uWLSGEgKenJy5fvozq1avDw8MD3333HSpWrIgXL17g999/R7ly5TLt18uXL3H8+HH8+OOPMDIywrlz5+Dp6Ylu3boBAEJCQjBgwACYmJjgxIkT8Pb2RosWLT7peGfXZmBgIO7evYvevXtDU1MTAQEB2LdvHwYPHpxlOydOnMD9+/eRkJCAjh07QiaTIT4+HiqVSjqeAGBsbIzo6OgPivHy5ctwcnKCXJ5+u350dDSUSuV727x58yZMTEzU6t6/fx/+/v7Q1dVFrVq14ODg8EGxEBFR1pjcERHRe0VERGDXrl1ITU2FjY0NWrVqBV9fX4SEhGDdunUA/h1GmcHR0RF6enoA0nt9Xr58CQDvXc/JyUktEXn27BmuXr2KpKQkCCGQkJCQbZy+vr4ICgrCpUuXAACpqamQyWRISkpCWFiYdH+dpaUlbG1ts2zDz88Pjo6OMDIyAgBUrlwZ586dg0qlkvYlo1fN2toaV69efc/Re7/s2nz48CFevHiB9evXS3UTEhKQkpICLS2tTO3Ur18f9evXx7Nnz3DixAn06dPnk2MDgNu3b+P+/fvo3bv3B6337NkznD17Fj169JCG11aqVAk1a9aEhoYGAgMDsXPnTvTv3x/GxsafJVYiov8yJndERJSJlZUVIiIikJCQAF1dXZiammLgwIHw8fGBr6+vVK9GjRr47rvvsmzj7fvg5HK5lBy9b723h+5FR0fDy8sL/fv3h6mpKV68eIGNGzfmGHvHjh1hZmamVvbuMMUP8e49fzntV3berZeampqrNoUQKF++PNzd3T8o5mLFisHLywsvXrxAkSJFIJfLERcXJyXNUVFRaj1pObl79y7Onj2Lnj17qiXdSqUS0dHR0sQoUVFRKF68uLTc398fBw4cQJcuXWBubi6Vv92Gra0tChcujJCQECZ3RESfAR+FQEREmZiZmcHZ2RkHDx5EYmKiVJ6cnCz939nZGdevX5d60tLS0hAaGvretj9kvcTERGhoaMDQ0BBCiEy9ZNra2mrxOTs7w9vbW0qOEhISEBERAYVCASsrK9y6dQtA+tDLwMDALLfp4OCAJ0+eIDY2FgBw/fp1ODg4SMMRP4apqSlCQ0OhUqmQkpKCBw8e5Go9Z2dn3L59WxruKIRASEhIpnppaWmIiIiQfg8ODsabN2+k3sDSpUvj+vXr0rLY2FhptswTJ05k2/t47949nD59Gj169MiUDL7dZmRkJPz9/VGyZEkAQEBAADw8PNC5c+dM9wfGxMRI/w8PD0dYWBgsLS1zdTyIiChn7LkjIqIstW7dGufOncP69eshl8uho6MDfX19VK9eHQDg4uKChIQEbN68GQCgUqng6uqKwoUL59juh6xnaWmJMmXKYNWqVdDV1ZWShwzVqlXD1q1boaWlhR49eqBx48Y4ceIE1qxZA5lMBrlcjgYNGsDU1BRt2rTBgQMHcOnSJZiZmWX7KIBChQqhQYMG+PPPPwGk91B9zD11KpVK6pErVaoU7t+/j5UrV8LIyAhWVlY5TuiSwc7ODg0aNMDOnTuhUqmQlpYGJycnFClSJNO29u/fj8TERMjlcmhra6tNYFO/fn14eHhg+fLl0NDQQJs2baSZMjN697Kyb98+GBgYYMeOHVJZz549oaenBzc3Nxw8eBDLli2DTCZD06ZNpWG4Bw8eRFpaGg4cOCCt16ZNG1haWuLUqVMICQmBXC6HXC5H06ZNM/W0EhHRx5GJd292ICIiok+iUqmwbt06NGrU6JueLESlUmHDhg3o169fjo+cICKi/IHJHRER0WcUEBCAQ4cOwdbWFs2bN2fSREREXw2TOyIiIiIiogKAE6oQEREREREVAEzuiIiIiIiICgAmd0RERERERAUAkzsiIiIiIqICgMkdERERERFRAcDkjoiIiIiIqABgckdERERERFQAMLkjIiIiIiIqAJjcERERERERFQBM7oiIiIiIiAqA/wGDNKh6OjwbnQAAAABJRU5ErkJggg==",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plot_confusion_matrix_from_df(summary_df_kbest, 'RISK_VS_CLAIM using KBest Features from all features')\n",
"plot_confusion_matrix_from_df(summary_df_rfe, 'RISK_VS_CLAIM using RFE Features from all features')\n",
"plot_confusion_matrix_from_df(summary_df_lasso, 'RISK_VS_CLAIM using Lasso Features from all features')\n",
"plot_confusion_matrix_from_df(summary_df_et_lasso, 'RISK_VS_CLAIM using Extra Trees with Lasso Features')"
]
},
{
"cell_type": "code",
"execution_count": 129,
"id": "8f25a5ae",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhgAAAHWCAYAAAA1jvBJAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAea1JREFUeJzt3XdYFFfbBvB7F1h6EREpoghiL9hjbyh2jQ3UKJrENE38YpqmaEzRvDEx5k1MTDRGTRQQjS1WNNHYor4qNhRFxAoqsSB12/n+IKwgICzOMrtw/66Li93ZKc8ekb2ZOXOOQgghQERERCQhpdwFEBERUeXDgEFERESSY8AgIiIiyTFgEBERkeQYMIiIiEhyDBhEREQkOQYMIiIikhwDBhEREUmOAYOIiIgkx4BBREREkmPAIKoCli1bBoVCYfiytraGr68vJkyYgOvXrxe7jRACv/zyC7p27Qo3Nzc4ODigWbNm+Oijj5CZmVnisdatW4d+/frBw8MDKpUKPj4+GDVqFP74448y1ZqTk4OvvvoK7du3h6urK+zs7FC/fn1MmTIF58+fL9f7J6KKp+BcJESV37JlyzBx4kR89NFHqFu3LnJycvD3339j2bJl8Pf3x+nTp2FnZ2dYX6fTYcyYMVi9ejW6dOmCYcOGwcHBAXv37sWqVavQuHFj7Ny5EzVr1jRsI4TAs88+i2XLlqFly5YYMWIEvLy8kJKSgnXr1uHo0aPYv38/OnbsWGKdaWlp6Nu3L44ePYqBAwciJCQETk5OSEhIQFRUFFJTU6FWq03aVkQkEUFEld7PP/8sAIgjR44UWv7OO+8IACI6OrrQ8jlz5ggA4s033yyyr40bNwqlUin69u1baPm8efMEAPF///d/Qq/XF9luxYoV4tChQ4+tc8CAAUKpVIo1a9YUeS0nJ0e88cYbj92+rDQajcjNzZVkX0RUPAYMoiqgpIDx+++/CwBizpw5hmVZWVmiWrVqon79+kKj0RS7v4kTJwoA4uDBg4Zt3N3dRcOGDYVWqy1XjX///bcAICZNmlSm9bt16ya6detWZHlERISoU6eO4fmlS5cEADFv3jzx1VdfiYCAAKFUKsXff/8trKysxIcfflhkH+fOnRMAxDfffGNYdvfuXTF16lRRq1YtoVKpRGBgoPjss8+ETqcz+r0SVQXsg0FUhSUnJwMAqlWrZli2b98+3L17F2PGjIG1tXWx240fPx4A8Pvvvxu2uXPnDsaMGQMrK6ty1bJx40YAwLhx48q1fWl+/vlnfPPNN3jhhRfw5ZdfwtvbG926dcPq1auLrBsdHQ0rKyuMHDkSAJCVlYVu3brh119/xfjx4/Hf//4XnTp1wowZMzBt2jST1Etk6Yr/7UFEldL9+/eRlpaGnJwcHDp0CLNnz4atrS0GDhxoWCc+Ph4A0KJFixL3k//a2bNnC31v1qxZuWuTYh+Pc+3aNSQmJqJGjRqGZWFhYXjxxRdx+vRpNG3a1LA8Ojoa3bp1M/QxmT9/Pi5evIjjx48jKCgIAPDiiy/Cx8cH8+bNwxtvvAE/Pz+T1E1kqXgGg6gKCQkJQY0aNeDn54cRI0bA0dERGzduRK1atQzrPHjwAADg7Oxc4n7yX0tPTy/0/XHblEaKfTzO8OHDC4ULABg2bBisra0RHR1tWHb69GnEx8cjLCzMsCwmJgZdunRBtWrVkJaWZvgKCQmBTqfDX3/9ZZKaiSwZz2AQVSELFy5E/fr1cf/+fSxduhR//fUXbG1tC62T/wGfHzSK82gIcXFxKXWb0hTch5ubW7n3U5K6desWWebh4YFevXph9erV+PjjjwHknb2wtrbGsGHDDOtduHABJ0+eLBJQ8t26dUvyeoksHQMGURXSrl07tGnTBgAwdOhQdO7cGWPGjEFCQgKcnJwAAI0aNQIAnDx5EkOHDi12PydPngQANG7cGADQsGFDAMCpU6dK3KY0BffRpUuXUtdXKBQQxdxlr9Ppil3f3t6+2OXh4eGYOHEi4uLiEBwcjNWrV6NXr17w8PAwrKPX69G7d2+8/fbbxe6jfv36pdZLVNXwEglRFWVlZYW5c+fixo0b+Pbbbw3LO3fuDDc3N6xatarED+sVK1YAgKHvRufOnVGtWjVERkaWuE1pBg0aBAD49ddfy7R+tWrVcO/evSLLL1++bNRxhw4dCpVKhejoaMTFxeH8+fMIDw8vtE5gYCAyMjIQEhJS7Fft2rWNOiZRVcCAQVSFde/eHe3atcOCBQuQk5MDAHBwcMCbb76JhIQEvPfee0W22bx5M5YtW4bQ0FA89dRThm3eeecdnD17Fu+8806xZxZ+/fVXHD58uMRaOnTogL59+2LJkiVYv359kdfVajXefPNNw/PAwECcO3cOt2/fNiw7ceIE9u/fX+b3DwBubm4IDQ3F6tWrERUVBZVKVeQszKhRo3Dw4EFs3769yPb37t2DVqs16phEVQFH8iSqAvJH8jxy5IjhEkm+NWvWYOTIkfj+++/x0ksvAci7zBAWFoa1a9eia9euGD58OOzt7bFv3z78+uuvaNSoEXbt2lVoJE+9Xo8JEybgl19+QatWrQwjeaampmL9+vU4fPgwDhw4gA4dOpRY5+3bt9GnTx+cOHECgwYNQq9eveDo6IgLFy4gKioKKSkpyM3NBZB310nTpk3RokULPPfcc7h16xYWLVqEmjVrIj093XALbnJyMurWrYt58+YVCigFrVy5Es888wycnZ3RvXt3wy2z+bKystClSxecPHkSEyZMQOvWrZGZmYlTp05hzZo1SE5OLnRJhYjAkTyJqoKSBtoSQgidTicCAwNFYGBgoUGydDqd+Pnnn0WnTp2Ei4uLsLOzE02aNBGzZ88WGRkZJR5rzZo1ok+fPsLd3V1YW1sLb29vERYWJnbv3l2mWrOyssQXX3wh2rZtK5ycnIRKpRJBQUHi1VdfFYmJiYXW/fXXX0VAQIBQqVQiODhYbN++/bEDbZUkPT1d2NvbCwDi119/LXadBw8eiBkzZoh69eoJlUolPDw8RMeOHcUXX3wh1Gp1md4bUVXCMxhEREQkOfbBICIiIskxYBAREZHkGDCIiIhIcgwYREREJDkGDCIiIpIcAwYRERFJrsrNRaLX63Hjxg04OztDoVDIXQ4REZHFEELgwYMH8PHxgVL5+HMUVS5g3LhxA35+fnKXQUREZLGuXr2KWrVqPXadKhcw8qeXvnr1qmF66Cel0WiwY8cO9OnTBzY2NpLss6pjm0qPbSottqf02KbSMkV7pqenw8/Pz/BZ+jhVLmDkXxZxcXGRNGA4ODjAxcWF/ykkwjaVHttUWmxP6bFNpWXK9ixLFwN28iQiIiLJMWAQERGR5BgwiIiISHIMGERERCQ5BgwiIiKSHAMGERERSY4Bg4iIiCTHgEFERESSY8AgIiIiyTFgEBERkeRkDRh//fUXBg0aBB8fHygUCqxfv77UbXbv3o1WrVrB1tYW9erVw7Jly0xeJxERERlH1oCRmZmJFi1aYOHChWVa/9KlSxgwYAB69OiBuLg4/N///R+ef/55bN++3cSVEhERkTFkneysX79+6NevX5nXX7RoEerWrYsvv/wSANCoUSPs27cPX331FUJDQ01VJhERkcX55x/gxIkaaN4cqFu34o9vUbOpHjx4ECEhIYWWhYaG4v/+7/9K3CY3Nxe5ubmG5+np6QDyZpnTaDSS1JW/H6n2R2xTU2CbSovtKT22afkIASQnAydOKBAXp8CJEwqcOqWHjc1lXLzYEc7OakyZIu3nXVlYVMBITU1FzZo1Cy2rWbMm0tPTkZ2dDXt7+yLbzJ07F7Nnzy6yfMeOHXBwcJC0vtjYWEn3R2xTU2CbSovtKT22acm0WgWuXXNGUpIrLl1yNXzPyno4HbuDQxZGjVqNOnUuIzJyNLZssUVAQJwkx8/KyirzuhYVMMpjxowZmDZtmuF5eno6/Pz80KdPH7i4uEhyDI1Gg9jYWPTu3Rs2Njalb0ClYptKj20qLban9NimhT14AJw8qSh0ZuLMGUCtVpS4jafnLYweHYlq1e5Bo7FFmzapGDasHfr37y9JTflXAcrCogKGl5cXbt68WWjZzZs34eLiUuzZCwCwtbWFra1tkeU2NjaS/wCbYp9VHdtUemxTabE9pVcV2zQlBYiLA44ff/g9MbFs2/r6AsHBQMuWCVCpfoNer0a1atUwYsQIHDlyBP37W0nWnsbsx6ICRocOHbBly5ZCy2JjY9GhQweZKiIiIio7vT4vOBQMEnFxwCN/OxdLoQAaNMgPE3lfLVoANWoIHDhwADt37oReD9StWxcjRoyQPaTJGjAyMjKQWCCiXbp0CXFxcXB3d0ft2rUxY8YMXL9+HStWrAAAvPTSS/j222/x9ttv49lnn8Uff/yB1atXY/PmzXK9BSIiomLl5ACnTxcOEidOAJmZpW9rZwc0a5YXIvIDRbNmgKNj0XUvXkzCzp07AQBt2rRB3759YWVlJXtnWVkDxv/+9z/06NHD8Dy/r0RERASWLVuGlJQUXLlyxfB63bp1sXnzZrz++uv4+uuvUatWLSxZsoS3qBIRkazu3i16iePsWUCnK31bd/eHZySCg/O+GjQArMv4CR0YGIh27drBw8MDbdu2Lf+bkJisAaN79+4QQpT4enGjdHbv3h3Hjx83YVVERETFEwK4erXoJY7Ll8u2vb9/4bMSwcFArVp5lz+MkZqaCldXV0P/Q2PGlKooFtUHg4iIqKJotcC5c4WDRFwccOdO6dtaWwONGxcOEi1aANWqPXld8fHxWLduHWrXro2xY8dCqTTPacUYMIiIqMrLzAROnix8ZuLUKaDAOI0lcnLKCw8Fz0w0bpzXj0JKQgjs2bMHe/bsAQAoFApoNJpi75Q0BwwYRERUpdy6VfQSx/nzeZc/SuPlVfQSR2AgYOqTCBqNBuvXr0d8fDwA4KmnnkLv3r3N9uwFwIBBRESVlF4PJCUV7XyZklL6tgoFEBRUOEgEB+cFjIqWnp6OqKgopKSkQKlUYuDAgWjZsmXFF2IkBgwiIrJ4ublAfHzhIHHiRN5omKVRqYq/JdTZ2dRVl04IgZiYGKSkpMDBwQFhYWGoXbu23GWVCQMGERFZlPv3H3a4zA8U8fFAWYZ9cHMreomjYUPAXAcOVSgUGDhwIDZv3oxhw4bBzc1N7pLKjAGDiIjMkhDA9etFL3FculS27WvXLhwkWrbMW2bsLaEVTQiBlJQU+Pj4AMib1HPixIlQmHvhj2DAICIi2el0eQNT7dnji7/+UuLkybxAkZZW+rZWVnlnIQoGiRYtgOrVTV219HJzc7Fu3TpcuHABERERhsshlhYuAAYMIiKqYFlZebeAFjwzcfIkkJ1tA6DNY7d1cMgLDwXPTDRtCpQw36VFuXfvHiIjI3Hr1i1YWVnhQVk6kJgxBgwiIjKZtLSilzgSEvLu8ChNjRqFh9Bu2RKoVy/vjEVlc/nyZaxevRpZWVlwcnJCeHg4fH195S7riTBgEBHRExMCSE4uOr7EtWtl2z4wEGjRQg97+wSMGhWENm2s4e1t/v0lpHDs2DFs3rwZer0e3t7eCA8Ph4uLi9xlPTEGDCIiMopGk3fXxqNDaN+/X/q2NjZ5lzQeHULbxQXQaHTYsuU8+vWrZ7Z3dUjt4sWL2LRpEwCgSZMmGDJkiOzTrEuFAYOIiEqUnl50CO0zZwC1uvRtXVyK3sXRqFHeuBOUJyAgAE2aNEGNGjXQtWtXi+zMWRIGDCIighBAamrRSxyJiWXb3te36PgSdetWjUscxrpz5w6cnZ1hY2MDhUKB4cOHV6pgkY8Bg4ioitHrgQsXina+vHWr9G2VSqBBg6JDaNeoYdKSK42kpCTExMQgICAAI0aMgEKhqJThAmDAICKq1HJygNOnCweJkyfzZg8tjZ0d0Lx50SG0HRxMXXXlI4TAkSNHsG3bNgghkJ6ejtzcXNhJPeWqGWHAICKqJO7cKTqE9tmzeYNYlaZ69aKXOOrXB6z5KfHEdDodtm7diqNHjwIAWrRogYEDB8K6kjdu5X53RESVkBDAlStFL3FcuVK27evWLdr50teX/SVMISsrCzExMUhOTgYAhISEoGPHjpX2skhBDBhERGZMo8kbmOrRzpd375a+rbU10Lhx0SG0LWi+LIsmhEBUVBSuXr0KlUqF4cOHo379+nKXVWEYMIiIzERGBgxzcBw/nvd1+nTeVOSlcXJ62OEyP1A0aQLY2pq2ZiqZQqFA7969sXHjRowcORKenp5yl1ShGDCIiGRw82bRSxwXLuRd/iiNt3fRSxwBAXl3eJC8hBC4e/cu3N3dAQB+fn54+eWXoayC/zgMGEREJqTXAxcvFu18mZJS+rYKBRAUVLTzZc2aJi2Zykmr1eL3339HfHw8nnvuOdT89x+qKoYLgAGDiEgyubl5o1wWPCtx4kTepY/S2Nrm3QJaMEg0b5536YPMX0ZGBqKjo3Ht2jUoFAqkpKQYAkZVxYBBRFQO9+4Bp09XR2KiEqdO5YWJ+HhAqy1922rVCg9S1bJl3uBVlWQKiionNTUVkZGRSE9Ph52dHUaMGIHAwEC5y5IdAwYR0WMIkTcj6KMTe126ZAOgc6nb16lTtL+Enx9vCa0szp49i3Xr1kGj0aB69eoYPXo0qlevLndZZoEBg4joX1otcP580VtC//mn9G2trPIm8np0CO1/+/pRJZSYmIjVq1cDAAIDAzF8+HDY29vLXJX5YMAgoiopK6vwLaFxccCpU0B2dunbOjoCzZvr4eZ2GUOG+KF1a2s0aQLws6VqCQgIQEBAAGrUqIE+ffpU2c6cJWHAIKJK7/btoreEnj+fd4dHaTw9885IFLzEERgI6PU6bNlyEv3712LfiSokIyMD9vb2sLKyglKpxJgxY2BlZSV3WWaJAYOIKg0hgEuXil7iuH69bNvXq1f0llBv7+LXLUs4ocrl+vXriIqKQsOGDTFgwAAAYLh4DAYMIrJIanXeXRuPdr5MTy99W5UKaNq0cJBo0QJwdjZpyWTBTp06hY0bN0Kr1eLy5cvIzc2FLYdJfSwGDCIye+npeeNJFDwzceZM3jwdpXF1LXoXR8OGeSGDqDRCCPz555/Yu3cvAKB+/foYNmwYw0UZMGAQkdkQIm+Ey0cvcVy8WLbta9UqeonD35+3hFL5qNVqrFu3DufOnQMAdOrUCT179mRnzjJiwCAiWeh0eXNvPNr58vbt0rdVKvPOQjx6S6iHh0lLpipECIGVK1fiypUrsLKywqBBg9CiRQu5y7IoDBhEVCb//AOkppZ/+4yMvMsc+UHi5Mm8W0VLY2+fN2R2wTMTTZsCDg7lr4WoNAqFAp06dcLdu3cxcuRI+Pn5yV2SxWHAIKLHEgKYPRv49NOyDYP9JDw8il7iqF8/bxArooqQmZkJR0dHAHn9LV599VXY8D7kcmHAIKISqdXA888Dv/wi/b4DAop2vvTxYX8Jkoder0dsbCxOnDiBSZMmoVq1agDAcPEEGDCIqFj37gHDhwN//JH3XKEAwsLyRrEsD2vrvKG0W7bMuyXU1VWyUomeSE5ODtauXYvExEQAwMWLF9GmTRuZq7J8DBhEVMTly8CAAXm3ggKAnR2wciUwbJi8dRFJ7c6dO4iMjERaWhqsra0xdOhQNGnSRO6yKgUGDCIq5NixvHCR36HTwwPYtAl46il56yKS2qVLlxATE4Ps7Gw4OzsjPDwcPj4+cpdVaTBgEJHBli3AqFFAZmbe86CgvGX16slbF5HUkpKSsHLlSuj1evj6+iIsLAzOHMpVUgwYRJWQTgckJha+60OjAa5cccaZMyh2cq4//gD+7/8ezrHRsSOwYQPHlqDKyc/PD15eXqhevToGDx4Ma2t+HEqNLUpUiWg0wIoVebeUXrr06Ks2AHqWaT8jRwLLl3P6capccnJyYGtrC4VCARsbG4wfPx4qlQoK3rpkEhzvlKgSUKuBH3/Mu6Tx/PPFhYuye/NNICqK4YIql9u3b+PHH3/E7t27DcvywwaZBs9gEFmw3Fxg6VJg7lzg6tXCr/XokTfWRD69Xo+rV6/Cz8+v2LkUlEpg4EBg8GATF01UwS5cuIC1a9ciNzcXJ0+eRMeOHTlZWQVgwCCyQDk5wJIlwGefAdevF36tb19g5kygQ4fCyzUaHbZsiUP//j6wseHJS6r8hBD4+++/ERsbCyEEateujVGjRjFcVBAGDCILkp0NLF4M/Oc/wI0bhV8bMCAvWLRrJ09tROZEq9Vi8+bNiIuLAwAEBwdj4MCBsOK48xWGAYPIAmRlAT/8AHz+edEJxwYNygsWHHiQKI8QApGRkUhKSoJCoUCfPn3Qvn179reoYAwYRGYoOxtISsqbaGzbNmDePODWrcLrDB2aFyxatpSlRCKzpVAo0KJFC1y/fh0jRoxAPQ7kIgsGDCIzc+1a3lwdd+4U//rw4cAHH+StQ0QPqdVqqFQqAEDz5s1Rr149ODg4yFxV1cWeXkRm5tdfi4YLhSJvbIqTJ4E1axguiAoSQmDv3r347rvvkJGRYVjOcCEvnsEgMjOxsQ8fjxsHeHoCEycCnH+JqCiNRoNNmzbh1KlTAIAzZ86gffv2MldFAAMGkVnJzAT27ct77O+fN5om+6URFe/BgweIjo7G9evXoVQq0a9fP06zbkYYMIjMyF9/5Y3KCQB9+jBcEJXkxo0biIqKwoMHD2Bvb4+RI0eibt26cpdFBTBgEJmRgpdH+vSRrw4ic3bp0iWsWrUKWq0WNWrUQHh4ONzd3eUuix7BgEFkRnbsyPuuVAI9yzYvGVGV4+3tDVdXV7i7u2P48OEcmdNMMWAQmYnr14EzZ/Iet20LVKsmbz1E5kSr1cLKygoKhQJ2dnaYMGECHBwcip1Xh8wD/2WIzAQvjxAV7/79+/jpp59w+PBhwzInJyeGCzPHfx0iM8GAQVTU1atXsXjxYqSmpmLfvn1Q5/eCJrPHSyREZkCvfxgwnJ0B3sZPBJw4cQKbNm2CTqdDzZo1ER4ebhipk8yf7GcwFi5cCH9/f9jZ2aF9+/aFToEVZ8GCBWjQoAHs7e3h5+eH119/HTk5ORVULZFpnDgB3L6d97hHD8DGRt56iOSk1+sRGxuL9evXQ6fToWHDhnj22Wfh5uYmd2lkBFnPYERHR2PatGlYtGgR2rdvjwULFiA0NBQJCQnw9PQssv6qVaswffp0LF26FB07dsT58+cxYcIEKBQKzJ8/X4Z3QCSN/LtHAF4eoapNCIHffvsN58+fBwB07doV3bt350yoFkjWMxjz58/HpEmTMHHiRDRu3BiLFi2Cg4MDli5dWuz6Bw4cQKdOnTBmzBj4+/ujT58+GD16dKlnPYjMHftfEOVRKBSoXbs2rK2tMXz4cPTo0YPhwkLJdgZDrVbj6NGjmDFjhmGZUqlESEgIDh48WOw2HTt2xK+//orDhw+jXbt2SEpKwpYtWzBu3LgSj5Obm4vc3FzD8/T0dAB549drNBpJ3kv+fqTaH1WtNs3KAvbutQaggL+/QJ06WpjibVelNq0IbE9p6fV66HQ6AEBwcDDq168PNzc3tu8TMMXPqDH7ki1gpKWlGTruFFSzZk2cO3eu2G3GjBmDtLQ0dO7cGUIIaLVavPTSS3j33XdLPM7cuXMxe/bsIst37Ngh+Ux7sQX/DCVJVIU2PXXKA2p1JwBAUNBlbN16wqTHqwptWpHYnk8uLS0NaWlpCAoKgpWVFXbu3Cl3SZWKlD+jWVlZZV7Xou4i2b17N+bMmYPvvvsO7du3R2JiIqZOnYqPP/4YH3zwQbHbzJgxA9OmTTM8T09Ph5+fH/r06QMXFxdJ6tJoNIiNjUXv3r1hw955kqhKbRoX9/BKZVhYLfTv72uS41SlNq0IbM8np9frsXPnTly7dg0AUL16ddy7d49tKhFT/IzmXwUoC9kChoeHB6ysrHDz5s1Cy2/evAkvL69it/nggw8wbtw4PP/88wCAZs2aITMzEy+88ALee++9YgddsbW1LXYYWRsbG8l/gE2xz6quKrTp338/fNytm7XJ7yCpCm1akdie5ZOdnY01a9YgKSkJANCjRw889dRT2Lp1K9tUYlK2pzH7ka2Tp0qlQuvWrbFr1y7DMr1ej127dqFDhw7FbpOVlVUkRFhZWQHI63lMZGn0eiC/y5GnJxAYKG89RBUhLS0NS5YsQVJSEmxsbDBq1Ch07dqVnTkrGVkvkUybNg0RERFo06YN2rVrhwULFiAzMxMTJ04EAIwfPx6+vr6YO3cuAGDQoEGYP38+WrZsabhE8sEHH2DQoEGGoEFkSc6cAe7fz3vcqROnZ6fK78qVK1i1ahVyc3Ph6uqK8PDwEs9ak2WTNWCEhYXh9u3bmDlzJlJTUxEcHIxt27YZOn5euXKl0BmL999/HwqFAu+//z6uX7+OGjVqYNCgQfj000/legtEZaLXAxcuAFpt4eXr1z983KlThZZEJAt3d3fY2trC09MTYWFhcHR0lLskMhHZO3lOmTIFU6ZMKfa13bt3F3pubW2NWbNmYdasWRVQGZE09HqgWzdg377Hr9exY8XUQ1TRhBCGyx9OTk6IiIiAi4sLrK1l/wgiE5J9qHCiyu748dLDhbs70KpVxdRDVJGysrKwfPlynDx50rDM3d2d4aIK4L8wkYn98cfDxz16AAEBhV9XqYBnngGKudmJyKLdunULkZGRuHfvHtLS0tCwYUNOVlaFMGAQmVjBgPH990CDBvLVQlRREhIS8Ntvv0GtVqNatWoYPXo0w0UVw4BBZEJqNbB3b95jHx+gfn156yEyNSEEDhw4YBiN09/fHyNHjpR85GQyfwwYRCZ05AiQmZn3uGdP3oZKlZsQAhs2bMCJE3nD3bdu3Rr9+vXjMAJVFAMGVSlCAElJQE5OxRxvzZqHj3v2rJhjEslFoVDAxcUFCoUC/fr1Q9u2beUuiWTEgEFVyrhxwMqV8hybAYMqq4K3ofbo0QONGjWCt7e3zFWR3HibKlUZOh2wapU8x27SBKhTR55jE5nSmTNnsGLFCsM03gqFguGCAPAMBlUhWVl5l0iAvA6X/fpVzHEdHIAXX6yYYxFVFCEE9uzZgz179gAAjhw5go4cLY4KYMCgKiO/syUAtGkDLFkiXy1Elkyj0WD9+vWIj48HADz11FN46qmnZK6KzA0DBlUZBQMGpz8gKp/09HRERUUhJSUFSqUSAwcORMuWLeUui8wQAwZVGQwYRE/mxo0biIyMREZGBhwcHBAWFobatWvLXRaZKQYMqhL0euDYsYfPGTCIjGdnZwedTgdPT0+MHj0abm5ucpdEZowBgyq94mYz5aCCRMZzd3fH+PHj4e7uzmG/qVS8TZUqvcTEorOZcshuotLl5uYiOjoaFy5cMCzz8vJiuKAyYcCgSu/SpcLPv/gCGD1anlqILMXdu3exdOlSnDt3Dhs2bDCMc0FUVrxEQpVewYDxww/ACy/IVwuRJbh8+TJWr16NrKwsODk5ISwsDDY2NnKXRRaGAYMqvYIBo25d+eogsgTHjh3D5s2bodfr4e3tjfDwcLi4uMhdFlkgBgyq9BgwiEonhMD27dtx6NAhAECTJk0wZMgQnrmgcmPAILOWkwOcP/9k+0hIyPuuUAC8ZZ+oZFqtFgDQvXt3dO3a1TCBGVF5MGCQ2bp3zxYBAdZIS5Nmf7VqAez8TlS8/CnWGzdujICAALnLoUqAd5GQ2TpxogbS0qT7C6pNG8l2RVQpJCUlYe3atdDr9QAAKysrhguSDM9gkNn693ceAKBDB6Bx4/Lvq1o1YMqUJ6+JqDIQQuDIkSPYtm0bhBDw8fFBhw4d5C6LKhkGDLIIzzwDvPKK3FUQWT6dToetW7fi6NGjAIAWLVqgbdu2MldFlREDBhFRFZGVlYWYmBgkJycDAEJCQtCxY0d25iSTYMAgIqoCbt++jcjISNy9excqlQrDhw9HfY6ZTybEgEFm6/59W7lLIKo0dDodMjIy4ObmhtGjR8PT01PukqiSY8AgsxQVpcCyZU3lLoOo0vDy8sKYMWPg6ekJB04nTBWAt6mSWYqKKvyj6e8vTx1Elkqr1WLjxo24evWqYZm/vz/DBVUYBgwySzduPOx09s03QGiojMUQWZiMjAwsX74cx48fR0xMDGdCJVnwEgmZpZSUvO++vgJTprCHO1FZpaamIjIyEunp6bC1teV8IiQbBgwyO1otcOtW3mNvbwGAAYOoLM6ePYt169ZBo9GgevXqCA8Ph4eHh9xlURXFgEFm5+ZNQIi8UOHtLXMxRBZACIG9e/fizz//BAAEBgZi+PDhsLe3l7kyqsoYMMgs3LgB3L2b9/jMmYfLfXyEPAURWZibN28CANq1a4fQ0FAolexiR/JiwCDZffUVMG1a8a95eVVsLUSWSKFQYMiQIWjcuDGaNGkidzlEAHgXCZmB6OiSX2vWjGcwiIpz/fp1bN26FULk/R9RqVQMF2RWeAaDZKdW531XKoGJE/Me6/V6WFmdxsCBjeQrjMhMnTp1Chs3boRWq4WHhwcnKyOzxIBBstNq877b2QFLluQ91mh02LLlEpRKBgyifEII/PHHH9i3bx8AoH79+mjevLnMVREV74kCRk5ODuzs7KSqhaqo/IBhZSVvHUTmTK1W47fffkNCQgIAoFOnTujZsyc7c5LZMvonU6/X4+OPP4avry+cnJyQlJQEAPjggw/w008/SV4gVX75AcOa59OIinXv3j0sXboUCQkJsLKywtChQxESEsJwQWbN6F/pn3zyCZYvX47PP/8ckyZNMixv2rQpFixYgOeee07SAsnypaXljW1RkuzsvO8MGETFu3//Pm7fvg1HR0eEh4ejVq1acpdEVCqjf6WvWLECP/74I3r16oWXXnrJsLxFixY4d+6cpMWR5du4ERg+/OFZisdhwCAqXp06dTBixAj4+PjA1dVV7nKIysTo82vXr19HvXr1iizX6/WcUIeKWLmybOECAOrWNW0tRJZCr9dj165duJU/Zj6ARo0aMVyQRTH6b8bGjRtj7969qFOnTqHla9asQcuWLSUrjCqHK1cePn72WUBRwrQiTk7Aiy9WTE1E5iwnJwdr165FYmIizpw5g1deeQXWPL1HFsjon9qZM2ciIiIC169fh16vN/RqXrFiBX7//XdT1EgW7OrVvO+engD7ABM93p07dxAZGYm0tDRYW1ujV69eDBdksYy+RDJkyBBs2rQJO3fuhKOjI2bOnImzZ89i06ZN6N27tylqJAul0eTNMQIAtWvLWwuRubt06RKWLFmCtLQ0ODs749lnn+XInGTRyhWNu3TpgtjYWKlroUrmxg3g31GM4ecnby1E5uzIkSOGYb99fX0RFhYGZ2dnucsieiJGB4yAgAAcOXIE1atXL7T83r17aNWqlWFcDKqcCs56Wpq4uIePeQaDqHh6vR5nz56FEALNmjXD4MGDeVmEKgWjf4qTk5Oh0+mKLM/NzcX169clKYrM0zffAK+9Vr5teQaDqHhKpRIjR47EqVOn0LZtWyhK6glNZGHKHDA2btxoeLx9+/ZCt0vpdDrs2rUL/v7+khZH5mXlyvJvyxuMiB5KS0tDfHw8unbtCgCwt7dHu3btZK6KSFplDhhDhw4FACgUCkRERBR6zcbGBv7+/vjyyy8lLY7My717ed9VKmDcuLJv164d0KOHSUoisjiJiYlYs2YNcnNz4eLiguDgYLlLIjKJMgcMvV4PAKhbty6OHDkCDw8PkxVF5un+/bzvnp4PZz0lorIRQuDvv/9GbGwshBCoXbs2goKC5C6LyGSM7oNx6dIlU9RBFiA9Pe87BxMkMo5Wq8XmzZsR92/P5+DgYAwcOBBWnEKYKrFydVXOzMzEnj17cOXKFajV6kKvvVbeXoBk1jQaICsr7zEDBlHZZWZmYvXq1bhy5QoUCgX69OmD9u3bszMnVXpGB4zjx4+jf//+yMrKQmZmJtzd3ZGWlgYHBwd4enoyYFg4nQ5ISHg4fkW+/MsjAAMGkTFu3LiBK1euwNbWFiNGjCh2LieiysjogPH6669j0KBBWLRoEVxdXfH333/DxsYGzzzzDKZOnWqKGqmCaDRAcDAQH//49VxcKqQcokohKCgIAwcORJ06ddh3jaoUo4cKj4uLwxtvvAGlUgkrKyvk5ubCz88Pn3/+Od59911T1EgV5Nix0sMFADRsaPpaiCyVEAIHDx7EvfzbrgC0bt2a4YKqHKPPYNjY2ECpzMslnp6euHLlimEa4av5M1uRRfrnn4ePW7fOO5vxqDp1yj/YFlFlp9FosGnTJpw6dQpxcXGYNGkSR+WkKsvon/yWLVviyJEjCAoKQrdu3TBz5kykpaXhl19+QdOmTU1RI1WQO3cePo6IAF59Vb5aiCzNgwcPEBUVhRs3bkChUKBNmzYMF1SlGX2JZM6cOfD29gYAfPrpp6hWrRpefvll3L59Gz/88IPRBSxcuBD+/v6ws7ND+/btcfjw4ceuf+/ePUyePBne3t6wtbVF/fr1sWXLFqOPS0UVPIPh7i5fHUSW5saNG1i8eDFu3LgBe3t7jBs3Dm3btpW7LCJZGR2v27RpY3js6emJbdu2lfvg0dHRmDZtGhYtWoT27dtjwYIFCA0NRUJCAjw9PYusr1ar0bt3b3h6emLNmjXw9fXF5cuX4ebmVu4a6KGCZzAYMIjKJj4+Hr///ju0Wi08PDwwevRouPM/EFH5xsEozrFjxzBz5kz8/vvvZd5m/vz5mDRpEiZOnAgAWLRoETZv3oylS5di+vTpRdZfunQp7ty5gwMHDsDGxgYAOP9JOWRlAcWNl5aY+PDxI5PlElExhBA4dOgQtFotgoKCMGzYMNjZ2cldFpFZMCpgbN++HbGxsVCpVHj++ecREBCAc+fOYfr06di0aRNCQ0PLvC+1Wo2jR49ixowZhmVKpRIhISE4ePBgsdts3LgRHTp0wOTJk7FhwwbUqFEDY8aMwTvvvFPiiHi5ubnIzc01PE//dzhKjUYDjUZT5nofJ38/Uu3PlJKSgPbtrXH//uMH+XF21kDOt2NJbWop2KbS0mg0UCgUGDJkCM6cOYNOnTpBqVSyfZ8Af0alZYr2NGZfZQ4YP/30EyZNmgR3d3fcvXsXS5Yswfz58/Hqq68iLCwMp0+fRqNGjcp84LS0NOh0OtSsWbPQ8po1a+LcuXPFbpOUlIQ//vgDY8eOxZYtW5CYmIhXXnkFGo0Gs2bNKnabuXPnYvbs2UWW79ixAw4ODmWutyxiY2Ml3Z8pbN3qj/v3Wzx2HQcHDU6d2o7z53UVVFXJLKFNLQ3b9Mmo1Wo8ePAA1f89zff3338DwBNdLqbC+DMqLSnbMyt/SOcyKHPA+Prrr/Gf//wHb731FtauXYuRI0fiu+++w6lTp1CrVq1yFWosvV4PT09P/Pjjj7CyskLr1q1x/fp1zJs3r8SAMWPGDEybNs3wPD09HX5+fujTpw9cJBoxSqPRIDY2Fr179zZcujFXly8/7NfbtasegYGFX7e2Fhg1SoFu3cp+NsoULKlNLQXb9Mldu3YNa9euRWZmJlq2bIkrV66wPSXEn1FpmaI9868ClEWZA8bFixcxcuRIAMCwYcNgbW2NefPmlTtceHh4wMrKCjdv3iy0/ObNm/Dy8ip2G29vb9jY2BS6HNKoUSOkpqZCrVZDpVIV2cbW1ha2trZFltvY2Ej+A2yKfUqt4JWkSZOUeOYZ+WopC0toU0vDNi2fuLg4/P7774Yzr35+frhy5Qrb0wTYptKSsj2N2U+Zb1PNzs42XFJQKBSwtbU13K5aHiqVCq1bt8auXbsMy/R6PXbt2oUOHToUu02nTp2QmJhomDoeAM6fPw9vb+9iwwUR0ZPS6/WIjY3Fhg0boNPp0LBhQzz77LNw5aQ8RI9lVCfPJUuWwMnJCUDe9MPLli0rMvytMZOdTZs2DREREWjTpg3atWuHBQsWIDMz03BXyfjx4+Hr64u5c+cCAF5++WV8++23mDp1Kl599VVcuHABc+bM4QRrRGQSubm5WLt2LS5cuAAA6Nq1K7p37w6FQsGOiESlKHPAqF27NhYvXmx47uXlhV9++aXQOgqFwqgP+7CwMNy+fRszZ85EamoqgoODsW3bNkPHzytXrhiGJQcAPz8/bN++Ha+//jqaN28OX19fTJ06Fe+8806Zj0lEVFYXL17EhQsXYG1tjSFDhnC0YiIjlDlgJCcnm6SAKVOmYMqUKcW+tnv37iLLOnToYOi1TcYr0N+ViErRuHFj9OzZEwEBAfD19ZW7HCKLYvRQ4WTZCnZV4RhlREWdOHECmZmZhuddunRhuCAqBwaMKkZXYGiLTp3kq4PI3Oj1emzduhXr16/H6tWrodPJPw4MkSXjVH9VTP6gpm3aAIrHD+ZJVGVkZ2djzZo1SEpKAgDUq1evUP8vIjIeA0YVotUC+Xf4FjM0CFGVlJaWhsjISNy5cwc2NjZ4+umnjRqVmIiKx4BRheTkPHzM+ZiI8u4SiYmJQW5uLlxdXREeHl7iQH9EZJxynQO8ePEi3n//fYwePRq3bt0CAGzduhVnzpyRtDiSVoE533gGg6o8vV6P7du3Izc3F35+fpg0aRLDBZGEjA4Ye/bsQbNmzXDo0CH89ttvyMjIAJDX87qk+UDIPCxc+PAxz2BQVadUKhEWFoa2bdti/PjxcHR0lLskokrF6IAxffp0fPLJJ4Zp2/P17NmT41OYuT/+ePi4guanIzIrWVlZOHv2rOF59erV0b9/f1hb82oxkdSMDhinTp3C008/XWS5p6cn0tLSJCmKTCM7++Hj99+Xrw4iOdy6dQuLFy9GTEyM4W4RIjIdowOGm5sbUlJSiiw/fvw4B6Mxc/ljB9nbAzVqyFsLUUVKSEjATz/9hHv37sHNzQ3Ozs5yl0RU6RkdMMLDw/HOO+8gNTUVCoUCer0e+/fvx5tvvonx48ebokaSSH7A4KVmqiqEENi3bx+ioqKgVqvh7++P559/HjWYsIlMzugLj3PmzMHkyZPh5+cHnU6Hxo0bQ6fTYcyYMXif593NGgMGVSVarRabNm3CyZMnAQCtW7dGv379YGVlJXNlRFWD0QFDpVJh8eLF+OCDD3D69GlkZGSgZcuWCAoKMkV9JKH09LzvDBhUFZw5cwYnT56EQqFAv3790LZtW7lLIqpSjA4Y+/btQ+fOnVG7dm3Url3bFDWRCeTkPBwHgwGDqoLmzZsjJSUF9evXR0BAgNzlEFU5RvfB6NmzJ+rWrYt3330X8fHxpqiJTODIkYePU1Plq4PIlM6fP4/cf5O0QqFA3759GS6IZGJ0wLhx4wbeeOMN7NmzB02bNkVwcDDmzZuHa9eumaI+ksi/46EBAEJD5auDyBSEENi9ezciIyOxdu1a6PMn3SEi2RgdMDw8PDBlyhTs378fFy9exMiRI7F8+XL4+/ujZ8+epqiRJJDfwRMA6teXrw4iqWk0GqxZswZ79uwBkDd4FhHJ74mGr6tbty6mT5+OFi1a4IMPPjD8Byfzk5X18DH7YFBlkZ6ejqioKKSkpECpVGLAgAFo1aqV3GUREZ4gYOzfvx8rV67EmjVrkJOTgyFDhmDu3LlS1kYSKngGgwGDKoNr164hOjoaGRkZcHBwwKhRo1CnTh25yyKifxkdMGbMmIGoqCjcuHEDvXv3xtdff40hQ4bAwcHBFPWRBFJTgYIjIzNgkKXT6XSGyRY9PT0xevRouLm5yV0WERVgdMD466+/8NZbb2HUqFHw8PAwRU0kocWLgZdeAgr2eWPAIEtnZWWFESNG4MCBAxg0aBBsbW3lLomIHmF0wNi/f78p6iATiYkpHC4AoF49eWohehK5ublISUmBv78/AMDHxwcjRoyQtygiKlGZAsbGjRvRr18/2NjYYOPGjY9dd/DgwZIURtIoGC4iIoD+/QEOukqW5u7du4iKisKdO3cwYcIETqxIZAHKFDCGDh2K1NRUeHp6YujQoSWup1AooNPppKqNJLZwIS+PkOW5fPkyVq9ejaysLDg5OcldDhGVUZkCRsFBaziADRFVlGPHjmHz5s3Q6/Xw9vZGeHg4XFxc5C6LiMrA6IG2VqxYYRiKtyC1Wo0VK1ZIUhQRVW16vR7btm3Dpk2boNfr0aRJE0ycOJHhgsiCGB0wJk6ciPv37xdZ/uDBA0ycOFGSoujJCAFcuACcOVN4iHAiSxEXF4dDhw4BALp3747hw4fDxsZG5qqIyBhG30UihIBCoSiy/Nq1a3B1dZWkKHoyQ4cCpfTFJTJrwcHBuHTpEho1aoTGjRvLXQ4RlUOZA0bLli2hUCigUCjQq1cvWFs/3FSn0+HSpUvo27evSYqkssvMLD5c1KwJcKgAMmdXr16Ft7c3rK2toVQqMXz4cLlLIqInUOaAkX/3SFxcHEJDQwv15lapVPD39+cvBDOg0Tx87OsL9O0LqFTAuHGA9RPNPENkGkIIHDlyBNu2bUPz5s0xZMiQYs+SEpFlKfNHzqxZswAA/v7+CAsLg52dncmKovLTah8+btkSWLJEvlqISqPT6bB161YcPXoUQF7Y0Ov1sLKykrkyInpSRv9NGxERYYo6SCIFAwZ/R5M5y8rKQkxMDJKTkwEAISEh6NixI89eEFUSZQoY7u7uOH/+PDw8PFCtWrXH/gK4c+eOZMWR8QoGDF4SIXN169YtREVF4e7du1CpVBg+fDjq168vd1lEJKEyfQR99dVXcHZ2NjzmXxjm5+5d4MaNvK98DBhkjnQ6HSIjI3Hv3j24ublh9OjR8PT0lLssIpJYmT6CCl4WmTBhgqlqoXL66y8gNBTIySm8nAGDzJGVlRUGDx6MvXv3YsSIEXBwcJC7JCIyAaMH2jp27BhOnTpleL5hwwYMHToU7777LtRqtaTFUdls2FA0XABA3boVXwtRcbRaLVJTUw3P69ati3HjxjFcEFViRgeMF198EefPnwcAJCUlISwsDA4ODoiJicHbb78teYFUuoLTwwwaBDz3HDB7NjBtmnw1EeXLyMjAihUrsGzZMqSlpRmW81IrUeVm9En08+fPIzg4GAAQExODbt26YdWqVdi/fz/Cw8OxYMECiUskY7z7LvDUU3JXQZQnNTUVUVFRuH//Puzs7JCRkQEPDw+5yyKiClCuocLzZ1TduXMnBg4cCADw8/Mr9NcJEVVtZ8+exbp166DRaFC9enWMHj0a1atXl7ssIqogRgeMNm3a4JNPPkFISAj27NmD77//HgBw6dIl1KxZU/ICiciyCCGwd+9e/PnnnwCAwMBADB8+HPb29jJXRkQVyeiAsWDBAowdOxbr16/He++9h3r16gEA1qxZg44dO0peIBUvKQnIzs57/M8/8tZCVNDx48cN4aJdu3YIDQ2FUml0dy8isnBGB4zmzZsXuosk37x58zi8bwWZOBFYtkzuKoiK16JFC5w+fRpNmjRB69at5S6HiGRS7pESjh49irNnzwIAGjdujFatWklWFD1eVFTxy5VKoFatiq2FCABu376N6tWrQ6lUwsrKCuPGjeNdIkRVnNEB49atWwgLC8OePXvg5uYGALh37x569OiBqKgo1KhRQ+oa6RH5t6W6uwNPP533WKEABgxgwKCKd+rUKWzYsAFt27ZFaGgoAN6CSkTlCBivvvoqMjIycObMGTRq1AgAEB8fj4iICLz22muIjIyUvEgqXp06nC2V5COEwB9//IF9+/YByJuHSKfT8VIpEQEoR8DYtm0bdu7caQgXQN4lkoULF6JPnz6SFkdE5kmtVuO3335DQkICAKBjx47o1asXO3MSkYHRAUOv18PGxqbIchsbG8P4GERUed27dw9RUVG4efMmrKysMGjQILRo0ULusojIzBj950bPnj0xdepU3Cgwbef169fx+uuvo1evXpIWR8XjlC8kF51Oh+XLl+PmzZtwdHREREQEwwURFcvogPHtt98iPT0d/v7+CAwMRGBgIOrWrYv09HR88803pqiRCvjjD7kroKrMysoKvXv3hpeXFyZNmgQ/Pz+5SyIiM2X0JRI/Pz8cO3YMu3btMtym2qhRI4SEhEheHBW1YcPDxzqdfHVQ1aHX63H//n1Uq1YNQF6fq4YNG7K/BRE9llEBIzo6Ghs3boRarUavXr3w6quvmqouKkHBbi4ffCBfHVQ15OTkYO3atUhNTcWkSZPg4uICAAwXRFSqMgeM77//HpMnT0ZQUBDs7e3x22+/4eLFi5g3b54p66PH8PeXuwKqzO7cuYPIyEikpaXB2toat27dMgQMIqLSlPnPkG+//RazZs1CQkIC4uLisHz5cnz33XemrI2IZHLp0iUsXrwYaWlpcHZ2xsSJEw3zDhERlUWZA0ZSUhIiIiIMz8eMGQOtVouUlBSTFEZE8jhy5Ah++eUX5OTkwNfXF5MmTYKPj4/cZRGRhSnzJZLc3Fw4OjoaniuVSqhUKmTnT+lJJnf5MmdOJdM6duwYtmzZAgBo1qwZBg8eDGvrck9ZRERVmFG/OT744AM4ODgYnqvVanz66adwdXU1LJs/f7501ZHB9OnAf/4jdxVU2TVt2hRHjhxBkyZN0KlTJ84pQkTlVuaA0bVrV8OwwPk6duyIpKQkw3P+MjKdR2dQtbICfH3lqYUql/T0dDg7O0OhUEClUuH555/nfCJE9MTKHDB2795twjKoNPm3p9rbA2PHAoMGAd7e8tZEli8xMRFr1qxB586d0blzZwBguCAiSfDiqoWpVg1YvFjuKsjSCSHw999/IzY2FkIIJCYmomPHjhzfgogkYxa/TRYuXAh/f3/Y2dmhffv2OHz4cJm2i4qKgkKhwNChQ01bIFElotVqsXHjRuzYsQNCCLRs2RLjxo1juCAiScn+GyU6OhrTpk3DrFmzcOzYMbRo0QKhoaG4devWY7dLTk7Gm2++iS5dulRQpUSWT6PRYNWqVYiLi4NCoUBoaCgGDRrEyyJEJDnZA8b8+fMxadIkTJw4EY0bN8aiRYvg4OCApUuXlriNTqfD2LFjMXv2bAQEBFRgtRVDCCAxEThz5uEXZ1ClJ6XVanHhwgVcu3YNtra2GDNmDJ566il2ziYik5C1D4ZarcbRo0cxY8YMwzKlUomQkBAcPHiwxO0++ugjeHp64rnnnsPevXsfe4zc3Fzk5uYanqenpwPI+0tOo9E84TuAYV8Fvz+pZ56xwurVJWU/AY1GK8lxzJnUbUp5/S48PT2RkZGBUaNGwcPDg+37BPgzKj22qbRM0Z7G7KtcAWPv3r344YcfcPHiRaxZswa+vr745ZdfULduXUNP9LJIS0uDTqdDzZo1Cy2vWbMmzp07V+w2+/btw08//YS4uLgyHWPu3LmYPXt2keU7duwoNKaHFGJjY594H3o9EBMzuMTXXVzuYMuWfU98HEshRZtWZUIIaLVa2NjYAAA8PDzg7u5e5n5OVDr+jEqPbSotKdszKyurzOsaHTDWrl2LcePGYezYsTh+/Ljh7MD9+/cxZ84cwyiApvDgwQOMGzcOixcvhoeHR5m2mTFjBqZNm2Z4np6eDj8/P/Tp00eyiZs0Gg1iY2PRu3dvwy/y8lKrASHyTll7eQn06ycMrzk7Czz/vAsaNuz/RMewBFK2aVWl0WiwZcsWXL9+HRMmTICNjQ1iY2MRGhrKNpUAf0alxzaVlinaM/8qQFkYHTA++eQTLFq0COPHj0dUgdGfOnXqhE8++cSofXl4eMDKygo3b94stPzmzZvw8vIqsv7FixeRnJyMQYMGGZbp/x0gwtraGgkJCQgMDCy0ja2tLWxtbYvsy8bGRvIfYCn2WfDsU6NGCixd+uj18arVGc8U/05VwYMHDxAdHY3r169DqVQiNTXV0F+JbSottqf02KbSkrI9jdmP0Z08ExIS0LVr1yLLXV1dce/ePaP2pVKp0Lp1a+zatcuwTK/XY9euXejQoUOR9Rs2bIhTp04hLi7O8DV48GD06NEDcXFx8PPzM/btmB2d7uFjTgFB5XHjxg0sXrwY169fh729PZ555hk0aNBA7rKIqIox+iPMy8sLiYmJ8Pf3L7R837595bqjY9q0aYiIiECbNm3Qrl07LFiwAJmZmZg4cSIAYPz48fD19cXcuXNhZ2eHpk2bFtrezc0NAIost1TaAv03GTDIWGfOnMH69euh1Wrh4eGB0aNHw93dXe6yiKgKMvojbNKkSZg6dSqWLl0KhUKBGzdu4ODBg3jzzTfxwQcfGF1AWFgYbt++jZkzZyI1NRXBwcHYtm2boePnlStXqswAQMnJwLVrD59zaAIyxokTJ7B+/XoAQFBQEIYNGwY7Ozt5iyKiKsvogDF9+nTo9Xr06tULWVlZ6Nq1K2xtbfHmm2/i1VdfLVcRU6ZMwZQpU4p9rbQ5UJYtW1auY5qb//s/4OuvCy/jGQwyRlBQEKpVq4aGDRsiJCSkygRzIjJPRn+EKRQKvPfee3jrrbeQmJiIjIwMNG7cGE5OTqaor8p4dLZUAKhbt+LrIMuSk5NjOEvh4OCAF154gWctiMgslPtvZJVKhcaNG0tZS5WWP1uqkxMQFgb4+ADlPCFEVcTVq1cRHR2NHj16oHXr1gDAcEFEZsPogNGjR4/HDi38xx9/PFFBVZ2nJ7BkidxVkLmLi4vD77//Dp1Oh2PHjqFly5a8JEJEZsXogBEcHFzouUajQVxcHE6fPo2IiAip6iKiYuj1euzcudMwlH7Dhg3x9NNPM1wQkdkxOmB89dVXxS7/8MMPkZGR8cQFEVHxcnNzsXbtWly4cAEA0KVLl1LPKBIRyUWyP3ueeeaZx86ASo/3zz9yV0DmTKvVYunSpbhw4QKsra0xbNgw9OzZk+GCiMyWZAHj4MGD7GBWTlu2POzkSVQca2trNG3aFE5OTpgwYQKaNWsmd0lERI9l9CWSYcOGFXouhEBKSgr+97//lWugLQJ+++3hY15Kp4LUajVUKhUAoHPnzmjdurXkswATEZmC0QHD1dW10HOlUokGDRrgo48+Qp8+fSQrrCopePbiiy/kq4PMh16vx/bt23H58mU8++yzUKlUUCgUDBdEZDGMChg6nQ4TJ05Es2bNUK1aNVPVVKUFBcldAcktOzsba9asQVJSEoC8WYQbNWokc1VERMYx6oS8lZUV+vTpY/SsqURUNmlpaViyZAmSkpJgY2ODUaNGMVwQkUUy+hJJ06ZNkZSUhLocx5pIUhcvXkRMTAxyc3Ph6uqK8PBweHl5yV0WEVG5GN2l8JNPPsGbb76J33//HSkpKUhPTy/0RcYrOIMqVU2nTp3CypUrkZubCz8/P0yaNInhgogsWpnPYHz00Ud444030L9/fwDA4MGDC92DL4SAQqGATqeTvspKbO5cIDZW7ipIbrVr14aDgwOCgoIwYMAAWHMqXSKycGX+LTZ79my89NJL+PPPP01ZT5VTcBZVW1uAf7RWHVqt1hAkXF1d8eKLL8LJyYmDZxFRpVDmgCGEAAB069bNZMVURVrtw8fr1wPu7rKVQhXo1q1biIqKQu/evQ2dOJ2dnWWuiohIOkb1weBfVtLLHwPD1RXo21feWqhiJCQk4KeffsLdu3exZ88e6DmMKxFVQkZd6K1fv36pIePOnTtPVFBVk//ZwhE8Kz8hBA4cOICdO3cCAPz9/TFy5EjOhEpElZJRAWP27NlFRvKkJ/PvlSfw5FDlptVqsWnTJpw8eRIA0Lp1a/Tr1w9WVlYyV0ZEZBpGBYzw8HB4enqaqpYqiWcwKj+tVovly5fj2rVrUCgU6NevH9q2bSt3WUREJlXmgMH+F6bBgFH5WVtbw9fXF2lpaRg5ciQCAgLkLomIyOSMvouEpMWAUXnp9XpD/4o+ffrgqaeegpubm7xFERFVkDJ/rOn1el4eMQEGjMpHCIE9e/ZgxYoVhoHnlEolwwURVSkcLlBmDBiVi0ajwfr16xEfHw8AOHfuHJo0aSJzVUREFY8BQ2b5V54YMCxfeno6oqKikJKSAqVSiQEDBjBcEFGVxYAhs/wzGOxDa9muXbuG6OhoZGRkwMHBAaNGjUKdOnXkLouISDYMGDJITQX++SfvsVqd951nMCzX2bNnsXbtWuh0Onh6emL06NHsb0FEVR4DRgVbvBh46aWHZy7yMWBYrho1asDa2hr16tXD008/DVtbW7lLIiKSHQNGBYuJKRouAMDfv8JLoScghDCMDePh4YHnn38e1atX53gxRET/YsCoYAXDxfjxgI1N3kRnL70kX01knLt372L16tXo06cP6tatCyAvZBAR0UMMGDL67jvA0VHuKsgYly9fxurVq5GVlYWtW7fi5Zdf5lkLIqJiMGAQldGxY8ewefNm6PV6eHt7Izw8nOGCiKgEDBhEpdDr9dixYwcOHToEAGjSpAmGDBkCGxsbmSsjIjJfDBgVrLgOnmS+NBoNoqOjcfHiRQBA9+7d0bVrV565ICIqBQNGBRIC+PNPuasgY1hbW8PR0RHW1tZ4+umn0bhxY7lLIiKyCAwYFejfP4INOFyC+cq/DVWhUGDQoEHo1KkTJ/sjIjICh3eqQNnZDx83aQJYM96ZHSEEDh8+jJiYGIh/J4qxtrZmuCAiMhI/4ipQTs7Dx927y1YGlUCn02Hr1q04evQoACA+Pp6TlRERlRMDRgXKzX342M5OvjqoqKysLMTExCA5ORkA0Lt3b/a3ICJ6AgwYFahgwGD/C/Nx69YtREVF4e7du1CpVBg+fDjq168vd1lERBaNAaOCXLoEXLjw8DkDhnlITExETEwM1Go13NzcMHr0aPa3ICKSAANGBXjpJeCHHwov4yUS82Bvbw+dToc6depg1KhRcHBwkLskIqJKgQGjAkRFFV0WGFjxdVBRvr6+mDBhAry9vWFlZSV3OURElQYDRgXIH73T1RUYMQJo3hwYMkTemqqqjIwMrFu3Dr169YKPjw8AoFatWjJXRURU+TBgVCBfX2DJErmrqLpSU1MRGRmJ9PR0ZGRk4KWXXuKQ30REJsKAQVXC2bNnsW7dOmg0GlSvXh0jR45kuCAiMiEGDKrUhBD466+/sHv3bgBAYGAghg8fDnt7e3kLIyKq5BgwqNLSarVYv349zpw5AwBo164dQkNDoVRyhHwiIlNjwKBKS6lUQq1WQ6lUon///mjdurXcJRERVRkMGFRpKZVKDB8+HLdu3YKfn5/c5RARVSk8V0yVyunTp7F582bDTKi2trYMF0REMuAZDKoUhBD4888/sXfvXgBA3bp1OVkZEZGMGDDI4qnVaqxbtw7nzp0DAHTq1AkNGzaUuSoioqqNAYMs2r179xAVFYWbN2/CysoKgwYNQosWLeQui4ioymPAMCG9HkhIAHQ6uSupnK5cuYLo6GhkZWXB0dERYWFh7G9BRGQmGDBMRK8H2rUDjh6Vu5LKS6PRIDs7G15eXggPD4erq6vcJRER0b8YMEzk4sWi4cLfX5ZSKq3AwECMHj0aderUgUqlkrscIiIqgLepmkj+DKoAUK8e8MYbwDffyFdPZZCTk4O1a9fin3/+MSwLCgpiuCAiMkM8g1EBOnUCvvhC7ios2507dxAZGYm0tDSkpaXhhRde4GRlRERmzCzOYCxcuBD+/v6ws7ND+/btcfjw4RLXXbx4Mbp06YJq1aqhWrVqCAkJeez6ZPkuXbqExYsXIy0tDc7Ozhg0aBDDBRGRmZM9YERHR2PatGmYNWsWjh07hhYtWiA0NBS3bt0qdv3du3dj9OjR+PPPP3Hw4EH4+fmhT58+uH79egVXThXh6NGj+OWXX5CTkwNfX19MmjQJPj4+cpdFRESlkD1gzJ8/H5MmTcLEiRPRuHFjLFq0CA4ODli6dGmx669cuRKvvPIKgoOD0bBhQyxZsgR6vR67du2q4Mof79+RqqmcdDodrl27hu3bt0MIgWbNmiEiIgLOzs5yl0ZERGUgax8MtVqNo0ePYsaMGYZlSqUSISEhOHjwYJn2kZWVBY1GA3d392Jfz83NRW5uruF5eno6gLxbHDUazRNU/1D+fgrub9AgawB5p/H1ej00Gg6GYQy1Wo3s7GwAQPfu3dGhQwcAkOzfrCoq7ueUyo/tKT22qbRM0Z7G7EvWgJGWlgadToeaNWsWWl6zZk3DsM+leeedd+Dj44OQkJBiX587dy5mz55dZPmOHTvg4OBgfNGPERsbCwDIzrZGYuIAw3K1+jy2bEmQ9FhVgb+/P7KysnDv3j1s3bpV7nIqjfyfU5IG21N6bFNpSdmeWVlZZV7Xou8i+eyzzxAVFYXdu3fDzs6u2HVmzJiBadOmGZ6np6cb+m24uLhIUodGo0FsbCx69+4NGxsb3L9f+PX//jcQ1aoFSnKsyuzixYu4ceMGunTpYmjTESNGwMbGRu7SKoVHf07pybA9pcc2lZYp2jP/KkBZyBowPDw8YGVlhZs3bxZafvPmTXh5eT122y+++AKfffYZdu7ciebNm5e4nq2tLWxtbYsst7GxkfwHOH+fBXfbpw/g6cn/KI8jhMDff/+N2NhYCCFQq1Yt1K1bF4Bp/p2qOraptNie0mObSkvK9jRmP7J28lSpVGjdunWhDpr5HTbzr7kX5/PPP8fHH3+Mbdu2oU2bNhVRKpmIVqvFxo0bsWPHDggh0LJlSwQG8mwPEZGlk/0SybRp0xAREYE2bdqgXbt2WLBgATIzMzFx4kQAwPjx4+Hr64u5c+cCAP7zn/9g5syZWLVqFfz9/ZGamgoAcHJygpOTk2zvg4yXmZmJ6OhoXL16FQqFAn369EH79u2hUCigLzgUKhERWRzZA0ZYWBhu376NmTNnIjU1FcHBwdi2bZuh4+eVK1egVD480fL9999DrVZjxIgRhfYza9YsfPjhhxVZehG3bwN37wIPHshahkW4efMmIiMjcf/+fdja2mLEiBGoV6+e3GUREZFEZA8YADBlyhRMmTKl2Nd2795d6HlycrLpCyqHfft8MGKENbRauSuxDGlpabh//z7c3d0xevRoeHh4yF0SERFJyCwCRmVw4IAPtNqiw1dzBtXiNWnSBFqtFvXr14e9vb3c5RARkcQYMCQixMNwER4OODoCNWsCr74qY1FmRKPRYOfOnejUqZPh9uAWLVrIXBUREZkKA4YJzJsH1KoldxXm48GDB4iOjsb169dx48YNPPvss5ysjIiokmPAIJO6ceMGoqKi8ODBA9jb26NXr14MF0REVQADBpnM6dOnsWHDBmi1WtSoUQPh4eElzhlDRESVCwMGSU4Igd27d+Ovv/4CAAQFBWH48OHFjqhKRESVEwOGRA4e9JG7BLOh0WgMk9V16NABISEhhcYyISKiyo8BQyIKhTDcSVLVrwKoVCqMHj0aly9f5p0iRERVFAOGRAoGDIlngbcIV69eRWpqKtq2bQsAcHNzg5ubm7xFERGRbBgwJJIfLv79fK1STpw4gU2bNkGn06F69eoICAiQuyQiIpIZA4ZE8gNGVepqkD/z7YEDBwAADRs2RC0OAEJERGDAkIQQDx9XlYCRm5uLtWvX4sKFCwCALl26oEePHhzjgoiIADBgSKLgzOJVIWDcvXsXkZGRuH37NqytrTF48GA0a9ZM7rKIiMiMMGBIoKoFjKSkJNy+fRtOTk4IDw+Hr6+v3CUREZGZYcCQQMGAURWuELRu3RpqtRpNmjQxTFxGRERUUBX4e9v0KnsfDL1ejz179iA7O9uwrEOHDgwXRERUokr4cVjxKvMlkuzsbKxcuRK7d+/GmjVrIAqmKSIiohLwEokEKmvASEtLQ2RkJO7cuQMbGxu0adOGd4kQEVGZMGBIoDIGjMTERKxZswa5ublwdXVFeHg4vLy85C6LiIgsBAOGBCpTJ08hBA4dOoQdO3ZACAE/Pz+EhYXB0dFR7tKIiMiCMGBI4M8/H6YKSz+DoVarcejQIQghEBwcjAEDBsDamj8mRERkHH5ySKBgwCh4NsMS2draYvTo0UhKSkL79u3Z54KIiMqFAUNiU6fKXYHxbt26hdu3b6NJkyYAAE9PT3h6espcFRERWTIGDAkUPGthaf0gExIS8Ntvv0Gr1cLFxQV+fn5yl0RERJUAA4YECg4NYSlXFIQQ2L9/P3bt2gUAqFu3LqpXry5zVUREVFkwYEjA0gKGVqvFpk2bcPLkSQBAmzZt0LdvX1hZWclcGRERVRYMGBIQ4mGqMPeAkZGRgaioKFy/fh0KhQL9+vVD27Zt5S6LiIgqGQYMCVjSXCSnTp3C9evXYWdnh5EjRyIgIEDukoiIqBJiwJCAJQ209dRTTyEzMxMtW7ZknwsiIjIZM/972zKYcx8MIQT+97//Qa1WAwAUCgVCQkIYLoiIyKQYMCRgrgFDo9FgzZo12Lx5MzZs2MCZUImIqMLwEokEzDFgpKenIyoqCikpKVAqlahXrx5H5SQiogrDgCEBc+vkee3aNURHRyMjIwMODg4ICwtD7dq15S6LiIiqEAYMCZhTJ8+TJ09i48aN0Ol08PT0xOjRo+Hm5iZvUUREVOUwYEjAXC6R5ObmYseOHdDpdGjQoAGefvpp2NraylcQERFVWQwYEjCXgGFra4uwsDBcuHABPXr0YJ8LIiKSDQOGBOQMGHfv3sWdO3cQGBgIAPDz8+OEZUREJDsz6JJo+eQKGJcvX8aSJUsQHR2NmzdvVtyBiYiISsEzGBKQ4y6SY8eOYfPmzdDr9fD29oa9vX3FHJiIiKgMGDAkUJF3kej1euzYsQOHDh0CADRp0gRDhgyBjY2NaQ9MRERkBAYMCVTUJZKcnBysWbMGFy9eBAB0794dXbt2ZWdOIiIyOwwYEvjtt4fXRUz5WX/48GFcvHgRNjY2GDp0KBo3bmy6gxERET0BBgwJKBQCQuQlC3d30x2nc+fOuHv3Ltq1awdvb2/THYiIiOgJ8S4SCVgXiGkODtLtVwiB+Ph46HQ6AIBSqcSQIUMYLoiIyOwxYEgoOFi62Up1Oh02b96MmJgYbN26lTOhEhGRReElEjOUlZWFmJgYJCcnAwCqVasmb0FERERGYsAwM7du3UJUVBTu3r0LlUqF4cOHo379+nKXRUREZBQGDDNy/vx5rF27Fmq1Gm5ubhg9ejQ8PT3lLouIiMhoDBhmIicnB+vWrYNarUadOnUwatQoOEjZY5RIZkIIaLVaQ6dlS6fRaGBtbY2cnJxK857kxjaVVnnb08bGBlZWVk98fAYMM2FnZ4dhw4YhISEB/fr1k+Qfl8hcqNVqpKSkICsrS+5SJCOEgJeXF65evcrB7iTCNpVWedtToVCgVq1acHJyeqLjM2DIKCMjA/fv34evry8AICgoCEFBQTJXRSQtvV6PS5cuwcrKCj4+PlCpVJXiw0Ov1yMjIwNOTk5QVtQkRJUc21Ra5WlPIQRu376Na9euISgo6In+2GXAkElqaioiIyOh0WgwadIk3ilClZZarYZer4efn1+luuyn1+uhVqthZ2fHD0OJsE2lVd72rFGjBpKTk6HRaBgwLM3Zs2exbt06aDQaVK9eHfqCs6URVVL8wCCyDFKdYWTAqEBCCOzduxd//vknACAwMBDDhw/nVOtERFTpMGBUEI1Gg40bN+L06dMAgHbt2iE0NJR/1RERUaXET7cKsm/fPpw+fRpKpRIDBw5Ev379GC6IqNJKSEiAl5cXHjx4IHcpVEB8fDxq1aqFzMxMkx+Ln3AVpHPnzqhXrx7GjRuH1q1by10OEZXBhAkToFAooFAoYGNjg7p16+Ltt99GTk5OkXV///13dOvWDc7OznBwcEDbtm2xbNmyYve7du1adO/eHa6urnByckLz5s3x0Ucf4c6dOyZ+RxVnxowZePXVV+Hs7FzktYYNG8LW1hapqalFXmvevDm+/vrrIss//PBDBAcHF1qWmpqKV199FQEBAbC1tYWfnx8GDRqEXbt2SfY+ihMTE4OGDRvCzs4OzZo1w5YtW0rdZuXKlWjRogUcHBzg7e2NZ599Fv/884/h9TNnzmD48OHw9/eHQqHAggULHru/zz77DAqFAv/3f/9XaHn37t0NP7NWVlaoVq0aXn75ZcPrjRs3xlNPPYX58+cb9Z7LgwHDhJKTkw2TlNnY2GDs2LHw9/eXtygiMkrfvn2RkpKCpKQkfPXVV/jhhx8wa9asQut88803GDJkCDp16oRDhw7h5MmTCA8Px0svvYQ333yz0LrvvfcewsLC0LZtW2zduhWnT5/Gl19+iRMnTuCXX36psPelVqtNtu8rV67g999/x4QJE4q8tm/fPmRnZ2PEiBFYvnx5uY+RnJyM1q1b448//sC8efNw6tQpbNu2DT169MDkyZOfoPrHO3DgAEaPHo3nnnsOx48fx9ChQzF06FDD5e/i7N+/H+PHj8dzzz2HM2fOICYmBocPH8akSZMM62RlZSEgIACfffYZvLy8HlvDkSNH8MMPP6B58+bFvj5p0iSkpKTg+vXrOHfuHP7zn/8Uen3ixIn4/vvvodVqjXjn5SCqmPv37wsA4v79+5Lt08ZGLwAhgoP1Qggh9Hq92LVrl/jwww/Frl27JDtOVaJWq8X69euFWq2Wu5RKQ642zc7OFvHx8SI7O7tCjyuFiIgIMWTIkELLhg0bJlq2bCl0Op24e/euSE5OFjY2NmLatGlFtv/vf/8rAIi///5bCCHEoUOHBACxYMGCYo939+7dEmu5evWqCA8PF9WqVRMODg6idevWhv0WV+fUqVNFt27dDM+7desmJk+eLKZOnSqqV68uunfvLkaPHi1GjRpVaDu1Wi2qV68uli9fLoQQQqfTiTlz5gh/f39hZ2cnmjdvLmJiYkqsUwgh5s2bJ9q0aVPsaxMmTBDTp08XW7duFfXr1y/0mk6nE35+fmL+/PlFtps1a5Zo0aKF4Xm/fv2Er6+vyMjIKLLu49rxSY0aNUoMGDCg0LL27duLF198scRt5s2bJwICAgot++9//yt8fX2LXb9OnTriq6++Kva1Bw8eiKCgIBEbGyu6desmpk6dWuj1gsvyf0Z1Ol2hdXJzc4Wtra3YuXNnscd43P9ZYz5DzeIMxsKFC+Hv7w87Ozu0b98ehw8ffuz65Tk9VVHUajVWr16NvXv3Asi7D1lwqnWiItq0AWrVqvivNm3KX/Pp06dx4MABqFQqw7K1a9dCo9EUOVMBAC+++CKcnJwQGRkJIO80uZOTE1555ZVi9+/m5lbs8oyMDHTr1g3Xr1/Hxo0bceLECbz99ttG3+K+fPlyqFQq7N+/H4sWLcLYsWOxadMmZGRkGNbZvn07srKy8PTTTwMA5s6dixUrVmDRokU4c+YMXn/9dTzzzDPYs2dPicfZu3cv2hTT0A8ePEBMTAyeeeYZ9O7dG/fv3zf8rjTGnTt3sG3bNkyePBmOjo5FXi+pHYGH/waP+3pcTQcPHkRISEihZaGhoTh48GCJ23To0AFXr17Fli1bIITAzZs3sWbNGvTv37/0N/uIyZMnY8CAAUVqePQ9enh4oHnz5pg9e3aREXRVKhWCg4PL1fbGkP0ukujoaEybNg2LFi1C+/btsWDBAoSGhiIhIaHYib7yT0/NnTsXAwcOxKpVqzB06FAcO3YMTZs2leEdPGRvfw9Ll0bj5s2bsLKywqBBg9CiRQtZayIyV6mpwPXrcldRut9//x1OTk7QarXIzc2FUqnEt99+a3j9/PnzcHV1hbe3d5FtVSoVAgICcP78eQDAhQsXEBAQABsbG6NqWLVqFW7fvo0jR47A3d0dAFCvXj2j30tQUBA+//xzw/PAwEA4Ojpi3bp1GDdunOFYgwcPhrOzM3JzczFnzhzs3LkTHTp0AAAEBARg3759+OGHH9CtW7dij3P58uViA0ZUVBSCgoLQpEkTAEB4eDh++ukndOnSxaj3kZiYCCEEGjZsaNR2ADB48GC0b9/+sevkj65cnNTUVNSsWbPQspo1axbbnyRfp06dsHLlSoSFhSEnJwdarRaDBg3CwoULjao9KioKx44dw5EjR0pcZ8yYMahTpw58fHwQFxeH6dOnIzk5GevWrSu0no+PDy5fvmzU8Y0le8CYP38+Jk2ahIkTJwIAFi1ahM2bN2Pp0qWYPn16kfW//vpr9O3bF2+99RYA4OOPP0ZsbCy+/fZbLFq0qEJrL6h27Svo3j0aN29mwdHREWFhYfDz85OtHiJzV8plZrM5bo8ePfD9998jMzMTX331FaytrTF8+PByDZBX3rOZcXFxaNmypSFclNejHcytra0xatQorFy5EuPGjUNmZiY2bNiAqKgoAHkf5FlZWejdu3eh7dRqNVq2bFnicbKzs2FnZ1dk+dKlS/HMM88Ynj/zzDPo1q0bvvnmm2I7g5bkSc4KOzs7G3UsKcTHx2Pq1KmYOXMmQkNDkZKSgrfeegsvvfQSfvrppzLt4+rVq5g6dSpiY2OLbdt8L7zwguFxkyZN4OrqiiFDhuDixYsIDAw0vGZvb2/yuYFkDRhqtRpHjx7FjBkzDMuUSiVCQkJKPN108OBBTJs2rdCy0NBQrF+/vtj1c3NzkZuba3ienp4OIG9cCo1G84TvII+dnQZjxqyCrW0uatasiZEjR8LFxUWy/VdF+W3HNpSOXG2q0WgghIBery/0oVzKlVCTKms2EELAwcEBAQEBAIAlS5agZcuWWLx4MZ599lkAeWcF7t+/j2vXrsHHx6fQ9mq1GhcvXkT37t2h1+sRFBSEffv2ITc316izGPkfKCWFGoVCUaR98ztxFlzm4OBQZB+jR49Gjx49kJqaitjYWNjb26NPnz7Q6/WG35ebNm0q8le9ra1tifV4eHjgzp07hV6Pj4/H33//jcOHD+Odd94xLNfpdFi1ahUmTZoEIQScnZ1x7969Ivu+e/cuXF1dodfrERgYCIVCgbNnz2LIkCHFN1oJVq5cWeiuiuJs3ry5xLMqXl5eSE1NLVRfamoqvLy8SmyPOXPmoGPHjnjjjTcAAE2bNsW3336Lbt264aOPPir27Ff+/5l8R44cwa1bt9CqVSvDMp1Oh7/++gvffvstsrOziwzrLYQwhMrz58+jbt26htf++ecfBAYGFltz/qX94oYKN+b3h6wBIy0tDTqdrtjTTefOnSt2G2NPT82dOxezZ88usnzHjh2SzYuQnT0IW7b0R6tWp9CsmT327dsnyX4JiI2NlbuESqei29Ta2hpeXl7IyMgw6Z0LpqDRaKDVag0ftAAwdepUvP/++xg4cKDhw9jGxgafffYZPvnkk0Lb//DDD8jMzMSgQYOQnp6OwYMH45tvvsFXX32Fl156qcjx7t+/D1dX1yLLg4KCsGTJEly+fLnYeYtcXFxw8uTJQnUePXoUNjY2hmVarRZqtbrQOkDeh52vry9WrFiB2NhYDB48GNnZ2cjOzkatWrVga2uLhISEYs9YPLqvfI0bNy5Sz6JFi9CxY0fMmzev0LqrVq3CkiVLEBYWZnivhw8fLrLvI0eOICgoCOnp6bC2tkbPnj2xcOFCREREFOmHUVI7Anm3cf7111/FvpbP29u7xPfWpk0bbN++3XDWHQC2bduGVq1albhNfs0FX8+/1Tk9Pb1I/Xq9Hjk5OYXWb9u2Lfbv319ovSlTpiAoKAhTp04tcVyLU6dOAcg7c1Nwf6dOncKAAQOKrVmtViM7Oxt//fVXkTtNjDnrIfslElObMWNGoTMe6enp8PPzQ58+feDi4iLJMcaP1+HKFVfUqjUCgwaZRb9Zi6fRaBAbG4vevXsbfb2aiidXm+bk5ODq1atwcnJ67Kldc2RjYwNra+tCvyvGjx+PDz/8EL/88gteeOEFNG7cGP/5z3/w5ptvwsXFBc888wxsbGywceNGzJo1C9OmTUPPnj0BAD179sRbb72F999/H//88w+GDh0KHx8fJCYm4ocffkDnzp3x2muvFalj4sSJWLBgASIiIvDpp5/C29sbx48fh4+PDzp06IC+ffvim2++wfr169GhQwesXLkS586dQ8uWLQ21W1tbQ6VSFft7b+zYsVi+fDnOnz+PXbt2GdZxcXHBG2+8gffffx+2trbo3Lkz7t+/jwMHDsDZ2RkRERHFttvAgQPxwgsvwNHREVZWVtBoNFi9ejU+/PBDPPXUU4XWdXV1xcKFC3H16lU0btwYL7/8Mvr3749vv/0WTz/9NHQ6HaKionDkyBEsWrTIUNuiRYvQpUsX9OnTBx9++CGaN28OrVaLnTt3GjqkFsfFxeWxfSxKM23aNPTo0QNLlixB//79ER0djbi4OCxZssRQ27vvvovr168bbsMdOnQoXnzxRaxcudJwieS9995Du3bt0KBBAwB5H+rx8fEA8sLgP//8g6SkJDg5OaFevXrF1u3i4gIvLy9Dm168eBGRkZHo168fqlevjpMnT+L1119Hly5d0LFjR8N2ycnJSElJwcCBA4v9ecjJyYG9vT26du1a5P9sSSGqWKXeZ2JCubm5wsrKSqxbt67Q8vHjx4vBgwcXu42fn1+R23dmzpwpmjdvXqZjmuI2Vd5SKT22qfR4m6rxirv9Uwgh5s6dK2rUqCGuXbtmuAVww4YNokuXLsLR0VHY2dmJ1q1bi6VLlxa73+joaNG1a1fh7OwsHB0dRfPmzcVHH3302Nsrk5OTxfDhw4WLi4twcHAQbdq0EYcOHTK8PnPmTFGzZk3h6uoqXn/9dTFlypQit6k+ektjvvj4eAFA1KlTR+j1+kKv6fV6sWDBAtGgQQNhY2MjatSoIUJDQ8WePXtKrFWj0QgfHx+xbds2IYQQa9asEUqlUqSmpha7fqNGjcTrr79uuK1y69atolOnTqJatWqGW2qLO96NGzfE5MmTRZ06dYRKpRK+vr5i8ODB4s8//yyxNimsXr1a1K9fX6hUKtGkSROxefPmQq9HREQUansh8m5Lbdy4sbC3txfe3t5i7Nix4tq1a4bXL126JAAU+Xp0PwU9+m965coV0bVrV+Hu7i5sbW1FvXr1xKuvvlrk52rOnDkiNDS0xP1KdZuq7ONgtGvXTkyZMsXwXKfTCV9fXzF37txi1x81apQYOHBgoWUdOnR47D3IBTFgWAa2qfQYMKRV0hgDlOfbb78Vffr0MWobtqm0imvP3NxcUbt2bbFv374St5MqYMh+iWTatGmIiIhAmzZt0K5dOyxYsACZmZmG61vjx4+Hr68v5s6dCyDv+me3bt3w5ZdfYsCAAYiKisL//vc//Pjjj3K+DSIiKuDFF1/EvXv38ODBgwq/a4NKduXKFbz77rvo1KmTyY8le8AICwvD7du3MXPmTKSmpiI4OBjbtm0zdOS8cuVKoUnBOnbsiFWrVuH999/Hu+++i6CgIKxfv172MTCIiOgha2trvPfee3KXQY+oV69eucZQKQ/ZAwaQ1xN2ypQpxb62e/fuIstGjhyJkSNHmrgqIiIiKi/e8kBERESSY8AgogohOCcPkUWQ6v8qAwYRmVT+mBumHpaYiKSRPyDeo6N4Gsss+mAQUeVlZWUFNzc33Lp1C0DecNUKhULmqp6cXq+HWq1GTk5OoY7oVH5sU2mVpz31ej1u374NBwcHWFs/WURgwCAik/P6d4ax/JBRGQghkJ2dDXt7+0oRmMwB21Ra5W1PpVKJ2rVrP/G/AQMGEZmcQqGAt7c3PD09K80EdhqNBn/99Re6du3K4ewlwjaVVnnbU6VSSXIGiQGDiCqMlZXVE1/XNRdWVlbQarWws7Pjh6FE2KbSkrs9eZGLiIiIJMeAQURERJJjwCAiIiLJVbk+GPkDiBg1p30pNBoNsrKykJ6ezuuGEmGbSo9tKi22p/TYptIyRXvmf3aWZTCuKhcwHjx4AADw8/OTuRIiIiLL9ODBA7i6uj52HYWoYuP36vV63LhxA87OzpLdZ52eng4/Pz9cvXoVLi4ukuyzqmObSo9tKi22p/TYptIyRXsKIfDgwQP4+PiUeitrlTuDoVQqUatWLZPs28XFhf8pJMY2lR7bVFpsT+mxTaUldXuWduYiHzt5EhERkeQYMIiIiEhyDBgSsLW1xaxZs2Brayt3KZUG21R6bFNpsT2lxzaVltztWeU6eRIREZHp8QwGERERSY4Bg4iIiCTHgEFERESSY8AgIiIiyTFglNHChQvh7+8POzs7tG/fHocPH37s+jExMWjYsCHs7OzQrFkzbNmypYIqtRzGtOnixYvRpUsXVKtWDdWqVUNISEip/wZVjbE/o/mioqKgUCgwdOhQ0xZogYxt03v37mHy5Mnw9vaGra0t6tevz//7BRjbngsWLECDBg1gb28PPz8/vP7668jJyamgas3fX3/9hUGDBsHHxwcKhQLr168vdZvdu3ejVatWsLW1Rb169bBs2TLTFSioVFFRUUKlUomlS5eKM2fOiEmTJgk3Nzdx8+bNYtffv3+/sLKyEp9//rmIj48X77//vrCxsRGnTp2q4MrNl7FtOmbMGLFw4UJx/PhxcfbsWTFhwgTh6uoqrl27VsGVmydj2zPfpUuXhK+vr+jSpYsYMmRIxRRrIYxt09zcXNGmTRvRv39/sW/fPnHp0iWxe/duERcXV8GVmydj23PlypXC1tZWrFy5Uly6dEls375deHt7i9dff72CKzdfW7ZsEe+995747bffBACxbt26x66flJQkHBwcxLRp00R8fLz45ptvhJWVldi2bZtJ6mPAKIN27dqJyZMnG57rdDrh4+Mj5s6dW+z6o0aNEgMGDCi0rH379uLFF180aZ2WxNg2fZRWqxXOzs5i+fLlpirRopSnPbVarejYsaNYsmSJiIiIYMB4hLFt+v3334uAgAChVqsrqkSLYmx7Tp48WfTs2bPQsmnTpolOnTqZtE5LVZaA8fbbb4smTZoUWhYWFiZCQ0NNUhMvkZRCrVbj6NGjCAkJMSxTKpUICQnBwYMHi93m4MGDhdYHgNDQ0BLXr2rK06aPysrKgkajgbu7u6nKtBjlbc+PPvoInp6eeO655yqiTItSnjbduHEjOnTogMmTJ6NmzZpo2rQp5syZA51OV1Flm63ytGfHjh1x9OhRw2WUpKQkbNmyBf3796+Qmiujiv5sqnKTnRkrLS0NOp0ONWvWLLS8Zs2aOHfuXLHbpKamFrt+amqqyeq0JOVp00e988478PHxKfKfpSoqT3vu27cPP/30E+Li4iqgQstTnjZNSkrCH3/8gbFjx2LLli1ITEzEK6+8Ao1Gg1mzZlVE2WarPO05ZswYpKWloXPnzhBCQKvV4qWXXsK7775bESVXSiV9NqWnpyM7Oxv29vaSHo9nMMjifPbZZ4iKisK6detgZ2cndzkW58GDBxg3bhwWL14MDw8PucupNPR6PTw9PfHjjz+idevWCAsLw3vvvYdFixbJXZpF2r17N+bMmYPvvvsOx44dw2+//YbNmzfj448/lrs0KiOewSiFh4cHrKyscPPmzULLb968CS8vr2K38fLyMmr9qqY8bZrviy++wGeffYadO3eiefPmpizTYhjbnhcvXkRycjIGDRpkWKbX6wEA1tbWSEhIQGBgoGmLNnPl+Rn19vaGjY0NrKysDMsaNWqE1NRUqNVqqFQqk9ZszsrTnh988AHGjRuH559/HgDQrFkzZGZm4oUXXsB7770HpZJ/HxurpM8mFxcXyc9eADyDUSqVSoXWrVtj165dhmV6vR67du1Chw4dit2mQ4cOhdYHgNjY2BLXr2rK06YA8Pnnn+Pjjz/Gtm3b0KZNm4oo1SIY254NGzbEqVOnEBcXZ/gaPHgwevTogbi4OPj5+VVk+WapPD+jnTp1QmJioiGsAcD58+fh7e1dpcMFUL72zMrKKhIi8sOb4BRa5VLhn00m6TpayURFRQlbW1uxbNkyER8fL1544QXh5uYmUlNThRBCjBs3TkyfPt2w/v79+4W1tbX44osvxNmzZ8WsWbN4m+ojjG3Tzz77TKhUKrFmzRqRkpJi+Hrw4IFcb8GsGNuej+JdJEUZ26ZXrlwRzs7OYsqUKSIhIUH8/vvvwtPTU3zyySdyvQWzYmx7zpo1Szg7O4vIyEiRlJQkduzYIQIDA8WoUaPkegtm58GDB+L48ePi+PHjAoCYP3++OH78uLh8+bIQQojp06eLcePGGdbPv031rbfeEmfPnhULFy7kbarm4JtvvhG1a9cWKpVKtGvXTvz999+G17p16yYiIiIKrb969WpRv359oVKpRJMmTcTmzZsruGLzZ0yb1qlTRwAo8jVr1qyKL9xMGfszWhADRvGMbdMDBw6I9u3bC1tbWxEQECA+/fRTodVqK7hq82VMe2o0GvHhhx+KwMBAYWdnJ/z8/MQrr7wi7t69W/GFm6k///yz2N+L+e0YEREhunXrVmSb4OBgoVKpREBAgPj5559NVh+nayciIiLJsQ8GERERSY4Bg4iIiCTHgEFERESSY8AgIiIiyTFgEBERkeQYMIiIiEhyDBhEREQkOQYMIiIikhwDBlEls2zZMri5ucldRrkpFAqsX7/+setMmDABQ4cOrZB6iKh8GDCIzNCECROgUCiKfCUmJspdGpYtW2aoR6lUolatWpg4cSJu3bolyf5TUlLQr18/AEBycjIUCgXi4uIKrfP1119j2bJlkhyvJB9++KHhfVpZWcHPzw8vvPAC7ty5Y9R+GIaoquJ07URmqm/fvvj5558LLatRo4ZM1RTm4uKChIQE6PV6nDhxAhMnTsSNGzewffv2J953SdN3F+Tq6vrExymLJk2aYOfOndDpdDh79iyeffZZ3L9/H9HR0RVyfCJLxjMYRGbK1tYWXl5ehb6srKwwf/58NGvWDI6OjvDz88Mrr7yCjIyMEvdz4sQJ9OjRA87OznBxcUHr1q3xv//9z/D6vn370KVLF9jb28PPzw+vvfYaMjMzH1ubQqGAl5cXfHx80K9fP7z22mvYuXMnsrOzodfr8dFHH6FWrVqwtbVFcHAwtm3bZthWrVZjypQp8Pb2hp2dHerUqYO5c+cW2nf+JZK6desCAFq2bAmFQoHu3bsDKHxW4Mcff4SPj0+hadIBYMiQIXj22WcNzzds2IBWrVrBzs4OAQEBmD17NrRa7WPfp7W1Nby8vODr64uQkBCMHDkSsbGxhtd1Oh2ee+451K1bF/b29mjQoAG+/vprw+sffvghli9fjg0bNhjOhuzevRsAcPXqVYwaNQpubm5wd3fHkCFDkJyc/Nh6iCwJAwaRhVEqlfjvf/+LM2fOYPny5fjjjz/w9ttvl7j+2LFjUatWLRw5cgRHjx7F9OnTYWNjAwC4ePEi+vbti+HDh+PkyZOIjo7Gvn37MGXKFKNqsre3h16vh1arxddff40vv/wSX3zxBU6ePInQ0FAMHjwYFy5cAAD897//xcaNG7F69WokJCRg5cqV8Pf3L3a/hw8fBgDs3LkTKSkp+O2334qsM3LkSPzzzz/4888/Dcvu3LmDbdu2YezYsQCAvXv3Yvz48Zg6dSri4+Pxww8/YNmyZfj000/L/B6Tk5Oxfft2qFQqwzK9Xo9atWohJiYG8fHxmDlzJt59912sXr0aAPDmm29i1KhR6Nu3L1JSUpCSkoKOHTtCo9EgNDQUzs7O2Lt3L/bv3w8nJyf07dsXarW6zDURmTWTzdNKROUWEREhrKyshKOjo+FrxIgRxa4bExMjqlevbnj+888/C1dXV8NzZ2dnsWzZsmK3fe6558QLL7xQaNnevXuFUqkU2dnZxW7z6P7Pnz8v6tevL9q0aSOEEMLHx0d8+umnhbZp27ateOWVV4QQQrz66quiZ8+eQq/XF7t/AGLdunVCCCEuXbokAIjjx48XWufR6eWHDBkinn32WcPzH374Qfj4+AidTieEEKJXr15izpw5hfbxyy+/CG9v72JrEEKIWbNmCaVSKRwdHYWdnZ1hKuz58+eXuI0QQkyePFkMHz68xFrzj92gQYNCbZCbmyvs7e3F9u3bH7t/IkvBPhhEZqpHjx74/vvvDc8dHR0B5P01P3fuXJw7dw7p6enQarXIyclBVlYWHBwciuxn2rRpeP755/HLL78YTvMHBgYCyLt8cvLkSaxcudKwvhACer0ely5dQqNGjYqt7f79+3BycoJer0dOTg46d+6MJUuWID09HTdu3ECnTp0Krd+pUyecOHECQN7ljd69e6NBgwbo27cvBg4ciD59+jxRW40dOxaTJk3Cd999B1tbW6xcuRLh4eFQKpWG97l///5CZyx0Ot1j2w0AGjRogI0bNyInJwe//vor4uLi8OqrrxZaZ+HChVi6dCmuXLmC7OxsqNVqBAcHP7beEydOIDExEc7OzoWW5+Tk4OLFi+VoASLzw4BBZKYcHR1Rr169QsuSk5MxcOBAvPzyy/j000/h7u6Offv24bnnnoNarS72g/LDDz/EmDFjsHnzZmzduhWzZs1CVFQUnn76aWRkZODFF1/Ea6+9VmS72rVrl1ibs7Mzjh07BqVSCW9vb9jb2wMA0tPTS31frVq1wqVLl7B161bs3LkTo0aNQkhICNasWVPqtiUZNGgQhBDYvHkz2rZti7179+Krr74yvJ6RkYHZs2dj2LBhRba1s7Mrcb8qlcrwb/DZZ59hwIABmD17Nj7++GMAQFRUFN588018+eWX6NChA5ydnTFv3jwcOnTosfVmZGSgdevWhYJdPnPpyEv0pBgwiCzI0aNHodfr8eWXXxr+Os+/3v849evXR/369fH6669j9OjR+Pnnn/H000+jVatWiI+PLxJkSqNUKovdxsXFBT4+Pti/fz+6detmWL5//360a9eu0HphYWEICwvDiBEj0LdvX9y5cwfu7u6F9pff30Gn0z22Hjs7OwwbNgwrV65EYmIiGjRogFatWhleb9WqFRISEox+n496//330bNnT7z88suG99mxY0e88sorhnUePQOhUqmK1N+qVStER0fD09MTLi4uT1QTkbliJ08iC1KvXj1oNBp88803SEpKwi+//IJFixaVuH52djamTJmC3bt34/Lly9i/fz+OHDliuPTxzjvv4MCBA5gyZQri4uJw4cIFbNiwwehOngW99dZb+M9//oPo6GgkJCRg+vTpiIuLw9SpUwEA8+fPR2RkJM6dO4fz588jJiYGXl5exQ4O5unpCXt7e2zbtg03b97E/fv3Szzu2LFjsXnzZixdutTQuTPfzJkzsWLFCsyePRtnzpzB2bNnERUVhffff9+o99ahQwc0b94cc+bMAQAEBQXhf//7H7Zv347z58/jgw8+wJEjRwpt4+/vj5MnTyIhIQFpaWnQaDQYO3YsPDw8MGTIEOzduxeXLl3C7t278dprr+HatWtG1URktuTuBEJERRXXMTDf/Pnzhbe3t7C3txehoaFixYoVAoC4e/euEKJwJ8zc3FwRHh4u/Pz8hEqlEj4+PmLKlCmFOnAePnxY9O7dWzg5OQlHR0fRvHnzIp00C3q0k+ejdDqd+PDDD4Wvr6+wsbERLVq0EFu3bjW8/uOPP4rg4GDh6OgoXFxcRK9evcSxY8cMr6NAJ08hhFi8eLHw8/MTSqVSdOvWrcT20el0wtvbWwAQFy9eLFLXtm3bRMeOHYW9vb1wcXER7dq1Ez/++GOJ72PWrFmiRYsWRZZHRkYKW1tbceXKFZGTkyMmTJggXF1dhZubm3j55ZfF9OnTC21369YtQ/sCEH/++acQQoiUlBQxfvx44eHhIWxtbUVAQICYNGmSuH//fok1EVkShRBCyBtxiIiIqLLhJRIiIiKSHAMGERERSY4Bg4iIiCTHgEFERESSY8AgIiIiyTFgEBERkeQYMIiIiEhyDBhEREQkOQYMIiIikhwDBhEREUmOAYOIiIgk9/97SdB02HNPpAAAAABJRU5ErkJggg==",
"text/plain": [
"